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Pancreatic cancer (PC) has a very poor prognosis and is usually diagnosed only at an
advanced stage. The discovery of new biomarkers for PC will help in early diagnosis and
a better prognosis for patients. Recently, N6-methyladenosine (m6A) RNA modifications
and their regulators have been implicated in the development of many cancers. To
investigate the functions and mechanisms of m6A modifications in the development
of PC, 19 m6A regulators, including m6A-methyltransferases (ZC3H13, RBM15/15B,
WTAP, KIAA1429, and METTL3/14), demethylases (FTO and ALKBH5), and binding
proteins (YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, HNRNPC, and HNRNPA2B1) were
analyzed in 178 PC tissues from the cancer genome atlas (TCGA) database. The
results were verified in PC cell lines Mia-PaCa-2, BXPC-3, and the control cell line
HDE-CT. The m6A regulators-based sample clusters were significantly related to
overall survival (OS). Further, lasso regression identified a six-m6A-regulator-signature
prognostic model (KIAA1429, HNRNPC, METTL3, YTHDF1, IGF2BP2, and IGF2BP3).
Model-based high-risk and low-risk groups were significantly correlated with OS and
clinical traits (pathologic M, N, and clinical stages and vital status). The risk signature
was verified as an independent prognostic marker for patients with PC. Finally, gene
set enrichment analysis revealed m6A regulators (KIAA1429, HNRNPC, and IGF2BP2)
were related to multiple biological behaviors in PC, including adipocytokine signaling,
the well vs. poorly differentiated tumor pathway, tumor metastasis pathway, epithelial
mesenchymal transition pathway, gemcitabine resistance pathway, and stemness
pathway. In summary, the m6A regulatory factors which related to clinical characteristics
can be involved in the malignant progression of PC, and the constructed risk markers
may be a promising prognostic biomarker that can guide the individualized treatment of
PC patients.

Keywords: m6A regulators, pancreatic cancer, prognostic model, biomarker, clinical traits

Abbreviations: FDR, false discovery rate; GSEA, gene set enrichment analysis; HPDE6-C7, human pancreatic duct epithelial
cells; m6A, N6-methyladenosine; OS, overall survival; PC, pancreatic cancer; ROC, receiver operator characteristic curve;
TCGA, the cancer genome atlas; YAP1, yes-associated protein 1.
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INTRODUCTION

Pancreatic cancer (PC) is one of the most lethal malignant
neoplasms and has become one of the leading causes of cancer-
related deaths in developed countries (Ilic and Ilic, 2016). About
85% of PCs are adenocarcinoma, and less than 5% are pancreatic
endocrine tumors (Wolfgang et al., 2013). There are usually no
noticeable symptoms in the early stages of PC. When symptoms
are specific enough to suggest PC, the disease might have reached
an advanced stage. By the time of diagnosis, PC has often spread
or metastasized to other parts of the body (Mohammed et al.,
2014). With the development of medical techniques, PC can be
diagnosed by ultrasound or computed tomography combined
with blood tests and examination of tissue samples (biopsies).
However, screening the general population for the early stage
of the disease is not effective (Welinsky and Lucas, 2017).
Pancreatic cancer can be treated with surgery, chemotherapy,
targeted therapy, radiotherapy, palliative care, immunotherapy,
or a combination of these based on the cancer stage (Mcguigan
et al., 2018). With the current treatment methods pancreatic
adenocarcinoma has a very poor prognosis: only 25% of patients
with PC survive one year and 5 year-overall survival (OS) is
lower than 5% (Ansari et al., 2015). Current treatment and
diagnostic methods are not enough for the management of
PC. Therefore, key goals for PC research are to develop novel
prognostic markers, improve the early diagnostic rate, and find
new targets for molecular targeted therapy. N6-methyladenosine
(m6A), a potential biomarker, is a chemical modification present
in multiple RNA species, which take part in various biological
processes in cancer (Liu et al., 2018).

N6-methyladenosine regulators are involved in more than
60% of all RNA [messenger (mRNA), transport RNA (tRNA),
and ribosomal RNA (rRNA)] modifications, which is an intense
area of research for post-transcriptional regulation including
translation, mRNA splicing, and mRNA stability (Yu et al., 2018).
The level of modification of transcripts with m6A is regulated
by methyltransferases, binding proteins and demethylases (Koh
et al., 2019). The methyltransferases (including ZC3H13, RBM15,
RBM15B, KIAA1429, METTL3/14, and WTAP), act as “writers,”
and add the methyl group to the nitrogen on the sixth carbon
of the aromatic ring of an adenosine residue (Meyer and Jaffrey,
2017). The cellular m6A status is reverted by demethylases
(FTO, and ALKBH5; called “erasers”), and is recognized by
m6A-binding proteins (HNRNPC, YTHDF1/2/3, YTHDC1/2,
IGF2BP1/2/3, and HNRNPA2B1; called “readers”) (Zaccara et al.,
2019). N6-methyladenosine, a potential biomarker, is a chemical
modification present in multiple RNA species, which take part
in various biological processes in cancer (Liu et al., 2018). The
dysregulation of m6A regulators is involved in the occurrence
and development of multiple cancers, including bladder cancer,
prostate cancer, head and neck squamous cell carcinoma,
gastric cancer, breast cancer, hepatocellular carcinoma, and
colorectal cancer (Hong, 2018). For example, METTL14 which
suppresses colorectal cancer progression via regulating m6A-
dependent miR-375/yes-associated protein 1 (YAP1) pathway, is
downregulated in colorectal cancer tissues and cell lines (Chen
et al., 2020). FTO, a key m6A demethylase, is up-regulated

in human breast cancer and is significantly associated with
poor survival rates (Niu et al., 2019). FTO mediates m6A
demethylation in the 3’UTR of BNIP3 mRNA and induces its
degradation via an YTHDF2 independent mechanism, which
indicates that FTO can serve as a novel potential therapeutic
target for breast cancer (Niu et al., 2019). It has also been
reported that IGF2BP2 regulates lncRNA DANCR through m6A
modification, and IGF2BP2 and DANCR jointly promote the
stemness-like characteristics of cancer and the pathogenesis
of PC (Hu et al., 2019). Although more and more studies
have shown that m6A regulatory factors play a crucial role in
the pathogenesis and development of cancer, the fundamental
relationship between m6A regulatory factors and PC remains
unclear (Xia et al., 2019). The construction of prognostic signal
based on m6A regulators that predicting the prognosis of PC will
be helpful for prediction, prevention and personalized treatment.

This study used ConsensusClusterPlus to find that m6A
regulators were closely related to PC OS rates in different clusters.
Furthermore, lasso regression was used to identify a six-gene
signature model (KIAA1429, HNRNPC, METTL3, YTHDF1,
IGF2BP2, and IGF2BP3). Most of the genes identified were
consistent with previous data (Taketo et al., 2018). For example,
the m6A eraser ALKBH5, which was indicated as a potential
therapeutic target for PC, was downregulated in PC cells and
immortalized human pancreatic duct epithelial (HPDE6-C7)
cells (He et al., 2018). Immunohistochemistry (IHC), western
blots, and RT-qPCR were used to detect the expression of
METTL3 in PC, and the results showed that METTL3 protein
and mRNA levels were significantly higher in tumor samples than
in paracancer samples. Down-regulation of METTL3 reduced
the proliferation, invasion and migration of PC cell lines (Xia
et al., 2019). While it is known that m6A plays important
roles in different types of cancers, the available clinical trait-
related m6A regulator studies in PC are insufficient. Single-gene
analysis are used to predict prognosis and to guide therapy in
cancer. However, RNA-Seq is helpful for the construction of a
prediction model using multiple genes. Here, we analyzed the
gene signatures in different PC cell lines and identified clinical
trait-related m6A regulators in PC. Additionally, potential related
enrichment pathways of m6A regulators might be useful to
further study their mechanisms of action.

MATERIALS AND METHODS

Data Sources
RNA-seq transcriptome data, the corresponding clinical data, and
large-scale cancer patient information for 178 patients with PC
were obtained from the cancer genome atlas (TCGA) database1.
The m6A regulator genes include ZC3H13, RBM15/15B,
KIAA1429, METTL14, YTHDC1/2, WTAP, METTL3, FTO,
ALKBH5, YTHDF1/2/3, HNRNPA2B1, IGF2BP1/2/3, and
HNRNPC. The corresponding clinical data include age at initial
pathologic diagnosis (patients were aged 35–88), documented
alcohol history (yes or no), alcoholic exposure category (daily

1https://cancergenome.nih.gov/
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drinker, weekly drinker, occasional drinker, social drinker, and
non-drinker), anatomic neoplasm subdivision (body of pancreas,
head of pancreas, tail of pancreas, and other parts), family
history of cancer (yes or no), gender (male and female), history
of chronic pancreatitis (yes or no), history of diabetes (yes or
no), count of lymph nodes examined (from 1 to 57), neoplasm
histologic grade (G1, G2, and G3), pathologic M (M represents
tumor metastasis, including M0, M1,and MX), pathologic N (N
represents tumor lymph node metastasis, including N0, N1, N2,
and NX), pathologic T (T represents tumor size, including T1,
T2, T3,T4, and TX), pathologic stage (Stages I, II, III, and IV),
vital status (alive or dead).

We systematically searched for PC gene expression datasets
that were publicly available and reported full clinical annotations.
we download data from GSE28735 “Microarray gene-expression
profiles of 45 matching pairs of pancreatic tumor and adjacent
non-tumor tissues from 45 patients with pancreatic ductal
adenocarcinoma” to validate the reliability of the built model. The
raw data from the microarray datasets generated by Affymetrix
and Illumina were downloaded from the Gene Expression
Omnibus2.

Protein–Protein Interactions Network
Construction and Correlation Analysis
The STRING database3 was used for analyzing the protein–
protein interactions (PPI) among m6A regulators. The
association among different m6A regulators was revealed
by Spearman correlation coefficient with R package.

Cell Lines and Cell Culture
Two PC cell lines (Mia-PaCa-2 and BXPC-3) and one control
cell line (HDE-CT) were purchased from China Center for Type
Culture Collection (CCTCC, Shanghai, China). HDE-CT is a
normal human pancreatic cell line and is cultured in DMEM
medium (Corning, NY, United States) supplemented with 10%
fetal bovine serum (GIBCO, South America, NY, United States).
Mia-PaCa-2 with a KRAS mutation and BXPC-3 with wild type
KRAS are human PC cell lines. Mia-PaCa-2 was cultured in
DMEM medium with 10% fetal bovine serum, and BXPC-3 was
cultured in RPMI-1640 medium with 10% fetal bovine serum. All
cell lines were maintained in 5% CO2 atmosphere at 37◦C.

RNA Extraction and qRT-PCR Verification
Total RNA of the four PC cell lines (Mia-PaCa-2 and BXPC-
3) and HDE-CT were extracted with an RNA extraction kit
(QIAGEN) according to the manufacturer’s instructions. Briefly,
1 × 107 cells were collected and lysed for 10 min, genomic
DNA was removed with an adsorption column, the samples
were washed once with 75% ethyl alcohol and twice with wash
buffer, and the samples were resuspended in RNA-grade enzyme-
free water. Total RNA was reversely transcribed into cDNA and
used to perform quantitative real-time PCR (qRT-PCR) with
SYBR Premix ExTaq (TaKaRa). GAPDH was used as a reference

2https://www.ncbi.nlm.nih.gov/geo/
3http://string-db.org

gene. Primers (Table 1) were synthesized by Sangon Biotech
(Shanghai, China).

Consensus Clustering for PC Tissues
Pancreatic cancer tissues with expression information for
m6A regulator genes (ZC3H13, RBM15, RBM15B, KIAA1429,
YTHDC1, YTHDC2, METTL3, METTL14, WTAP, FTO,
ALKBH5, YTHDF1, YTHDF2, YTHDF3, IGF2BP1, IGF2BP2,
IGF2BP3, HNRNPA2B1, and HNRNPC) were clustered with a
hierarchical agglomerative consensus. Clustering was based on
Ward’s linkage and Euclidean distance methods. Unsupervised

TABLE 1 | The list of RNA molecules that were assessed on the cell lines (note:F
forward, R reverse).

Primer name Primer sequence (from 5′ to 3′)

ZC3H13-F GATCAGTTAAAGCGTGGAGAAC

ZC3H13-R CTCTCTGTCGTGTTCATATCGA

FTO-F GTTCACAACCTCGGTTTAGTTC

FTO-R CATCATCATTGTCCACATCGTC

ALKBH5-F GCAAGGTGAAGAGCGGCATCC

ALKBH5-R GTCCACCGTGTGCTCGTTGTAC

KIAA1429-F GCAACTTCAGGCATTAAGTTCA

KIAA1429-R GTATTGCCTTGTCGAATCTGTC

METTL14-F CAGGCTGGCTCACAGTTGGAC

METTL14-R TTCCACCTCTTCCTCCACCTCTG

METTL3-F CTTCAGCAGTTCCTGAATTAGC

METTL3-R ATGTTAAGGCCAGATCAGAGAG

RBM15-F GGCTGCCTGAGGAGAGTGGAG

RBM15-R CGGCTACTGCTCAATTCTGGACTG

RBM15B-F ATCTTTCAGAGTACGCTCAGAC

RBM15B-R CTAGGATATGCATAGACGTGGG

WTAP-F CTGACAAACGGACCAAGTAATG

WTAP-R AAAGTCATCTTCGGTTGTGTTG

YTHDC1-F AGTGACTCTGGTTCTGAATCTG

YTHDC1-R CTGGTTTGATCTTTTCGGACAG

YTHDC2-F GAGAATTGGGCTGTCGTTAAAG

YTHDC2-R TGAAGCAGGATGAAATCGTACT

YTHDF2-F ACTTCTCAGCATGGGGAAATAA

YTHDF2-R TATTCATGCCAGGAGCCTTATT

YTHDF3-F TCAACCACCACAACCACAGCAG

YTHDF3-R TGAAGCACTGACAGGTACAACACC

IGF2BP1-R GGGGTGGAATATTTCGGATTTG

IGF2BP1-F GATGAAGGCCATCGAAACTTTC

IGF2BP2-F GATGAACAAGCTTTACATCGGG

IGF2BP2-R GATTTTCCCATGCAATTCCACT

IGF2BP3-F GAGGCGCTTTCAGGTAAAATAG

IGF2BP3-R AATGAGGCGGGATATTTCGTAT

YTHDF1-F ATGACAATGACTTTGAGCCCTA

YTHDF1-R AGGGAGTAAGGAAATCCAATGG

HNRNPA2B1-F GCTTAAGCTTTGAAACCACAGA

HNRNPA2B1-F GCTTAAGCTTTGAAACCACAGA

HNRNPC-F ACAGATCCTCGCTCCATGAACTCC

HNRNPC-R TTCTGCCATCCTCTCCTGCTACAG

GAPDH-F CTGCACCACCAACTGCTT

GAPDH-R TTCTGGGTGGCAGTGATG
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clustering methods use the proportion of ambiguous clustering
(PAC) to infer optimal K (K-means) in order to identify and
classify patients for further analysis (Lock and Dunson, 2013).
Cluster analysis was performed using the ConsensusClusterPlus
R package with cycle computation for 1000 times to ensure the
stability and reliability of the classification (Wilkerson and Hayes,
2010). The Kaplan–Meier method was used for the OS analysis
in different clusters.

Lasso Regression for PC Tissues
Lasso is a regression analysis method that performs both
variable selection and regularization in order to enhance the
prediction accuracy and interpretability of the statistical model
it produces. The best subset selection and the connections
between lasso coefficient estimates can be identified to construct
a prognostic model (Alhamzawi and Ali, 2018). Lasso regression
was constructed to examine the relationship between gene
signatures and PC risk. Further, clinical characteristics associated
with OS were analyzed in patients with PC using Cox regression
(including univariate and multivariate models) and the Kaplan–
Meier method to evaluate the availability of the prognostic model.
Pheatmap R package was used to correlate clinical data with the
risk score (high or low).

Gene Set Enrichment Analysis for
KIAA1429, HNRNPC, and IGF2BP2 in PC
Tissues
Gene set enrichment analysis (GSEA) is widely used to analyze
genome or proteome data, linking disease phenotypes with
many different functional gene sets. The 178 patients with PC
were divided into high expression groups and low expression
groups according to the median expression values of KIAA1429,
HNRNPC, and IGF2BP2. Two groups of TCGA data were
analyzed by GSEA. Gene set enrichment analysis was also
conducted in different sample risk groups based on the LASSO
regression model. The 178 patients with PC were divided into
high risk score group and low risk score group according to the
median value of risk score.

Transient Transfection and Cell
Proliferation Assay
The cells Mia-PaCa-2 and BXPC-3 were seeded in 6-well plates
at 30–50% density. Transient transfection was performed with
Lipo-fectamine 3000 reagents according to the manufacturer’s
instructions (Invitrogen, United States). For all the experiments,
cells were collected at 24–48 h after transfection. After
transfection, the cells were seeded in 96-well plates and cultured
for 1–3 days according to 5000/well. On the indicated days,
the CCK8 reagent (Sigma, St. Louis, MO, United States) was
added, and the cells were incubated for 2 h at 37◦C. The
absorbance at 450 nm for each sample was measured using
a microplate reader of Bio-Tek ELx800 (United States). For
the colony formation assay, After transfection for 48 h, cells
were used to measure DNA synthesis with a Cell-LightTM EdU
imaging detecting kit (RiboBio, Guangzhou, China) according to
the manufacturer’s instructions.

Statistical Analysis
Gene expression data of FPKM form is used as input. WilcoxTest
is used to get the p value for different expression between
different clusters. The relationships between clusters or different
risk score groups were analyzed using the Chi-square test. In all
cases, p < 0.05 was considered statistically significant. Spearman
correlation coefficient was calculated for the molecular pairing
between m6A regulator genes. The student’s t-test in SPSS 13.0
(SPSS Inc., Chicago, United States) was used to assess the
expression differences between HDE-CT and PC cancer cells.
Each experiment was repeated at least three times. Benjamini-
Hochberg for multiple testing, and false discovery rate (FDR)
were calculated to correct the p-value in GSEA.

RESULTS

Consensus Clustering for PC Tissues
Based on the Expression of m6A
Regulators
To determine whether the expression levels of m6A regulators
were associated with PC prognosis, the TCGA PC cohort
was clustered into different groups by consensus expression of
m6A regulators with the ConsensusClusterPlus R package. Gene
signatures of m6A regulators in PC are shown in Supplementary
Table S1. When the consensus matrix k value was equal
to 2, there was no crossover between PC samples (Figure 1A,
Supplementary Figure S1 and Supplementary Table S2). The
OS difference between different clusters was calculated by
the Kaplan–Meier method and log-rank test (Figure 1B and
Supplementary Table S2). A heatmap was generated to visualize
the expression pattern of m6A regulators between different
clusters (Figure 1C). The expression levels of RBM15B (p = 0.037),
HNRNPC (p = 0.001), METTL14 (p = 0.007), METTL3
(p = 0.005), YTHDC1 (p = 0.049), KIAA1429 (p = 0.010),
ALKBH5 (p = 3.50E-06), YTHF2 (p = 0.038), HNRN p A2B1
(p = 0.003), IGF2BP1 (p = 1.22E-11), IGF2BP2 (p = 1.10E-05),
and IGF2BP3 (p = 2.34E-27) showed a significant dysregulation
in tumor samples between different clusters.

The Interaction and Correlation Among
the m6A Regulators
The relationship between m6A regulators were further supported
by the correlation analysis. Some highly correlated (|correlation
coefficient| ≥ 0.5, p < 0.05) m6A regulator pairs were identified,
including IGF2BP2 and IGF2BP3, IGF2BP2 and ALKBH5,
YTHDC1 and YTHDC2, YTHDC1 and METTL14, YTHDC1
and ZC3H13, YTHDC2 and METTL14, YTHDC2 and ZC3H13,
YTHDC2 and YTHDF3, METTL14 and FTO, METTL1 and
ZC3H13, METTL14 and YTHDF3, FTO and ZC3H13 (Figure 2
and Supplementary Table S3). The interactions among the 19
m6A regulators are shown in Figure 3A. All m6A regulators have
interactions in the same network. The results of the interaction
network showed that IGF2BP1 and IGF2BP3, WTAP and
KIAA1429, HNRNPC and HNRNPA2B1, WTAP and ZC3H13,
METTL14 and METTL3, KIAA1429 and ZC3H13, METTL14
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FIGURE 1 | Consensus clustering and heatmap. (A) Consensus clustering for PC tissues based on the expression of m6A regulators (k = 2). (B) The overall survival
in cluster 1 was significantly shorter than that in cluster 2. (C) Expression differences of m6A RNA methylation regulators in pancreatic cancer based on TCGA data.
Red and green represent relatively high or low expression, respectively. *p < 0.05, **p < 0.01, and ***p < 0.001.

and WTAP, WTAP and METTL3, METTL14 and KIAA1429,
METTL3 and KIAA1429 have high combined score (>0.99).

Gene Signature of m6A Regulators in PC
Cell Lines
The expression of m6A regulators, including the m6A
methyltransferases, the demethylases, and the m6A-binding
proteins were analyzed by qRT-PCR in the PC cell lines, Mia-
PaCa-2 and BXPC-3, and the control cell line HDE-CT. The
results showed that some m6A regulators were differentially
expressed in PC and control cell lines (Figure 3B).

Lasso Regression Identified the
Six-Gene Signature Prognostic Model
In order to determine the optimal prognostic model, lasso
regression was performed using the glmnet R package. Lasso

regression is a generalized linear model, and the adjustment
degree of lasso regression complexity is controlled by lambda.
The optimal six-gene signature prognostic model was identified
when log (lambda) was between −2 and −3 (Supplementary
Figures S2A,B), where the coefficient of KIAA1429 was 0.28,
the coefficient of HNRNPC was 0.34, the coefficient of METTL3
was −0.11, the coefficient of YTHDF1 was −0.37, the coefficient
of IGF2BP2 was 0.28, and the coefficient of IGF2BP3 was 0.04.
According to the median risk score, patients were divided into
low- and high-risk groups (Supplementary Table S4). There was
a significant difference in the OS rate between the two groups,
and the OS rate of the high-risk group was significantly lower
than that of the low-risk group (Figure 4A, p = 5.286e-04).
A Receiver Operating Characteristiccurve (ROC) was used to
evaluate the prediction efficiency of the prognostic signature. The
prognostic signature model showed good prediction efficiency
with the value of the area under the ROC curve (AUC) equal
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FIGURE 2 | Co-expression of m6A regulator genes.

to 0.796 (Figure 4B). Additionally, the KM plotter showed that
the six selected m6A regulators were significantly related with
OS according to OncoLnc4 (Figure 4C). Importantly, the heat
map shows the expression of the six selected m6A regulators and
clinicopathological variables in the high- and low-risk groups.
Significant differences were found for the neoplasm histologic
grade, pathologic M stage, pathologic N stage, pathologic stage,
and vital status between high- and low-risk groups (Figure 5 and
Supplementary Table S5).

The Effect of m6A Regulators on PC
Prognosis
To investigate the effect of m6A regulators on PC prognosis,
we performed Cox univariate (Figure 6A) and multivariate

4http://www.oncolnc.org/

analysis (Figure 6B). The six-gene signature was consistent
with the single-factor analysis of genes using Cox regression.
The univariate analysis revealed that age at initial pathologic
diagnosis [hazard ratio (HR): 1.031; 95% confidence interval
(CI): 1.009–1.053 p = 0.006], neoplasm histologic grade
[hazard ratio (HR): 1.289; 95% confidence interval (CI): 1.000–
1.662; p = 0.035], pathologic N stage [hazard ratio (HR):
631; 95% confidence interval (CI): 1.074–2.477; p = 0.022],
pathologic T stage [hazard ratio (HR): 1.877; 95% confidence
interval (CI): 1.174–3.002; p = 0.009] pathologic stage [hazard
ratio (HR): 1.425; 95% confidence interval (CI): 0.983–2.064;
p = 0.022], and risk score [hazard ratio (HR): 30.024; 95%
confidence interval (CI): 8.884–171.416; p < 0.001] were
correlated significantly with a poor OS (Figure 6A). The
multivariate analysis revealed that age at initial pathologic
diagnosis [hazard ratio (HR): 1.033; 95% confidence interval
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FIGURE 3 | The relationship of m6A regulators in pancreatic cancer (PC) tissues. (A) Protein–protein interaction network of m6A regulator proteins. (B) Gene
signature of m6A regulators in PC cell lines. *p < 0.05, **p < 0.01, and ***p < 0.001.

(CI): 1.012–1.054; p = 0.002], pathologic N stage [hazard
ratio (HR): 1.831; 95% confidence interval (CI): 1.045–3.210;
p = 0.035], and risk score [hazard ratio (HR): 65.955; 95%

confidence interval (CI): 13.308–326.879; p < 0.001] were
correlated significantly with a poor OS (Figure 6B). The
factor of risk score based on the optimal six-gene signature
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FIGURE 4 | Lasso regression identified a six-gene signature prognostic model. (A) Overall survival analysis of the high risk score and low risk score groups. (B) ROC
curve was used to evaluate the prediction efficiency of the prognostic signature. (C) Kaplan–Meier (KM) survival curve of KIAA1429, HNRNPC, METTL3, YTHDF1,
IGF2BP2, and IGF2BP3 in pancreatic cancer.

prognostic model was significant both at univariate and
multivariate analyses.

GSEA Analysis Provided Insight Into
Pathways of m6A Regulators
According to the coefficient of m6A regulators in the six-gene
signature prognostic model and OS analysis, the GSEA result of
HNRNPC showed that it is significantly related to phospholipase-
c mediated cascade, type II diabetes mellitus, signaling by
FGFR, downstream signaling of activated FGER, calcium
signaling pathway, signaling by FGFR in disease, adipocytokine
signaling pathway, vascular smooth muscle contraction, and
metastasis. The GSEA result of IGF2BP2 showed that it is
significantly related to metastasis, CREBBP targets, docetaxel
resistance, hypoxia, BRCA1 targets, base excision repair, TAP63
pathway, etoposide sensitivity, epithelial mesenchymal transition,

gemcitabine resistance, cisplatin resistance, gefitinib resistance,
tumor differentiated well vs. poorly, and SFRP2 targets. The
GSEA result of KIAA1429 showed that it is significantly related
to CD5 targets, stemness, ubiquitin mediated proteolysis, YY1
targets, UV response via ERCC3, metastasis, EIF4 pathway,
downregulation of SMAD2-SMAD3-SMAD4 transcriptional
activity, EZH2 targets, ERBB1 receptor proximal pathway,
BMI1 targets, signaling by hippo, and oncogenesis by Met
(Supplementary Table S6). Some interesting pathways are shown
in Figure 7. It’s not containing GSEA analysis for METTL3,
IGF2BP1, and IGF2BP3. We did it, but there were no significant
results for METTL3, IGF2BP1, and IGF2BP3.

We conducted GSEA analysis in different sample risk score
groups based on the LASSO regression model. The GSEA
result showed that it is significantly related to cancer survival,
oncogenesis by met, gemcitabine resistance, response to UV,
HOXC6 targets cancer, recurrent liver cancer, WTAP targets,
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FIGURE 5 | The heatmap of sample risk groups and related pancreatic cancer clinical characteristics. Age at initial pathologic diagnosis (patients were aged 35–88),
alcohol history documented (yes or no), alcoholic exposure category (daily drinker, weekly drinker, occasional drinker, social drinker, and non-drinker), anatomic
neoplasm subdivision (body of pancreas, head of pancreas, tail of pancreas, and other parts), family history of cancer (yes or no), gender (male and female), history
of chronic pancreatitis (yes or no), history of diabetes (yes or no), count of lymph nodes examined (from 1 to 57), neoplasm histologic grade (G1, G2, and G3),
pathologic M (M represents tumor metastasis, including M0, M1,and MX), pathologic N (N represents tumor lymph node metastasis, including N0, N1, N2, and NX),
pathologic T (T represents tumor size, including T1, T2, T3,T4, and TX), pathologic stage (Stages I, II, III, and IV), vital status (alive or dead). *p < 0.05 and **p < 0.01.
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FIGURE 6 | Risk factor analyses for pancreatic cancer (PC). (A) Univariate analysis of risk factors for PC. (B) Multivariate analysis of risk factors for PC. Age at initial
pathologic diagnosis (>60 vs. <60), anatomic neoplasm subdivision (body of pancreas, head of pancreas, tail of pancreas, and other parts), gender (male vs.
female), count of lymph nodes examined (>17 vs. <17), neoplasm histologic grade (G1, G2, and G3), pathologic M (M represents tumor metastasis, including M0,
M1,and MX), pathologic N (N represents tumor lymph node metastasis, including N0, N1, N2, and NX), pathologic T (T represents tumor size, including T1, T2,
T3,T4, and TX), pathologic stage (Stages I, II, III, and IV), risk score (high risk score group vs. low risk score group).

tumor differentiated well vs. poorly, epithelial mesenchymal
transition, hypoxia pathway, TGFB1 targets, cancer meta
signature, and so on (Supplementary Table S7). Some interesting
pathways are shown in Supplementary Figure S3, and those
pathways closely related with tumorigenesis and development.

The Independent Verification by GEO
The different expression of m6A regulators between cancer
tissue and normal tissue, including the m6A methyltransferases,
the demethylases, and the m6A-binding proteins were analyzed
based on the independent verification by GEO (Supplementary
Figure S4 and Supplementary Table S8). In view of some
similarities of identified different genes in TCGA data and GEO
data, it is believed that the prognostic m6A regulators might not
just be due to chance. For example, the overlapping genes that
are significant were including RBM15B, KIAA1429, ALKBH5,
YTHDF1, IGF2BP 2/3, and HNRNPC. Furthermore, the testing
dataset based on GEO showed the different expression of m6A
regulators in PC and validate the reliability of the built model
based on TCGA. The optimal six-gene signature prognostic
model was validated. According to the median risk score, patients
from GEO were divided into low- and high-risk score groups

(Supplementary Table S9). There was a significant difference in
the OS rate between the two groups, and the OS rate of the high-
risk score group was significantly lower than that of the low-risk
score group (Supplementary Figure S5, p = 0.0012).

Experimental Validation
The inhibition of KIAA1429, HNRNPC, and IGF2BP2,
respectively, significantly suppressed the proliferation abilities
of PC cells based on CCK8 (Figure 8A). The EdU assay further
showed that KIAA1429, HNRNPC, and IGF2BP2 inhibitors
reduced DNA replication in both Mia-PaCa-2 and BXPC-3
cells (Figure 8B).

DISCUSSION

Treatment for PC has improved considerably, for example
surgery with high success and lower complication rate is better
than ever before, novel drug combinations (chemotherapy, target
therapy, and immunotherapy) have been shown to improve
survival rate, and advances in radiation therapy have achieved
less toxicity; however, many researchers are focused on early
diagnosis and prompt treatment as PC is still one of the deadliest
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FIGURE 7 | Gene set enrichment analysis (GSEA) for KIAA1429, HNRNPC, and IGF2BP2. (A) GSEA enriched the adipocytokine signaling pathway of HNRNPC.
(B) GSEA enriched the well vs. poorly differentiated tumor pathway of IGF2BP2. (C) GSEA enriched the tumor metastasis pathway of IGF2BP2. (D) GSEA enriched
the epithelial mesenchymal transition pathway of IGF2BP2. (E) GSEA enriched the gemcitabine resistance pathway of IGF2BP2. (F) GSEA enriched the stemness
pathway of KIAA1429.

solid malignancies (Chu et al., 2017). The development of multi-
omics has given us a better understanding of the fundamental
genetics of PC. These advancements provide hope, but the
survival rate of patients with PC is still poor (Cid-Arregui and
Juarez, 2015). Biological functions of m6A were not studied
extensively until around 2012, when major progress was made
in the transcriptome profiling of m6A through antibody-based
immunoprecipitation and high-throughput sequencing (Gan
et al., 2019). Moreover, m6A regulators were shown to be related
with the development of cancer (He et al., 2019). The process of
m6A modification is reversible through the regulation of m6A
methyltransferases, demethylases, and binding proteins. A series
of m6A regulators have been described (Dominissini et al.,
2012), including ZC3H13, RBM15/15B, KIAA1429, METTL14,
YTHDC1/2, WTAP, METTL3, FTO, ALKBH5, YTHDF1/2/3,
HNRNPA2B1, IGF2BP1/2/3, and HNRNPC (Lee et al., 2014).
Therefore, it is necessary to explore the influence of m6A
regulators on PC.

Recent studies have found that the m6A modification, when
the related enzyme is abnormal, plays various roles in a series
of human diseases such as neurological disorders, cancer, and
embryonic developmental retardation (Wu et al., 2019). Both
coding RNAs and some non-coding RNAs, such as lncRNA,
microRNA, tRNA, and rRNA and RNA splice body, were
regulated by an m6A modification before and after transcription

(Yen et al., 2019). N6-methyladenosine modification is closely
related to the metabolic processes of RNAs, for example, RNA
processing, RNA transfer from the nucleus to the cytoplasm,
RNA translation, RNA decay, and the biogenesis of RNA (Liang
et al., 2020). The dynamic modification of RNA as a way
of regulating genetic information is a new field of study, so
there is still a lot of work to be done to understand the
underlying mechanisms. Recently, a number of studies have
found that m6A modifications are associated with cancer, having
functions such as helping tumor stem cells to self-renew,
promoting the growth and proliferation of cancer cells, and
resisting radiotherapy or chemotherapy (Mao et al., 2019). All
this evidence indicates that m6A regulators may be a target
for cancer treatment (Bi et al., 2019; Ianniello et al., 2019).
The regulation of m6A modifications is a collaboration between
methyltransferases, demethylases, and binding proteins. The
functions of these proteins in stem cell differentiation, stomach
cancer, lung cancer, osteosarcoma, liver cancer, colorectal cancer,
leukemia, neuroblastoma, renal cell carcinoma, and breast cancer
have been extensivelyreported (Feng et al., 2019; Jin et al.,
2019). For example, YTHDF1-deficient mice show an elevated
antigen-specific CD8+ T cell antitumor response compared with
wild-type mice, which indicated that durable neoantigen-specific
immunity is regulated by mRNA m6A methylation through
the m6A-binding protein YTHDF1 (Han et al., 2019). It was
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FIGURE 8 | Proliferation abilities validation. (A) CCK8 analysis of growth curve in Mia-PaCa-2 and BXPC-3 cells transfected with control and si-RNAs. (B) The EdU
assay of DNA replication in both Mia-PaCa-2 and BXPC-3 cells transfected with control and si-RNAs. *p < 0.05, **p < 0.01, and ***p < 0.001.

also reported that some drugs with antitumor activity, such as
R-2-hydroxyglutarate (R-2HG), inhibited proliferation/survival
of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA
signaling (Su et al., 2018). METTL3 which is independently of
METTL14, binds to chromatin, and locates the transcription
initiation site of active genes. The promoter bounding METTL3
induces m6A modification in the coding region of the relevant
mRNA transcription and enhances its translation by alleviating
ribosomal stalling. The gene regulated by METTL3 in this way is
necessary for acute myeloid leukemia, suggesting that METTL3
may be a therapeutic target for acute myeloid leukemia (Barbieri
et al., 2017). The researchers also found that that m6A mRNA
demethylation by FTO increases melanoma growth and decreases
response to anti-PD-1 blockade immunotherapy (Yang et al.,
2019). Knockdown of FTO increased the methylation of m6A in
the intrinsic genes of key primary melanoma cells such as PD-
1 (PDCD1), CXCR4, SOX10, and so on, leading to increased
attenuation of RNA in m6A reader YTHDF2, suggesting that
FTO inhibition combined with anti-PD-1 blocking may abate the
resistance of melanoma immunotherapy (Yang et al., 2019).

TCGA, a landmark cancer genomics project, described more
than 20,000 primary cancers at the molecular level and matched
normal samples of 33 cancer types. TCGA generated more
than 2.5 petabytes of genome, epigenome, transcriptome and
proteome data. The data has already lead to improvements in our
ability to diagnose, treat, and prevent cancer (Blum et al., 2018).
N6-methyladenosine RNA methylation regulators can lead to
malignant progression and impact the prognosis of many kinds of

cancer based on the TCGA database. For example, the lasso Cox
regression model was applied to identify three m6A regulators
in bladder cancer. The risk signature was constructed as follows:
0.164FTO - (0.081YTHDC1 + 0.032WTAP), which indicated
that the three m6A regulators identified might be promising
prognostic biomarkers to guide personalized treatment for
patients with bladder cancer (Chen et al., 2019). Another
study has built up a robust m6A regulators-based molecular
signature that predicts the prognosis of patients with head
and neck squamous cell carcinoma with high accuracy, which
might provide important guidance for therapeutic strategies.
The results revealed that the expression levels of YTHDF1,
METTL3, KIAA1429, YTHDF2, RBM15, METTL14, ALKBH5,
FTO, WTAP, and HNRNPC were significantly upregulated
in head and neck squamous cell carcinoma samples, while
YTHDC2 was remarkably downregulated (Zhao and Cui, 2019).
In addition, a study identified two subgroups of gastric cancer
(cluster1 and 2) by applying consistency clustering to the m6A
regulators. Compared with the cluster1 subgroup, the prognosis
of the cluster2 subgroup was poorer, and most of the 13 major
m6A regulators were highly expressed in cluster2. This finding
provides clues to understand epigenetic modifications of RNA
in gastric cancer (Su et al., 2019). However, the prognostic
role of m6A regulators in PC is poorly understood. In the
present study, we are the first to show, by applying consensus
clustering to m6A regulators, that there are two subgroups of PC
(cluster1 and 2). The cluster2 subgroup correlates with a poorer
prognosis, which suggests that m6A regulators may be promising
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prognostic biomarkers for PC. Furthermore, the lasso regression
analysis identified a six-gene signature prognostic model
(KIAA1429, HNRNPC, METTL3, YTHDF1, IGF2BP2, and
IGF2BP3). These results agree with the results of previous studies.
The major function of IGF2BP2 is to regulate cell metabolism
(Huang et al., 2018). However, our results suggest that lncRNA
DANCR is a novel target for IGF2BP2 through m6A modification
in PC, and that it promotes cancer stemness-like properties and
PC pathogenesis. Mechanistically, IGF2BP2 serves as a reader
for the m6A modified DANCR (at adenosine 664), and the
definite interaction site provides a novel target for PC therapy
(Hu et al., 2019).

We did GSEA for KIAA1429, HNRNPC, and IGF2BP2.
Many enrichment pathways were significantly related to cancer
pathogenesis. We focused on some important events, for
example, pathways of oncogenesis by Met, EIF4 pathway,
downregulation of SMAD2-SMAD3-SMAD4 transcriptional
activity, EZH2 targets, stemness, well vs. poorly differentiated
tumor, epithelial mesenchymal transition, UV response via
ERCC3, and metastasis. The identified pathways were consistent
with reported data. The importance of m6A in the response to
ultraviolet DNA damage was demonstrated, and the findings
support that m6A RNA serves as a beacon for the selective,
rapid recruitment of DNA polymerase κ to damage sites
to facilitate repair and cell survival (Xiang et al., 2017).
Meanwhile, many studies show that m6A-related genes work on
stemness regulation in tumor relapse. For example, METTL3
was identified as a regulator for terminating murine naïve
pluripotency. METTL3 knockout preimplantation epiblasts
lead to early embryonic lethality, because it is associated
with stability of key naïve pluripotency-promoting transcripts
(Geula et al., 2015). Epithelial mesenchymal transition (EMT),
as an important cellular program during tumor migration,
invasion and metastasis, is also regulated by m6A mRNA
methylation. N6-methyladenosine-sequencing and functional
studies confirm that YTHDF1 mediates m6A-increased
translation of Snail mRNA (a key transcription factor of
EMT) (Lin et al., 2019). Interestingly, the process of m6A
mRNA methylation was also regulated by cytokines (Li et al.,
2017). The TGFβ pathway plays roles in disease through
the intracellular effectors SMAD2 and SMAD3. SMAD2/3
promotes binding of the m6A methyltransferase complex to
a subset of transcripts involved in early cell fate decisions.
These aspects of m6A methyltransferase signaling could have
far-reaching implications in the treatment of many cancers
(Bertero et al., 2018).

In conclusion, this study is the first to identify and profile
the gene signatures of clinical trait-related m6A regulatory
genes in PC. We also developed a six-gene signature prognostic
model, which might play a crucial role in determining the
clinical progression of PC. With the development of m6A-
sequencing and methylated RNA immunoprecipitation, m6A
regulatory genes might serve as promising molecular biomarkers
for monitoring many kinds of cancers and providing important
guidance for selecting therapeutic strategies.
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FIGURE S1 | Consensus clustering for pancreatic cancer (PC) tissues. (A)
Consensus clustering for PC tissues based on the expression of m6A regulators
(k = 3). (B) Consensus clustering for PC tissues based on the expression of m6A
regulators (k = 4). (C) Consensus clustering cumulative distribution function (CDF)
for k = 2–4. (D) Relative change in area under CDF curve for k = 2–4.

FIGURE S2 | (A,B) Lasso regression complexity was controlled by lambda using
the glmnet R package.

FIGURE S3 | Gene set enrichment analysis (GSEA) for high risk score vs. low risk
score group. (A) GSEA enriched the liver cancer survival pathway. (B) GSEA
enriched the cancer meta signature. (C) GSEA enriched the tumor differentiated
well vs. poorly pathway. (D) GSEA enriched the epithelial mesenchymal transition
pathway. (E) GSEA enriched the oncogenesis by MET. (F) GSEA enriched the
hypoxia pathway.

FIGURE S4 | Expression differences of m6A RNA methylation regulators in
pancreatic cancer based on GEO data. Red and green represent relatively high or
low expression, respectively. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

FIGURE S5 | Lasso regression validation. (A) Lasso regression complexity was
controlled by lambda using the glmnet R package. (B) Overall survival analysis of
the high risk score and low risk score group based on GEO data.

TABLE S1 | Gene signatures of m6A regulators in pancreatic cancer.

TABLE S2 | Sample cluster based on m6A regulators in pancreatic cancer.

TABLE S3 | PPI network of those m6A regulators in pancreatic cancer.

TABLE S4 | Lasso regression was constructed examining the relationship
between gene signature and pancreatic cancer risk.

TABLE S5 | The clinical features of pancreatic cancer and clusters based on
consensus clustering method.

TABLE S6 | Gene sets enriched in pancreatic cancer by GSEA analysis based on
expression of m6A regulators (IGF2BP2,KIAA1429, and HNRNPC).

TABLE S7 | Gene sets enriched in pancreatic cancer by GSEA analysis in different
sample risk groups based on the LASSO regression model.

TABLE S8 | Gene signatures of m6A regulators and different expression in
pancreatic cancer using GEO.

TABLE S9 | Lasso regression was constructed examining the relationship
between gene signature and pancreatic cancer risk verified by GEO data.
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