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In this paper, we investigated the problem of computer-aided diagnosis of Attention

Deficit Hyperactivity Disorder (ADHD) using machine learning techniques. With the

ADHD-200 dataset, we developed a Support Vector Machine (SVM) model to classify

ADHD patients from typically developing controls (TDCs), using the regional brain

volumes as predictors. Conventionally, the volume of a brain region was considered to

be an anatomical feature and quantified using structural magnetic resonance images.

One major contribution of the present study was that we had initially proposed to

measure the regional brain volumes using fMRI images. Brain volumes measured from

fMRI images were denoted as functional volumes, which quantified the volumes of

brain regions that were actually functioning during fMRI imaging. We compared the

predictive power of functional volumes with that of regional brain volumes measured

from anatomical images, which were denoted as anatomical volumes. The former

demonstrated higher discriminative power than the latter for the classification of ADHD

patients vs. TDCs. Combined with our two-step feature selection approach which

integrated prior knowledge with the recursive feature elimination (RFE) algorithm, our

SVM classificationmodel combining functional volumes and demographic characteristics

achieved a balanced accuracy of 67.7%, which was 16.1% higher than that of a

relevant model published previously in the work of Sato et al. Furthermore, our classifier

highlighted 10 brain regions that were most discriminative in distinguishing between

ADHD patients and TDCs. These 10 regions were mainly located in occipital lobe,

cerebellum posterior lobe, parietal lobe, frontal lobe, and temporal lobe. Our present

study using functional images will likely provide new perspectives about the brain regions

affected by ADHD.

Keywords: attention deficit hyperactivity disorder, automatic diagnosis, functional volume, machine learning,

support vector machine

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
https://doi.org/10.3389/fncom.2017.00075
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00075&domain=pdf&date_stamp=2017-09-08
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:long.lu@cchmc.org
https://doi.org/10.3389/fncom.2017.00075
http://journal.frontiersin.org/article/10.3389/fncom.2017.00075/abstract
http://loop.frontiersin.org/people/350736/overview


Tan et al. A Model for ADHD Diagnosis

INTRODUCTION

AttentionDeficit Hyperactivity Disorder (ADHD) is a psychiatric
disorder characterized by clinical symptoms of inattention,
impulsivity, and hyperactivity. This condition affects 5–8% of
school age children, and usually persists into adolescence and
adulthood. Clinical diagnosis of ADHD is based on behavioral
information gathered from parents and school. Depending on the
number and type of symptoms, a child can be diagnosed with one
of three ADHD presentations: primarily inattentive (ADHD-I),
primarily hyperactive (ADHD-H) or combined subtype (ADHD-
C; American Psychiatric Association, 2013). Despite its high
prevalence, the precise etiology and pathogenesis of ADHD
remains unclear.

In recent years, magnetic resonance imaging (MRI) studies of
patients with ADHD have demonstrated possible physiological
underpinnings of the disorder. Modern machine learning
techniques with a large-scale dataset may help to identify
reliable neuroimaging biomarkers, which may offer some clues
to the physiological basis of the disorder. Toward this aim,
the ADHD-200 Consortium organized the ADHD-200 global
competition, making hundreds of anatomical and functional
images publicly available (Consortium, 2012). The ADHD-
200 global competition released the demographic and clinical
data, anatomical, and resting-state functional MR images for
973 participants accumulated from eight independent sites:
Bradley Hospital/Brown University, Kennedy Krieger Institute,
NeuroIMAGE Sample, New York University Child Study
Center, Oregon Health & Science University, Peking University,
University of Pittsburgh, and Washington University. In order
to bring the ADHD-200 global competition to a wider audience,
the Neuro Bureau performed the preprocessing systematically
on the Athena computer cluster at Virginia Tech’s ARC andmade
the preprocessed data openly downloadable.

Spontaneous low frequency fluctuations in blood oxygen level
dependent (BOLD) activity are a fundamental feature of the brain
at rest. The relative magnitude of these fluctuations is usually
measured by the amplitude of low-frequency fluctuations (ALFF;
Zang et al., 2007) or fractional amplitude of low-frequency
fluctuations (fALFF; Zou et al., 2008). ALFF is a voxel-by-voxel
calculation of the power spectrum of the BOLD fMRI time series.
fALFF is the ratio of power spectrum of low-frequency (0.009–
0.08 Hz) to that of the entire frequency range. ALFF/fALFF was
widely used to study the abnormal spontaneous brain activities
in various diseases, such as schizophrenia (Hoptman et al., 2010),
amnestic mild cognitive impairment (Han et al., 2011, 2012),
Parkinson’s disease (Skidmore et al., 2013), and major depressive
disorder (Jiao et al., 2011; Wang et al., 2012). Studies in ADHD
also reported decreased/increased ALFF/fALFF in various brain
regions (Zang et al., 2007; Yang et al., 2011; An et al., 2013). fALFF
has been evaluated in the ADHD-200 competition dataset. In
particular, Cheng et al. used the fALFF coefficient at each voxel as
an indicator of ADHD status and then applied two-sample t-test
to select significant voxels for subsequent model training (Cheng
et al., 2012). Combining fALFF with regional homogeneity
(ReHo) and information from brain networks, they achieved
a cross-validated accuracy of 76.15% for the classification of

ADHD patients vs. healthy controls on the dataset collected
from Peking University. Sato et al. (2012b) applied the brain
parcellation defined by CC400 atlas, which was generated by
the Neuro Bureau via a two-level spatially constrained spectral
clustering algorithm (Craddock et al., 2012) and divided the brain
into 351 regions. The mean fALFF within each brain region was
calculated and used as a predictor in their classification model.
Based on the whole ADHD-200 dataset, Sato et al. suggested
that the combination of fALFF and ReHo contained information
to distinguish ADHD patients from healthy controls, but with
limited discriminative power. The CC400 atlas was publicly
available at the competition website, and was widely used in
studies on the ADHD-200 dataset (Colby et al., 2012; Dai et al.,
2012; Sato et al., 2012a,b, 2013).

Through a close examination, we observed that there were
many voxels covered by the CC400 atlas but their fALFF
coefficients were zero. According to the definition of fALFF
(Zou et al., 2008), a voxel exhibited zero fALFF coefficient only
when there was no low-frequency fMRI signal (0.009–0.08 Hz)
at this voxel. On the other hand, CC400 atlas was supposed
to cover only voxels within the brain, which were assumed to
have functional activities. Thus, voxels covered by CC400 atlas
should not have zero fALFF coefficients, which contradicted
our actual observation. To uncover the causes underlying the
voxels with zero fALFF coefficients, we investigated into the
preprocessing steps of the Athena pipeline. The Neuro Bureau
generated an fMRI mask for each individual using the AFNI
program “3dAutomask,” which took an fMRI image as input
and output a brain-only mask. Specifically, voxels within the
brain were marked as “1” while voxels outside the brain were
marked as “0” in this brain-only mask. The Neuro Bureau then
applied the spatially normalized fMRI mask to the calculation
of fALFF maps. Voxels marked as “0” in the fMRI mask were
assigned zero fALFF coefficients automatically, because those
voxels were outside of the brain. For more details, please refer to
the preprocessing codes provided by the Neuro Bureau on their
website as well as the AFNI manual.

As we described above, the spatially normalized fMRI mask
was generated for each subject individually. Since it was a brain-
only mask, the count of “1” (or within-brain) voxels could be
used as a measure for the volume of brain tissue that was
functionally active. We named this brain volume as functional
volume, which was the counterpart of anatomical volume. We
observed substantial variance for the functional brain volume
across different subjects, although the brains from different
subjects had been spatially normalized and were expected to
be almost perfectly aligned. The individual differences were
illustrated in Figure 1.

Conventionally, volume of a brain region was considered
to be an anatomical feature and usually calculated based on
anatomical magnetic resonance images. To the best of our
knowledge, functional volume was initially proposed by us in
the current study. We first compared the functional brain size
between ADHD patients and healthy controls, since studies
based on anatomical images reported that the brains of children
and adolescents with ADHD were 3–4% smaller than those
of children who did not have this disorder (Castellanos et al.,
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FIGURE 1 | We counted the number of “1” voxels within the fMRI mask for

each subject, and summarized the distribution of subjects using a histogram.

Horizontal axis is the total number of “1” voxels for a subject. Vertical axis is

the number of subjects.

2002). In addition to the total brain size analysis, we also
investigated how ADHD affected the functional volume of
different brain regions. Finally, we applied the CC400 atlas to
calculate the functional volumes for brain regions, and used
them as predictors for the classification of ADHD patients vs.
TDCs, given that decreased anatomical volume was one of
the most replicated pieces of evidence for ADHD (Castellanos
et al., 1996, 2001; Berquin et al., 1998; Castellanos, 2002;
Mostofsky et al., 2002; Carmona et al., 2005, 2009; Mackie
et al., 2007; Wang et al., 2007; Batty et al., 2010; Montes
et al., 2011; Qiu et al., 2011; Lopez-Larson et al., 2012). We
compared the predictive power of our functional volumes with
other relevant feature sets, including regional mean fALFF
(Sato et al., 2012b) and anatomical volumes. We also compared
our model using functional volumes with the model based
on demographic data, since demographic data were shown
to outperform resting state fMRI measures in the ADHD-
200 global competition (Brown et al., 2012). Additionally, we
trained models by integrating functional/anatomical volumes
with demographic characteristics, given the possibility that
brain volume might be related to personal characteristics and
integrating these two types of information might improve the
classification performance. Our goal for this study was to verify
whether fMRI images could provide additional information that
was not included in the anatomical images about the brain
volume abnormality in ADHD patients, and consequently lead
to a better classification model for the automatic diagnosis of
ADHD.

MATERIALS AND METHODS

Participants and Image Acquisition
The ADHD data used in this research was acquired through
the public ADHD-200 database through a data use agreement.
The ADHD-200 database has de-identified all the patient health
information (PHI) associated with the data. No IRB approval for
this study is required.

In order to avoid the systematic differences caused by
scanner hardware and scanning protocols across different sites
(Stonnington et al., 2008; Moorhead et al., 2009; Huppertz et al.,
2010; Abdulkadir et al., 2011; Kostro et al., 2014), we used the
data from New York University Child Study Center (NYU) only.
This center was selected due to its largest sample size among all
sites. Although the Peking dataset had a sample size comparable
to NYU, the Peking dataset included three batches with different
scanning parameters, e.g., different voxel sizes, which may
introduce undesirable heterogeneity to the data, and was not used
for the present study. The NYU dataset included 263 subjects
in total. After subjects whose image quality was questionable
for either fMRI images or anatomical images were excluded,
215 subjects were left and were used for the present study. The
quality control assessments (usable vs. questionable) based upon
visual inspection were provided by ADHD-200 Consortium.
One-hundred-and-seventeen of the 215 subjects were ADHD
patients (average age= 11.3 years) and the remaining 98 subjects
were TDCs (average age= 12.4 years).

For each participant, a high-resolution T1-weighted
anatomical image (TI/TR/TE = 1100/2530/3.25 ms; flip
angle = 7◦; acquisition voxel size = 1.3 mm × 1.0 mm × 1.3
mm; scan time = 8:07 min), and a resting state scan consisting
of 176 contiguous whole-brain functional volumes (TR/TE
= 2,000/15 ms; flip angle = 90◦; acquisition voxel size = 3
× 3 × 4 mm; scan time = 6:00 min) were acquired using a
Siemens Magnetom Allegra syngo MR 2004A. Full details about
the scanning parameters are available at ADHD-200-Webpage
(ADHD-200-Webpage, 2011).

Preprocessing of Images
The anatomical images were preprocessed by our lab using SPM8
with standard procedures. Images were segmented to generate
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) density maps, which were subsequently normalized to the
MNI template with modulation.

The preprocessing of the raw fMRI data was carried out by
Neuro Bureau using the Athena pipeline. The Athena pipeline
consisted of the following steps:

(1) Exclude the first 4 echo-planar (EPI) volumes.
(2) Slice timing correction.
(3) Deoblique dataset.
(4) Motion correction by registering the EPI volumes to the first

volume.
(5) Spatial normalization.
(6) Extract the white matter (WM) and cerebrospinal-fluid

(CSF) time-courses.
(7) Regress out WM, CSF, motion time courses from EPI data.
(8) Temporal band-pass filter (0.009 < f < 0.08 Hz).
(9) Spatially smooth the filtered data using a Gaussian filter (full

width at half maximum= 6 mm).

After preprocessing, the Neuro Bureau also generated the fALFF
maps and made them publicly available at the competition
website. For the present study, we used the fMRI brain-only
masks (described in Section Introduction), fALFF maps and
tissue density maps as the inputs for the machine learning
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analysis. All the images were spatially normalized to match the
MNI template brain.

Group-Level Mask
CC400 atlas was generated by the Neuro Bureau using the
ADHD-200 dataset. It clustered the voxels into functionally
coherent and spatially continuous regions based on the fMRI
time courses of the voxels. It could be used as a consensus brain
mask for a group of subjects as well as a parcellation of the brain.

Features
As in Sato et al. (2012b), we employed the CC400 atlas to segment
the brain into regions. Since all of the images were normalized
to the standard MNI space, voxels from CC400 atlas and voxels
from fMRI brain-only masks, fALFF maps or tissue density maps
were assumed to be aligned. The parcellation labels in CC400
atlas can be directly transferred to the fMRI brain-only masks,
fALFF maps or the tissue density maps. Each region defined
in the atlas corresponded to a feature, e.g., a fALFF map can
be transformed into a 351-dimensional feature vector using the
CC400 atlas. The approaches for calculating the feature values are
described below.

Functional Volume (FV)
For each brain region defined in the CC400 atlas, we calculated
the percentage of voxels marked as “1” in the fMRI brain-only
mask to quantify the functional volume for this region. Please
note the CC400 atlas was a group-level template that was applied
to all subjects, while the fMRI masks were generated for each
subject individually and they were different for different subjects.

Regional Mean fALFF
We applied two different approaches to calculate the regional
mean fALFF. First, we calculated regional mean fALFF using the
traditional method by including all of the voxels covered by the
CC400 atlas for each region (Sato et al., 2012b), and denoted it
as fALFF1. We noticed that fALFF1 was highly correlated with
functional regional volume. For example, a brain region with
small functional volume would have many voxels marked as
“0” in the fMRI brain-only mask. Those voxels had zero fALFF
coefficients and resulted in low regional mean fALFF. Therefore,
fALFF1 contained a great deal of information from functional
regional volume, which made it difficult to determine whether it
was the fALFF information or the functional volume information
that was actually relevant to the classification of ADHD patients
vs. TDCs. To exclude functional volume information from
fALFF1, we calculated fALFF2 by excluding the voxels outside
the brain when calculating the regional mean fALFF. Specifically,
we calculated the regional mean fALFF over the voxels marked
as “1” in the fMRI brain-only mask, given that the fALFF map,
fMRI brain-only mask and CC400 atlas were all aligned with each
other. This regional mean fALFF was denoted as fALFF2.

Anatomical Volume
As described in the Section Preprocessing of Images, we obtained
three spatially normalized tissue density maps, namely GM,
WM, and CSF, for each subject from the segmentation and
normalization of the anatomical image. We applied the CC400

atlas to the tissue density maps, and calculated the regional mean
tissue density as GM, WM, and CSF volume, respectively.

Demographic Variables
The NYU dataset provided information for seven demographic
variables: gender, age, handedness, verbal IQ, performance
IQ, Full4 IQ and medication status. The IQ scores of the
participants were evaluated using the Wechsler Abbreviated
Scale of Intelligence (WASI). Only the former six demographic
variables were used for the present study due to the substantial
missing data for medication status. Among the six variables used,
only gender was categorical and the remaining five variables were
continuous. Gender and age information was available for all 215
participants. There were a couple of missing values for the other
four demographic variables. Before imputing the missing values,
the six demographic variables were scaled using Equation (1).

x′ = x−min(x)

max (x) −min(x)
(1)

The above scaling enabled the different demographic variables
to contribute equally during the imputation of missing values.
We used the nearest-neighbor method for imputation, with k
= 10. We also tried k = 20, and the imputed data changed
only slightly when compared to that generated with k = 10.
Given a subject with missing data, we calculated the Euclidean
distance between this subject and all other subjects based on
the demographic variables for which this subject had non-
missing values. Then, we found the 10 subjects with the smallest
Euclidean distance and calculated a weighted mean for each
demographic variable whose value was missing for the current
subject based on the values of those 10 neighbors. The weights
were calculated as the reciprocals of the Euclidean distances.
The weighted mean was subsequently used as the imputed value
for the corresponding demographic variable (Hastie et al., 1999;
Troyanskaya et al., 2001; Speed, 2003).

Feature Selection
Inspired by previous publications (Saeys et al., 2007; De Martino
et al., 2008; Kuncheva and Rodriguez, 2010; Ugurbil et al., 2015)
as well as the characteristics of our dataset, we employed a two-
step feature selection algorithm by integrating prior knowledge
with the recursive feature elimination (RFE) algorithm in this
work. As previously mentioned, the functional volume varied
across different subjects even though the images had been
normalized to the standard template. We speculated that the
above variance came from two possible sources: individual
differences and ADHD disease status. We would like to exclude
the brain regions with only small fluctuations that were likely
to be caused by individual difference, because such random
fluctuations will not provide any predictive information for
the classification of ADHD patients vs. TDCs, and may even
confound the classification. In order to select the brain regions
that were likely to be affected by ADHD, we calculated the sample
variance for each feature/region across different subjects. The
features were subsequently sorted according to their variance
in descending order. For feature selection, the first step was to
select the top N (denoted as topN) features with the highest
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variance, which was essentially the variance threshold feature
selection approach (Cui, 2009; Pedregosa et al., 2011). The
rationale for doing so was that high variance was likely caused
by ADHD rather than random fluctuations. Using the selected
features from step one, step two was to perform RFE to pick
out the features that were correlated with the class labels. RFE
is a popular approach for feature selection. It is commonly
used with SVM to repeatedly construct a model and remove
features with low weights. There were two parameters in the RFE
algorithm: the percentage (p) of features to be removed during
each iteration, and the number of features to be kept in the final
model (threN). The algorithm started by training an SVMmodel
using all features selected from step one. Based on the trained
model, features were sorted in descending order according to the
absolute value of their weights in the SVM model. Features with
low absolute weights were removed and a new model with the
remaining features was trained. This process was repeated until
the number of features reached the predefined threshold threN.

The above three parameters were set as follows. Parameter p
in the RFE algorithm primarily affects the training speed. The
smaller the p-value, the slower the training and the less likely
to remove relevant features. In this project, we set p to be 1%
and requested the algorithm to remove one feature at a time
when the number of features in the model was below 100 (Tan
et al., 2015). In order to optimize the parameter topN and threN,
we considered three values for topN, namely 100, 200, and 351,
and 10 different values for threN, from 10 to 100 in steps of 10.
Here, we intended to fine-tune the parameter threN but not topN.
The variance threshold was a simple baseline approach based on
feature variance and discarded the class label information. It was
assumed to be a relatively weak feature selection approach, and
served as a preliminary step to reduce the search space for the
RFE algorithm. Therefore, the parameter topN was not adjusted
precisely in order to let the RFE algorithm dominate the feature
selection process. The classification performance using different
combinations of topN and threN was summarized in the Results
Section.

The above feature selection approaches were applied only
to image features. To integrate demographic variables with the
image features in the classification model, we treated them
differently from the image features: they were always retained in
the model, while the image features were ranked and removed
based on their variances or weights.

Classification Model Learning
The input for model learning was a training set D =
{
(

X1, y1
)

, · · · ,
(

Xk, yk
)

, · · · , (XN , yN)}. Xk = [x1, · · · , xM] was
the feature vector for the k-th sample, M was the number of
features. yk =1 if the k-th sample was an ADHD patient, and
yk =0 if it was a TDC. The classifier we used was the SVM
classifier with linear kernel. The basic idea of the SVM classifier
was to learn a hyperplanewX−b = 0 to separate ADHD patients
fromTDCs bymaximizing the objective function in Equation (2).

argmin
w,ξ ,b

{

1
2

∥

∥w
∥

∥

2 + C
N
∑

k=1

ξk

}

subject to yk
(

wXk − b
)

≥ 1− ξk, ξk ≥ 0

(2)

where C was a user-defined parameter controlling the trade-off
between margin and training errors, and ξ was the slack variable.
C was set to be 1 in our project according to our previous
experiences (Tan et al., 2013, 2015).

After model training, the estimated model is denoted as
ŷ = wX − b, which can be used to classify a new sample as
either an ADHD patient or a TDC. Given the data (images and
demographic information) of a new sample, we first calculate
the feature vector X in the same way as that applied to training
samples described in the Section Features, then format X to Xs

according to the feature selection results, and finally insertXs into
the model ŷ = wX − b to obtain a predicted score ŷ for the new
sample. If ŷ ≥ 0, the new sample is classified as an ADHDpatient.
Otherwise, it is a TDC.

Model Evaluation
We employed the 10-fold cross-validation approach for the
model evaluation. In this approach, the original samples were
randomly partitioned into 10 equal-size subsets. Each time, one
subset was used for testing and the remaining nine subsets were
used for training. We repeated this process for 10 times, and
each subset was used for testing once. The performance statistics
were calculated based on the testing samples accumulated from
the 10 times of testing. This completed one round of cross-
validation. For a fair comparison among different classifiers, e.g.,
classifiers with different feature sets, we ran 20 rounds of cross-
validation for each classifier. The mean performance as well
as standard deviation across the 20 rounds of cross-validation
were calculated for each classifier, and compared among different
classifiers.

Based on the predictions for the testing samples, we
calculated sensitivity, specificity, accuracy, and area under
receiver operating characteristic curve (AUC) to evaluate the
performance of the classifiers. Since the ADHD-200 dataset was
an imbalanced dataset, balanced accuracy, which was expressed
as (sensitivity + specificity)/2, was used to accommodate this
imbalance in previous studies (Sato et al., 2012a; Lim et al.,
2013). Thus, we also calculated the balanced accuracy, and
focused on this measure when we compared among different
classifiers.

Identification of Important Features
Feature importance was measured as the accumulated weights
across different folds of cross-validation. Since we had 20 rounds
of 10-fold cross-validation, there were in total 200 runs of feature
selection and model learning. The importance of a feature was
calculated with Equation (3).

importancei =
200
∑

k=1

δ
(k)
i |w(k)

i | (3)

where |w(k)
i | was the absolute weight from the SVM model for

the ith feature during the kth run, δ
(k)
i = 1 indicated that the

ith feature was selected by the feature selection algorithm during

the kth run, while δ
(k)
i = 0 indicated that this feature was not

selected.
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Linear Regression Analysis
A linear regression model has the general form as shown in
Equation (4).

Y = Xβ + ε (4)

Let n denote the number of subjects and p denote the number of
covariates. Then Y is an n-dimensional vector of a continuous
response variable, X is the design matrix whose dimension
is n × p, β is the p-dimensional vector of coefficients to be
estimated, and ε is an n-dimensional vector of random errors.
Generally, we have Gauss–Markov assumptions on the random
error vector ε. It states that all random errors εi (i = 1, . . . , n)
are mutually independent and have constant variance σ 2 and
zero mean. Under this assumption, the best linear unbiased
estimator of β is β̂ = (X′X)−1X′Y , which can be obtained using

ordinary least square. The variance of β̂ is σ 2(X′X)−1. In order
to make inference or perform statistical testing, we often impose
normality assumption on the random errors, i.e., ε ∼ N(0, σ 2I),
where I is the identity matrix. Under normality assumption,
we can perform statistical tests on any coefficient in the model.
Generally we use t-test to test whether a single coefficient equals

to zero or not. It has the form T = β̂i

SE(β̂i)
= β̂i√

σ̂ 2cii
, where T is

the t-statistic, cii is the i-th diagonal element of matrix (X′X)−1,

and σ̂ 2 = 1
n−p

∑n
k=1 (Y − Ŷ)

2
.

Using the above linear regression model, we compared the
functional brain size between ADHD patients and TDCs. Similar
to the calculation of functional regional volume, functional brain
size for a subject was calculated as the percentage of “1” voxels
within the whole brain. Using the brain size calculated from
the fMRI brain-only masks, we analyzed the effect of ADHD
on the brain size. We performed a linear regression analysis as
described above with brain size as the response variable and
the ADHD index as one covariate. ADHD index was an overall
measure of symptom severity. The higher the ADHD index, the
more severe the symptom is. We used ADHD index instead
of ADHD diagnosis labels because binarization results in some
information loss. Additionally, personal characteristics, such as
age and gender, may also affect the brain size. Therefore, we
included the six demographic variables in the linear model as
well.

In order to analyze how ADHD affected different brain
regions, we performed a linear regression analysis for each
single brain region. The analysis was the same as the brain
size analysis except that we used the functional regional volume
instead of the functional whole brain size as the response variable.
The predictors still included the ADHD index and the six
demographic variables as above.

RESULTS

Linear Regression Analysis Results
For the functional brain size analysis, the linear regression
model was summarized in Table 1. As expected, the coefficient
for ADHD index was negative, which indicated that the more
severe the ADHD symptoms the subjects had, the smaller their

TABLE 1 | Functional brain size analysis: a summary for the linear regression

model.

Variable Coefficient Estimate Std. Error p-value

Intercept 0.622 0.152 6.12e-5

ADHD index −0.045 0.041 0.273

Gender 0.060 0.021 0.005*

Age −0.122 0.039 0.002*

Handedness 0.104 0.061 0.092

Verbal IQ −0.350 0.559 0.531

Performance IQ −0.278 0.505 0.583

Full4 IQ 0.576 0.881 0.514

*We use 0.05 as significance level.

brains were. However, the coefficient for the ADHD index
was not significantly different from zero according to the t-
test results. Handedness and IQ scores were also showed to be
non-significant. On the other hand, age and gender exhibited
significant influence on the functional brain size, although the
images were normalized to the standard template. Due to their
significant effects on brain size, it was reasonable to integrate
the demographic variables or at least age and gender with the
functional volume features. A model integrating these two types
of information was likely to have an improved classification
performance.

Among the 351 brain regions defined in the CC400 atlas, there
were 77 regions whose volumes were exactly the same across all
of the subjects. We assumed that there was no disease effect on
those regions, and excluded them from our analysis. Therefore,
we performed a linear regression analysis for each of the 274
remaining regions and employed the False Discover Rate (FDR)
procedure (Benjamini and Hochberg, 1995) to adjust the p-value
for multiple testing. Twenty-six of the 274 analyzed brain regions
showed significant disease effect, i.e., uncorrected p-value for
the coefficient of ADHD index was below 0.05. None of the
26 regions survived through p-value correction using the FDR
procedure. In our project, however, traditional p-value correction
methods might be too stringent for two reasons. First, some
brain regions had only subtle variance in functional volume
across different individuals, which was likely to be random
noise caused by individual difference instead of actual change
in functional volume caused by disease. We were not likely
to detect significance for those brain regions. Including those
brain regions in the analysis, however, increased the number of
multiple testing, which would decrease the discovery rate for
other regions. Secondly, there were correlations between different
brain regions. Therefore, FDR procedure (Benjamini–Hochberg)
which relied heavily on independence assumption might give a
too stringent control (Benjamini and Hochberg, 1995). There
were some other multiple testing procedures for dependence
hypothesis (Benjamini and Yekutieli, 2001; Sun and Cai, 2009),
but it was difficult to verify whether they would truly work for
our problem since the dependence structure of different brain
regions was unknown. We therefore decided not to implement
those methods.
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Besides, we noticed that 23 out of the above 26 brain regions
(uncorrected p < 0.05) had negative coefficients in the linear
regression analysis. Six out of those 26 regions had uncorrected p-
value below 0.01. All of these six regions had negative coefficients
too. They were adjacent to each other and located in the frontal
lobe exclusively. Those observations suggested that ADHDmight
indeed cause brain shrinkage, but its effect on each single brain
region was subtle, and frontal lobe might be one of those regions
that showed relatively high severity.

Classification Performance without
Feature Selection
The classification performance without feature selection
was summarized in Table 2. The model using demographic
characteristics alone achieved a balanced accuracy of 58.5%,
which surpassed all image feature sets except for functional
volume (FV) that had a balanced accuracy of 59.6%. We
compared the performance of the model with demographic
characteristics with the performance of the model with FV
using Student’s t-test. No significance was detected (two-sided
p = 0.10). Comparisons between different models in the rest
of this manuscript were also done using Student’s T-test, and
the reported p-values were two-sided p-values. Integrating the
demographic variables with image features helped to improve
the classification performance when compared to image features
alone, expect for fALFF1. Nevertheless, none of the integrated
feature sets, such as fALFF1+Demo and fALFF2+Demo
(Table 2), outperformed the demographic characteristics
alone, except for FV+Demo which showed significantly better
performance than demographic characteristics alone with t-test p
= 1.2e-4. FV outperformed both fALFF1 and fALFF2, especially
after integrating demographic information into the model.
Compared with fALFF2, fALFF1 achieved better performance,
which was expected since fALFF1 included a great deal of FV
information as explained in Section Regional Mean fALFF.
fALFF2 without integrating demographic information exhibited

almost random classification with AUC and balanced accuracy
around 0.5, which was much lower than that of fALFF1 and
FV. This might indicate that FV encoded most of the predictive
information, while fALFF itself had very limited predictive
power. Furthermore, FV also demonstrated better performance
than anatomical features (GM/WM/CSF). In summary,
functional volume exhibited the highest discriminative power,
outperforming the demographic variables, fALFF features and
anatomical features.

Classification Performance with Feature
Selection
Since integrating demographic variables tended to improve
the classification performance, we only considered the models
integrating demographic variables for this section. Performance
under different parameters was shown in Figure 2. FV and
fALFF1 exhibited similar pattern. The performance of topN =
200 and topN = 351 were close to each other, but obviously
worse than that of topN = 100, no matter what the value of
threN was. topN = 351 represented the situation where we did
not preselect the brain regions with high variance and submitted
all the features to the RFE process, which was actually the
standard RFE. Our results suggested that a pre-selection based on
variance before RFE indeed helped to improve the classification
performance. As we explained previously, we did not test all
range of topN but considered only three different values for topN.
It was likely that there were fewer noise features disturbing the
RFE algorithm when topN = 100. Thus, it was understandable
that the performance with topN = 100 was much better than
the performance with topN = 200 or 351. When topN = 100,
the performance tended to reach a relatively stable status when
threN = 50 for FV and threN = 30 for fALFF1. We reported the
classification performance in Table 3 for FV with topN = 100,
threN = 50 as well as the performance for fALFF1 with topN
= 100, threN = 30. For all of the other feature sets including
fALFF2, GM, WM, and CSF, we reported their best performance

TABLE 2 | Classification performance without feature selection.

Feature Set sens. (%) spec. (%) accu. (%) AUC (sens+spec)/2 (%)

Demo 70.9 ± 2.4 46.2 ± 1.8 59.6 ± 1.6 0.65 ± 0.02 58.5 ± 1.6

FV 67.7 ± 3.0 51.6 ± 2.7 60.3 ± 2.1 0.62 ± 0.02 59.6 ± 2.1

fALFF1 63.5 ± 3.1 51.9 ± 2.4 58.2 ± 2.3 0.60 ± 0.02 57.7 ± 2.3

fALFF2 64.2 ± 2.5 39.7 ± 3.2 53.0 ± 1.7 0.52 ± 0.02 52.0 ± 1.8

GM 63.3 ± 1.8 46.7 ± 3.8 55.7 ± 1.8 0.56 ± 0.02 55.0 ± 2.0

WM 56.9 ± 2.5 47.7 ± 2.6 52.7 ± 2.1 0.51 ± 0.02 52.3 ± 2.1

CSF 56.4 ± 2.8 39.6 ± 3.4 48.7 ± 2.7 0.49 ± 0.03 48.0 ± 2.8

FV+Demo 68.2 ± 3.3 54.5 ± 2.4 62.0 ± 2.3 0.64 ± 0.02 61.4 ± 2.2

fALFF1+Demo 62.5 ± 2.5 52.4 ± 2.7 57.9 ± 2.0 0.62 ± 0.02 57.4 ± 2.0

fALFF2+Demo 62.3 ± 2.6 44.1 ± 3.6 54.0 ± 2.4 0.58 ± 0.02 53.2 ± 2.5

GM+Demo 62.8 ± 2.4 51.7 ± 2.1 57.7 ± 1.6 0.61 ± 0.01 57.3 ± 1.6

WM+Demo 58.3 ± 2.2 50.2 ± 2.5 54.6 ± 1.9 0.55 ± 0.02 54.2 ± 1.9

CSF+Demo 62.1 ± 3.0 49.2 ± 2.8 56.2 ± 2.2 0.56 ± 0.02 55.6 ± 2.2

Demo is short for demographic variables; FV is short for functional volume; fALFF1/fALFF2 is short for regional mean fALFF1/fALFF2; GM/WM/CSF is short for GM/WM/CSF volume;

X+Demo is short for the combination of X feature set and demographic variables. The best sens., spec., accu., AUC and (sens+spec)/2 are marked by bold.
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FIGURE 2 | Classification performance with feature selection using different parameters.

TABLE 3 | Classification performance with feature selection.

Feature Set sens. (%) spec. (%) accu. (%) AUC (sens+spec)/2 (%) p-value

FV+Demo 78.1 ± 2.9 57.3 ± 2.3 68.6 ± 1.7 0.71 ± 0.01 67.7 ± 1.7 NA

fALFF1+Demo 75.2 ± 2.2 58.8 ± 2.5 67.7 ± 1.5 0.72 ± 0.02 67.0 ± 1.5 0.12

fALFF2+Demo 66.1 ± 3.3 48.4 ± 3.4 58.0 ± 2.8 0.64 ± 0.02 57.2 ± 2.8 3.22E-12

GM+Demo 67.0 ± 3.2 50.9 ± 2.4 59.7 ± 2.3 0.64 ± 0.02 58.9 ± 2.2 1.13E-12

WM+Demo 69.5 ± 3.1 54.9 ± 4.4 62.9 ± 3.0 0.66 ± 0.02 62.2 ± 3.1 2.05E-7

CSF+Demo 70.1 ± 1.8 55.7 ± 1.9 63.5 ± 1.4 0.67 ± 0.02 62.9 ± 1.4 1.25E-8

The best sens., spec., accu., AUC and (sens+spec)/2 are marked by bold.

across all the combinations of topN and threN inTable 3. Clearly,
this might overestimate the actual classification performance for
those four feature sets. Nevertheless, the performance for those
four features sets was still much worse than the performance of
FV and fALFF1. We also compared each model with the model
of FV+Demo using t-test. The two-sided p-values were shown in
Table 3.

Important Features
The feature importance was calculated based on the model
integrating FV and demographic variables. Feature selection was
performed with topN = 100 and threN = 50. The feature
importance was calculated using Equation (3). Features were
ranked according to their importance in descending order. We
projected the top 10 features to the brain space as shown in
Figure 3. The anatomical information for those 10 brain regions
was summarized in Table 4. Since some important regions,
e.g., regions A and G, appeared to be adjacent to each other,
we marked the top 10 regions in a single brain, as shown in
Figure 4. The predictive regions were mainly located in occipital
lobe, cerebellum posterior lobe, parietal lobe, frontal lobe, and
temporal lobe.

Besides, we checked the correspondence between the top
10 regions in Figure 3 and the top 10 brain regions in the

linear regression analysis. Only the brain region with the highest
discriminative power (Region A in Figure 3) was also ranked
among top 10 in the linear regression analysis. This result was
not unusual. The linear regression analysis considered one brain
region at a time and ignored the correlations between different
brain regions, e.g., the top 6 regions (uncorrected p < 0.01)
were generally from the same brain area. Furthermore, our linear
regression analysis suggested that the effect of ADHD on each
single brain region was subtle. Few brain regions were strong
enough to be necessarily selected by the RFE algorithm and
weighted heavily by the SVMmodel. On the other hand, the RFE
algorithm and the SVMmodel considered multiple brain regions
simultaneously. It was very likely that the combination of two
or more brain regions provided significant discriminative power,
but each of them individually only exhibited limited distinction
between ADHD patients and healthy controls. Therefore, it
was not surprising to see that the top regions from the
SVM model were not highly ranked in the linear regression
analysis.

DISCUSSION

In the present study, we have initially proposed the concept
of functional volume. We compared the discriminative power
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FIGURE 3 | The top 10 discriminative brain regions distinguishing between ADHD patients and TDCs. Images were displayed in neurological orientation using xjView

toolbox (http://www.alivelearn.net/xjview). (A) Region 1, (B) Region 2, (C) Region 3, (D) Region 4, (E) Region 5, (F) Region 6, (G) Region 7, (H) Region 8, (I) Region 9,

(J) Region 10.

of functional volume with that of anatomical volume in the
task of classifying ADHD patients from TDCs. Results showed
that the functional volume obtained better performance, but
the underlying reason still needs further investigation. One
possible explanation is that necrotic or functionally deficient
brain tissuesmight exist in some brain areas. Such necrotic tissues
can be captured by anatomical images, and prevent an accurate
measure of brain volume using anatomical images. By contrast,
functional volume would automatically exclude such necrotic
tissues, because they do not have fMRI signal. Thus, compared
to anatomical volume, functional volume may serve as a better
way of measuring active brain volume. Although the current
hypothesis requires future experimental validation, our present
study provided a new perspective for measuring brain volume
and its shrinkage, which might encourage future experimental
studies in related fields.

Another major contribution of this paper was that we had
improved the accuracy of ADHD diagnosis. Although functional
volume had comparable performance as fALFF1, our study
shed light on why the regional mean fALFF distinguished
between ADHD patients and TDCs. According to our analysis,

TABLE 4 | Anatomical information for the top 10 discriminative brain regions

displayed in Figure 3.

Region index Central coordinates Anatomical location

A (−4, −100, −22) Left occipital lobe

B (24, −84, −54) Right cerebellum posterior lobe

C (−40, −68, −62) Left cerebellum posterior lobe

D (24, −72, 54) Right parietal lobe

E (40, −52, −62) Right cerebellum posterior lobe

F (−32, 28, 42) Left frontal lobe

G (−20, −100, −22) Left occipital lobe

H (60, −68, −22) Right temporal lobe

I (32, −68, −66) Right cerebellum posterior lobe

J (−48, −76, −46) Left cerebellum posterior lobe

it was the functional volume other than fALFF itself that
encoded the discriminative information. Upon this observation,
we made two major improvements based on the model in
Sato et al. (2012b). The first improvement was to integrate
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FIGURE 4 | The top 10 regions in Figure 3 were combined and displayed in the brain space simultaneously.

the demographic information with the regional mean fALFF.
Since the regional mean fALFF mainly captured brain volume
information and brain volume was likely to be related to
demographic characteristics, integration of these two types of
information became straightforward. Otherwise, combination
of fALFF maps with demographic characteristics might be less
intuitive. Inspired by the observation in this paper, we designed
a two-step feature selection algorithm by integrating the variance
threshold approach with the standard RFE algorithm. This two-
step algorithm worked well for both functional volume and
fALFF1, and performed much better than the standard RFE
algorithm. The above two improvements helped to improve the
balanced accuracy from 57.7 to 67.0% for the fALFF1 feature
set. Finally, Sato et al. (2012b) reported that combination of
ReHo and fALFF contained relevant information to discriminate
ADHD patients from TDCs. They compared 10 different
classifiers and suggested that all classifiers provided nearly the
same performance for the classification of ADHD patients
vs. TDCs. For comparison purposes, we also calculated the

regional mean ReHo and fALFF using the CC400 atlas as
in Sato et al. (2012b), and then used them as features to
train a linear SVM model. The model was evaluated in the
same way as all of the other models in this paper. This
SVM model based on ReHo and fALFF achieved a balanced
accuracy of 51.6%, which was 16.1% lower than our model
using functional volume with feature selection. Also, please note
that the combination of ReHo and fALFF performed worse
than fALFF alone whose balanced accuracy was 57.7% for
our dataset (Table 2). Although Sato et al. suggested that the
combination of ReHo and fALFF was the best feature set for
the classification of ADHD patients vs. TDCs, the best balanced
accuracy they achieved was 53.6%, which was relatively low
and did not show significant superiority over fALFF alone.
While they used the whole ADHD-200 dataset accumulated
from the eight study centers, we used only the dataset from
the NYU study center. With a different dataset in our current
study, it seemed that the ReHo features did not bring in
additional power to our classification problem, but added noise
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that disrupted our model, given that feature selection was not
applied.

We also applied our model on the dataset from another
ADHD-200 study center, namely Oregon Health & Science
University (OHSU). The classification performance for different
models was shown in Table S1. The model with demographic
variables alone classified all of the subjects as healthy controls.
Sato’s model (Sato et al., 2012b), combining ReHo and fALFF,
achieved a balanced accuracy 58.7%. Regional fALFF without
demographic data and feature selection achieved a balanced
accuracy 60.9%. Consistent with the results on NYU dataset
as analyzed above, integration with demographic data and our
feature selection algorithm helped to improve the balanced
accuracy to 69.5% for regional fALFF. Unlike NYU results,
however, fALFF2 achieved relatively good results for the OHSU
dataset, which indicated that both functional volume and
regional fALFF included some discriminative information to
distinguish ADHD patients from healthy controls for the OHSU
dataset. This was also the underlying reason why fALFF1+Demo
outperformed FV+Demo for this dataset.

Although, CC400 atlas was clearly a functional atlas generated
from fMRI data, it was also used for the anatomical images in
this project. For a fair comparison, we had tried the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
for the GM, WM and CSF maps. The AAL atlas was defined
based on brain anatomy. It divides the brain into 116 regions,
including 90 cerebrum regions and 26 cerebellum regions. We
calculated the regional mean tissue density as the features.
The approach to calculate the feature values was the same
as the approach described in paragraph Anatomical Regional

Volume, except replacing the CC400 atlas with the AAL atlas.
The model training and evaluation was the same as the other
models in this paper. The classification performance without
feature selection was shown in Table S2. For feature selection,
we applied the standard RFE algorithm, since there were only
116 features. The percentage of features to be removed at each
iteration was set at 1% and the number of features to be
kept in the final model was set to be 10–100, stepping by 10.
The best classification performance across different parameters
was shown in Table S3. As we can see, performance for the
anatomical features using AAL atlas was still worse than the
performance of functional volume features. Further, CC400
atlas might not be the optimal way to segment the brain for
calculating functional volumes either. As shown in Figure 4,
the top 10 discriminative regions were adjacent to each other,
suggesting that the regions could be further merged into larger
regions. A brain segmentation characterizing the functional
shrinkage pattern in brains of ADHD patients may further
improve the classification performance for the functional volume
features. Investigating the optimal way of segmenting the brain
to maximize the classification performance might be a future
direction of work.

Our classification algorithm detected functional volume
differences in occipital lobe, cerebellum posterior lobe, parietal
lobe, frontal lobe, and temporal lobe, including several brain
regions that have been consistently implicated across studies or
have been shown to have a large between-group effect size in

anatomical analyses. For example, Valera et al. (2007) found
that the brain region with the largest reduction in patients
with ADHD compared to controls was the cerebellum, both in
specific regions (i.e., inferior vermis) as well as more globally
(i.e., both right and left cerebellum). Another common finding
in ADHD structural imaging studies is that patients with
ADHD have globally reduced gray matter in the cortices (Shaw
et al., 2006; Valera et al., 2007). However, these reductions
in cortical gray matter are often found to be greatest in
frontal regions (Valera et al., 2007). In addition, sub-cortical
structures, such as caudate, putamen, and globus pallidus, have
repeatedly been found to be reduced in patients with ADHD
(Ellison-Wright et al., 2008; Nakao et al., 2011; Frodl and
Skokauskas, 2012), but they did not appear among the top
10 brain regions with highest discriminative power. To check
the underlying reason why the sub-cortical structures were
not identified, we checked the brain regions ranked from 11
to 20, and noticed that the region ranked 19 involving sub-
cortical structures such as caudate and putamen. Furthermore,
all except one of the regions ranked from 11 to 18 came
from Cerebellum Posterior Lobe/Frontal Lobe/Temporal Lobe
that had already been listed in Table 4. Therefore, the sub-
cortical structures also appeared to be an important region
distinguishing between ADHD patients and health controls
based on functional volume. There might be additional regions
affected by ADHD, but have not been identified as the top
regions by our algorithm. Particularly, interior regions of the
brain might be more likely to be under-estimated than regions
near the surface of the brain, because interior regions tended
to have a functional volume of 100% or nearly 100% after
spatial normalization. Future work needs to be done to remove
this limitation. Aside from the cerebellum posterior lobe and
frontal lobe, the occipital lobe, parietal lobe, and temporal lobe
were also identified as top discriminative regions. Although,
previous ADHD morphometry research has implicated nearly
the entire cerebral cortex as well as many brain substructures
(e.g., caudate) as being smaller or less developed in children
with ADHD than in controls, there were not many studies
focused on those three regions to the best of our knowledge.
Our current study might provide some new perspectives for the
experimental researchers and encourage future studies for those
regions.

Another concern for the current analysis might be that
functional volume could be strongly driven by movement
artifacts. The Neuro Bureau organization had taken critical steps,
e.g., motion correction and regression out motion time courses,
to remove the effects of head motions as much as possible
during the preprocessing of images. Furthermore, we did a
correlation analysis between the head motions and the functional
volumes. The Neuro Bureau organization provided the max
motion for each subject, which was calculated as the maximal
movement in three directions across all time points during
the fMRI imaging. We calculated the Spearman’s correlation
r- and p-value between the max motion and the functional
volumes for the top 4 discriminative regions listed in Table 4.
We did not detect any significant correlations as shown in
Figure S1.
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CONCLUSION

This study started out to build an accurate classifier for the
automatic diagnosis of ADHD. We proposed to quantify the
functional volume of the whole brain or a brain region using the
brain-only mask generated by the AFNI program “3dAutomask”
based on fMRI data. The functional brain size measured from the
fMRI mask exhibited significant correlations with demographic
characteristics such as age and gender, although the images
had been normalized to the standard template. This result not
only pointed to the weakness of current spatial normalization
algorithm, but also demonstrated that it is essential to control
those personal variables while comparing the functional brain
size between different groups of individuals, e.g., comparing the
functional brain size of the patient group with that of healthy
controls. Otherwise, the analysis result might be misleading.
Furthermore, we calculated the functional volumes for the brain
regions defined by CC400 atlas, and used them as features
for the classification of ADHD patients vs. TDCs. Functional
volumes demonstrated much higher discriminative power than
anatomical volumes which were calculated in the same way using
the tissue density maps. With our two-step feature selection
algorithm, the model based on functional volumes also exhibited
much better classification performance in comparison with
relatedmodels in literature. Finally, our results also demonstrated
that fALFF itself had very limited predictive power for the
classification of ADHD patients vs. TDCs. The regional mean
fALFF calculated using the traditional method was highly
correlated with functional volume. Caution should be applied
when we attempt to compare the fALFF between different groups
of individuals, especially when there is brain shrinkage for one
group of individuals. In fact, this observation is not limited to

fALFF alone. Any voxel-wise features, such as ReHo, would have
the same problem and should be given particular attention when
comparing between different groups of individuals. It might be
not fair to claim that some brain regions have decreased fALFF
or ReHo, if the decreases in fALFF/ReHo are in fact caused by
the reduced brain volume.
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