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ABSTRACT
Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and
heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly
have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angio-
genesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms
involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-
CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role
of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in
inhibiting cancer progression, making it a promising anti-cancer agent.
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Introduction

While humans enjoy an unprecedented level of technolo-
gical advancement that supports increasing lifespan,
researchers continue to struggle to find treatments to
combat the rising incidence of cancers. Lung cancer is
the leading cause of cancer death in men worldwide and
has surpassed breast cancer to be the leading cause of
cancer death in women in developed countries. However,
the mortality rate of breast cancer is still the highest
among all cancers in women of less developed countries.
In addition, colorectal cancer, liver cancer, stomach can-
cer, cervical cancer, pancreatic cancer, and prostate cancer
all present major worldwide threat to human health [1].
Conventional cancer treatments including surgical resec-
tion, chemotherapy, target therapy, radiation therapy, and
immunotherapy, have all achieved positive results.
Nevertheless, these treatments are not effective for
a substantial number of patients with advanced or drug-
resistant cancer, and there is a pressing need to develop
alternative treatments. A novel potential has arisen from
the coincidental need to treat cancer patients for blood
hypercoagulability. Patients with advanced cancer includ-
ing multiple metastases are often required to spend long
stretches of time in bed, significantly increasing the risk of
venous thromboembolism. Heparin, a polydisperse

mixture of glycosaminoglycans (GAGs) has strong antic-
oagulant effects, and along with its derivatives is widely
used in anticoagulation treatment to prevent venous
thromboembolism. Serendipitously, when treating at-
risk cancer patients, heparin and related drugs have
been found to have anti-cancer functions. In this article
we review the current evidence that heparin and its deri-
vatives have anti-cancer properties, and we highlight both
the potential for heparin in cancer treatments, and the
challenges to its successful application.

Chemical characteristics of heparin and its
derivatives

Heparin is a complexmixture of naturalGAG isolated from
porcine intestine and is usually prepared as a sodium salt.
Heparin is classified into two types, unfractionated heparin
(UFH) and low-molecular-weight heparin (LMWH), with
the latter type including a number of subtypes such as
enoxaparin, nadroparin calcium, dalteparin sodium, and
tinzaparin. With the development of modern biosynthesis
methods, many new types of heparin have been syntheti-
cally modified by adding or replacing some heparin chemi-
cal groups (Figure 1)[2]. Summary of all abbreviations used
in this review is presented in Table 1.
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Heparin derivatives include heparin-like glycosami-
noglycans (HLGAGs), sulfated non-anticoagulant
heparin (S-NACH), low-molecular-weight heparin-
taurocholate-tetramer deoxycholate (LHTD4),
LHTD4/DCK (a complex of LHTD4 and deoxycholy-
lethylamine DCK), high-molecular-weight Escherichia
coli K5-derived heparin-like polysaccharide (K5-NSOS)
, LHsura (a complex of heparin and suramin fragment),
and LHbisD4 (a conjugation of low molecular weight
heparin and four bis-deoxycholates). Heparin binds
with a wide range of proteins, so that it has a diverse
ability to regulate protein functions.

Anti-cancer ability of heparin and its
derivatives

While heparin and its derivatives can benefit cancer
patients as anticoagulants, they directly impact on can-
cer progression via anti-metastatic effects [3–5].
Compared with UFH, LMWH can improve the
3-month and 6-month survival of cancer patients [6–
11], and HLGAGs reportedly have a similar effect
[12,13]. Initially it was thought that heparin’s anti-
metastatic effects were via antithrombotic mechanisms,
but more recent research suggests that the anti-cancer
effect reflects an independent property [14–18].
A multicenter clinical trial exploring the influence of

anticoagulant treatment in 277 small cell lung cancer
patients showed that 5-week subcutaneous heparin
treatment led to substantially improved survival rates
compared to no treatment at 1, 2 and 3 years (40% vs.
30%, 11% vs. 9%, and 9% vs. 6%, respectively) [19].
Another clinical study found that death rates in ovarian
cancer patients at a 2-year postoperative follow-up were
24% following treatment with certoparin compared to
37.5% following treatment with unfractionated heparin
(UFH), suggesting that LMWHs are better than unfrac-
tionated heparin (UFN) in improving survival rates
[20]. Additional studies have found evidence that
heparin and its derivatives reduce the emergence of
metastatic lesions and prolong survival in cancer
patients.

Taken together, extant studies suggest that heparin
and its derivatives confer a survival benefit in cancer,
and optimizing the potential for effective treatment
requires understanding the underlying mechanisms.
A range of studies suggest heparins suppress tumor
growth and metastasis by inhibiting tumor growth fac-
tors or angiogenesis, suppressing lymphatic vessel for-
mation, reversing multidrug resistance, generating
heparinase and thrombin, or inhibiting adherence of
cancer cells to vascular endothelium [21–23].
Moreover, different heparin derivatives target specific
biological mechanisms to inhibit tumors (Table 2).

Figure 1. Molecular structure of heparin and its derivatives. (a) A representative monomeric chemical structure of glycosaminoglycan
(GAG) and LMWH. (b) Chemical structure of PG545.
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Heparins act as lymphatic vessel suppressants
and angiogenesis inhibitors

Heparin’s biological activity includes inhibition of
angiogenesis and lymphogenesis [24], and a number of
studies indicate that heparin and its derivatives function
as tumor lymphatic vessel and angiogenesis suppressants
across a range of cancers. These findings may indicate
novel therapeutically-relevant mechanisms by which
heparins suppress metastasis. Clinical studies have
found that the incidence of cancer metastasis through
the lymphatic vessels is 3–5 times higher than through
the blood vessels. The vascular endothelial growth factor
C (VEGF-C)/vascular endothelial growth factor receptor
3 (VEGFR-3) axis plays an important role in lymphan-
giogenesis. When VEGFR-3 is phosphorylated by its
ligand, a series of downstream signaling pathways trigger
lymphangiogenesis, including lymphatic endothelial cell
proliferation, migration, and tubular formation [25,26].
Recently, researchers found that LHbisD4, a conjugation

made up of LMWH and four bis-deoxycholates, inhibits
the formation of new lymphatic vessels by suppressing
the phosphorylation of VEGFR-3 induced by VEGF-C
[27]. In an in vitro study, researchers found that com-
pared with LMWH, in the LHbisD4 treatment group the
binding affinity with VEGF-C is significantly higher, but
the proliferation, migration and formation of tubular
structures are markedly lower. In a 4T1 mouse breast
cancer model, LHbisD4 or saline were administrated via
an oral route daily for 4 weeks. When the primary 4T1
tumor volume reached 150–200 mm3, the lymph node
volume indicated that distant metastasis was signifi-
cantly reduced in the LHbisD4 treatment group com-
pared to the control group. Likewise, LHbisD4 orsaline
were administrated via an oral route daily for 8 weeks in
an MDA-MB-231 human breast cancer model. The
results demonstrated that LHbisD4 stops cancer cells
from metastasizing to lymph nodes, so that the volume
of lymph nodes does not increase significantly. These
findings indicate that heparin and its derivatives are
promising candidates for blocking the VEGF-C/
VEGFR-3 axis, which can act to reduce lymph node
metastasis [28,29].

While there is encouraging evidence of heparin’s
ability to inhibit lymphogenesis, other studies have
focused on its ability to inhibit angiogenesis. For
example, in murine squamous cell carcinoma
LHTD4/DCK inhibits tumor growth significantly at
a 5 mg/kg dose, with a final tumor volume of
346.9 ± 25.23 mm3 in the treatment group, compared
with 2561.84 ± 161.65 mm3 in the control group [30].
The mechanism underlying this effect appeared to be
that LHTD4/DCK inhibited angiogenesis, as the mean
blood vessel volume in the LHTD4/DCK group was
8.35 ± 0.4 mm3, much lower than 76.19 ± 3.9 mm3 in
the control group [30]. Yin et al. compared a LMWH
and adriamycin combined therapy to adriamycin
alone, and found that the combined therapy decreased
the lung metastasis of breast cancer cells in C3 H mice,
and that heparin inhibited vascular endothelial growth
factor (VEGF) expression in tumor tissue and induced
cancer cell apoptosis [31]. Another study comparing
the effects of LWMH with LHsura found that both
inhibit angiogenesis, but the effect of LHsura is much
stronger. In a study using human umbilical vein
endothelial cells (HUVECs), it was found that
LHsura inhibited proliferation, migration and the
capillary-like structure formation induced by recombi-
nant VEGF165, i.e., simvastatin [32]. The tubular for-
mation inhibitory rate following 50 μg/mL LHsura was
46.4%, compared with 78.6% following 50 μg/mL
LMWH. There is a so-called heparin-binding domain
(HBD) within the VEGF165 molecular structure, which

Table 1. The abbreviations and their corresponding full names
in articles.
Abbreviation Full name

AML acute myelogenous leukemia
BMPs bone morphogenetic proteins
CXCL12 CXC Cytokine Ligand 12
CXCR4 CXC receptor4
CS chondroitin sulfate
CSC cancer stem cell
GAG glycosaminoglycans
ECM extracellular matrix
ER endoplasmic reticulum
GPCsR G protein-coupled receptors
HBD heparin-binding domain
HDLECs human dermal lymphatic endothelial cells
HLGAGs heparin-like glycosaminoglycans
HS heparan sulfate
HSPG heparin sulfate proteoglycan protein
HUVECs human umbilical vein endothelial cells
IL-11 interleukin 11
K5-NSOS high-molecular-weight Escherichia coli K5-derived

heparin-like polysaccharide
LHTD4 low-molecular-weight heparin-taurocholate-tetramer

deoxycholate
LHTD4/DCK a complex of LHTD4 and deoxycholylethylamine
LMWH Low molecular weight heparin
LHsura a complex of heparin and suramin fragment
LHbisD4 a conjugation of low molecular weight heparin and four

bis-deoxycholates
LSC leukemic stem cell
PG545 a HS mimetic
PSGL-1 P-selectin glycoprotein ligand-1
S-NACH Sulfated non-anticoagulant heparin
TCA taurocholate
TetraDOCA taurocholate (TCA) and a tetramer of deoxycholic acid
TGFβ/TGFβ1 transforming growth factor/ transforming growth factor

beta 1
TGFβ1R1 transforming growth factor beta 1 receptor 1
TKI tyrosine kinase inhibitor
UFH unfractionated heparin
VCAM-1 vascular cell adhesion protein-1
VEGF vascular endothelial growth factor
VEGF-C vascular endothelial growth factor C
VEGFR-3 vascular endothelial growth factor receptor 3
VLA-4 very late antigen-4

120 S.-N. MA ET AL.



is a 55-residue carboxy-terminal. These enhanced
effects were due to the improved affinity of HBD for
VEGF165 via conjugation with suramin fragments. In
addition to inhibiting angiogenesis, heparin and its
derivatives can also act to protect the endothelial bar-
rier. For example, the LMWH tinzaparin was found to
attenuate VEGF-induced endothelial barrier perme-
ability in a manner that does not depend on its antic-
oagulant activity [33].

Heparanase inhibitors as anti-cancer
therapeutics

Heparanase is the only enzyme that can lyse heparin
sulfate proteoglycan protein (HSPG), by breaking down
the extracellular matrix (ECM) and basement membrane.
Additionally, heparanase is involved in tumor angiogen-
esis, invasion and metastasis, and a number of studies
suggest that heparanase is a viable target for cancer

therapy. As a result, several heparin mimetics have been
developed to treat cancer [34–36].

Anticoagulant activity is a common side effect asso-
ciated with heparin mimetics, but a promising heparin
mimetic, PG545 was found to exhibit a strong anti-
lymphoma effect and display only mild anticoagulant
activity. To study the molecular mechanism underlying
the pro-apoptotic effect of PG545, several molecules
were measured. The results indicated that PG545 elicits
apoptosis via activating the NFκB pathway, inducing
endoplasmic reticulum (ER) stress and autophagy [37].
Additionally, PG545 has been found to be a highly
potent inhibitor of angiogenesis, tumor growth and
metastasis in murine models of breast, liver, lung,
prostate, colon, head and neck cancers and melanoma.
Sorafenib, a tyrosine kinase inhibitor (TKI), is a well-
established drug for treating kidney and liver cancer,
but showed no antimetastatic ability in a liver cancer
model. However, in combination with sorafenib, PG545

Table 2. Heparin and its derivatives in different tumors and related mechanisms.
Cancer
types Study model Type Beneficial effects

Target
molecular

Total Numbers
of References

Breast HDLECs, 4T1 cells, MDA-MB-231
cells

LHbisD4 Decreasing lymphatic vessels and
attenuating lymph node metastasis

VEGF-C/
VEGFR-3

27

C3H mice breast cancer model LMWH Inhibiting lung metastasis VEGF 31
MDA-MB-231 cells tinzaparin Inhibiting pulmonary metastasis CXCL12-

CXCR4
65

MDA-MB-231 cells dodecasaccharide Inhibiting lung metastasis CXCL12-
CXCR4

66

MDA-MB-231 cell, 4T1 cells LHTD4 Inhibiting metastasis CXCL12-
CXCR4,TGF-
β1

72

MDA-MB-231 cells K5-NSOS Decreasing osteolytic lesion and
metastasis tumor burden in bone

TGF-β 74

Pancreatic MPanc96 cells S-NACH Inhibiting adhesion and invasion of
cancer cells to endothelial cell

P-selectin 48

Colon LS180 cells, T84 cells Heparin Preventing metastasis P-selectin 17
Caco-2 cells LHTD4/DCK Inhibiting tumor growth and

angiogenesis
N/A 30

MC-38 mice model Heparin Attenuating metastasis lesions P-selectin 47
HCT-116 cells Enoxaparin Decreased proliferation, adhesion and

hepatic metastasis
CXCL12-
CXCR4

67

HT29 cells, HCT-116 cells G2.2 Inhibiting colonic CSCs P38 MAP
kinase

75

Melanoma B16-BL6 mouse model Heparin Attenuating metastasis lesions P-selectin 47
A375 cells, B16F10 cells RO-heparin, CR-heparin, N-2,3-

DS-heparin, 2,3-O-DS-heparin
Inhibiting metastasis Integrin

αⅡbβ3

51

B16F10 cells, MV3 cell tinzaparin Inhibiting cancer cells adhesion to
endothelium

VLA-4/
VCAM-1

53

Lymphoma Daudi, Ramos, Raji (three kinds of
human Burkitt's lymphomas), SU-
DHL-6 (human follicular
lymphoma), OCI-LY-19 (human
Diffused large B-cell lymphoma)

PG545 Eliciting apoptosis NFκB
pathway

37

CSCs LSCs CX-01 Promoted chemotherapy efficiency CXCL12-
CXCR4
activity

76

Hepatoma stem cells Exogenous heparin Inhibiting sphere formation CD44 77
Others HUVECs, SCC7 cells (murine

squamous cell carcinoma)
LHTD4/DCK Inhibiting tumor growth and anti-

angiogenesis
N/A 30

HUVECs, SCC7 cells LHsura Inhibiting proliferation, immigration
and endothelial tubular formation

VEGF165 32

HUVECs PG545 Inhibiting angiogenesis, tumor growth
and metastasis

N/A 38
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demonstrated enhanced antimetastatic activity and
enhanced anti-cancer efficiency in a murine liver can-
cer model [38].

Heparin inhibits the metastasis facilitating
effect of platelets

It well known that platelets play a key role in the coagula-
tion process, and there is evidence for platelet abnormity
amongst cancer patients. Further studies show platelets act
as a bridge connecting cancer cells to the endothelial layer,
thereby enhancing cancer cell attachment and metastasis
[14,22]. Some researchers hold that selectins in platelets
trigger the first step of cell-cell interactions, which is rele-
vant to the initiation of tumor metastasis [10,17]. A recent
report found that E-cadherin expression in MPanc96-luc
cells increased by 2.0 to 2.5-fold after incubationwith either
S-NACHor tinzaparin [39]. E-cadherin is amarker protein
involved in epithelial mesenchymal transition, a key pro-
cess during malignant tumors’ development of invasion
and migration ability. Thus, the above findings suggest
the possibility that heparin has its anti-metastasis effect
by decreasing the expression of E-cadherin.

The selectin family contains three members: P-, E-, and
L-selectin. P-selectin is expressed in the storage granules of
platelets and endothelial cells, resulting in rapid transloca-
tion on cell surfaces upon activation [40]. When P-selectin
is absent, the platelet-tumor cell microthrombi degree is

minimal, and metastatic lesions in the lungs of mice are
subsequently reduced [17,41,42]. L-selectin actively recruits
leukocytes and constructs a metastatic niche, while
E-selectin is present on activated endothelial cells in the
metastatic colonization of the liver [43–46]. Nevertheless,
P-selectin has superior effects over L-selectin [10]. Recent
research suggests that metastatic lesions are attenuated in
modified heparin analogues containing mostly P-selectin
inhibitory activity and in P-selectin-deficient mice [47]. In
pancreatic cancer, S-NACH dose-dependently inhibits the
adhesion and invasion of MPanc96 cancer cells to the
endothelial layer of the umbilical cord vein [48]. The adhe-
sion and invasion of Mpanc96 cells are mediated by
P-selectin and inhibited effectively by S-NACH. Given
these results, heparin binds to P-selectin glycoprotein
ligand-1 (PSGL-1) and thereby prevents platelets from
binding to cancer cells (Figure 2) [14–17]. Despite the
different structures, LMWHs, S-NACH and tinzaparin all
target P-selectin to markedly inhibit cancer metastasis in
a concentration-dependent manner, which is particularly
the case for S-NACH [10,14,18,48]. Furthermore, a greater
inhibitory effect was associated with a larger average mole-
cular weight. Additionally, the adhesion between human
colon adenocarcinoma LS180 cells and immobilized
P-selectin is disrupted by heparin [17]. Taken togehter,
results from in vivo studies endorse heparin as an efficient
inhibitor of selectin-mediated interactions between cancer
cells and platelets, providing a possible mechanism for how
heparin attenuates cancer metastasis.

Figure 2. (a): P-selectin is present in the α-granules of platelets; (b): P-selectin in α-granules is rapidly translocated to the cell surface
after activation; (c): P-selectin binds to P-selectin ligand on the surface of cancer cells to form a platelet-cancer cell complex,
mediating adhesion of cancer cells to endothelial cells; (d): Heparin binds to selectin, blocks the formation of complexes, and
interrupts the adhesion of cancer cells.
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Integrins are receptor molecules involved in cell adhe-
sion and signal transmission. Integrin expression by pla-
telets is thought to be a mechanism by which platelets
mediate the adhesion of cancer cells to the extracellular
matrix, which promotes cancer metastasis. For example,
integrin αIIbβ3 is expressed in platelets and is critical in
the interaction of platelets with tumor cells [49,50].
Likewise, integrin αMβ2 (Mac-1) mediates the adherence
of hematopoietic progenitor cells to the stromal compart-
ment via binding to heparin and heparan sulfate (HS).
Moreover, heparin and modified heparin with low antic-
oagulant activity can inhibit the adhesion of melanoma
A375 cells to platelets, which is mediated by integrin
αIIbβ3 [51]. Integrin also inhibits the process by which
heparin inhibits melanoma cells from adhering to
endothelium. Integrin α4β1 (also known as very late
antigen-4; VLA-4) binds to vascular cell adhesion pro-
tein-1 (VCAM-1) in B16F10 melanoma cells, so that
cancer cells adhere to endothelial cells (Figure 3) [52].
Furthermore, heparin can bind to VLA-4 in human mel-
anoma MV3 cells, with binding affinity in the low micro-
molar range [53]. Structural analysis confirms heparin
can bind to integrin, and binding affinity is affected by
molecular size, with some short heparin chain or penta-
saccharide (Fondaparinux) unable to bind [54]. Binding
affinity is also affected by other factors, such as sulfation
density [55].

Heparin and cytokines

Cytokines are small soluble proteins produced by cells
that are involved in oncogenesis and the development
of cancer. The possible influence of heparin and its
derivatives on cytokines has been a focus in under-
standing how heparin affects cancer cells and cancer

progression. Among the different types of cytokines,
chemokines are low molecular weight proteins that
induce white blood cell migration, which plays an
important role in inflammation. They are small,
secreted proteins that induce cell migration through
activation of G protein-coupled receptors (GPCsR),
and bind to extracellular matrix GAG in order to direct
chemotaxis along a gradient of increasing chemokine
concentration. A substantial number of studies high-
light the involvement of chemokines and their recep-
tors in cancer metastasis. The presentation of
chemokines to their receptors relies on GAG compo-
nents on the cell surface, and GAG-binding is essential
for the cell migration stimulated by chemokines [56].
Additional evidence suggests the activity of chemokines
is directly regulated by GAGs [57].

The arrangement of conserved cysteine residues
near the amino terminus indicates that chemokines
consist of four families, C, CC, CXC and CX3 C.
Among them, CXC Cytokine Ligand 12 (CXCL12,
formerly known as stromal cell-derived factor-1,
SDF1) and CXC receptor 4 (CXCR4) comprise the
CXCL12-CXCR4 axis, which is widely acknowledged
as playing a vital role in cancer metastasis. The
CXCL12-CXCR4 axis promotes cancer development
mainly through two mechanisms: 1) CXCR4-
expressing cells are located in CXCL12-expressing
organs; and 2) Elevated CXCL12 levels regulate the
survival, growth, metastasis and angiogenesis of can-
cer cells via paracrine signaling [58,59]. In fact, the
CXCL12/CXCR4 axis is involved in various physio-
logical functions, such as the entrance of neutrophils
into infection sites, stem cell mobilization and direc-
ted migration [60–63]. Recent research indicates that
heparin’s anti-metastatic ability may be underpinned

Figure 3. (a): VLA-4 expressed in tumor cells binds to VCAM-1 expressed in endothelial cells, which mediates the adhesion of tumor
cells to endothelial cells. (b): Heparin interrupts the binding of VLA-4 to VCAM-1 and inhibits the adhesion of tumor cells to
endothelial cells.
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by the modulation of the CXCR4-CXCL12 axis [64].
For example, heparin and Tinzaparin reduced the
pulmonary metastasis of breast cancer cells that
were over expressing CXCR4 by interfering with the
interaction of CXCL12 and its receptor CXCR4
[65,66]. In a study of human colon cancer cells
HCT-116, their proliferation, adhesion and colony
formation were promoted by CXCL12, and this pro-
cess was inhibited by enoxaparin. Additionally,
CXCR4 expression in hepatic sinusoidal endothelial
cells is down-regulated along with the significant
decrease of hepatic metastasis after enoxaparin treat-
ment [67]. Other evidence suggests that CXCR4 med-
iates the interactions between cancer cells and stroma
cells by combining with its natural ligand CXCL12

[68,69]. The CXCL12-CXCR4 axis also mediates the
migration of breast cancer cells and their seeding in
distant organ tissues, but heparin blocks this interac-
tion; the specific binding sites are shown in Figure 4
[70]. LMWH binds to a heparin-binding site in
CXCL12, making CXCL12 a dimerization shift from
the monomer dimer equilibrium (Figure 5), and
LMWH consequently decreases CXCR4-CXCL12
interaction [71].

In a study that developed a transplant tumor model
of 4T1 breast cancer in mice, treatment with 5 mg/kg/
daily LHTD4, taurocholate (TCA) and a tetramer of
deoxycholic acid (tetraDOCA) for 8 weeks significantly
reduced the formation of metastases [72]. LHTD4
inhibited the migration of MDA-MB-231 cancer cells

Figure 4. Binding site of heparin to CXCL12 dimer.

Figure 5. CXCR4 on tumor cells surface binds to its ligand CXCL12 expressed in endothelial cell membrane to promote the
metastasis of tumor cells. LMWH binds to CXCL12 to make it a dimerization state, blocking its binding to CXCR4 and inhibiting
metastasis.
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by blocking the transforming growth factor beta 1
(TGF-β1) signaling pathway and the CXCL12-CXCR4
axis. Specifically, LHTD4 inhibits TGFβ1-mediated
phosphorylation of TGF-TGFβ1R1 as well as
TGFβ1-induced vimentin and SNAIL-1 expression.
Meanwhile, LHTD4 blocks CXCL12-induced CXCR4
phosphorylation and subsequent ligand-receptor
response, cell migration and invasion [72].

Heparin promotes bone resorption by enhancing the
activity of osteoclasts and inhibits bone formation by
weakening the function of osteoblasts. During osteo-
clastic bone resorption, first TGFβ and then osteolytic
factors (e.g. interleukin 11; IL-11) are released. TGFβ
regulates several steps in cancer metastasis, including
the establishment of bone metastatic lesions.
Specifically, UFH is more effective than LMWH at
stimulating osteoclast and inhibiting osteoblast activity
[73]. K5-NSOS can inhibit TGFβ–induced IL-11, and
effectively decrease the osteolytic lesion area and meta-
static tumor burden in bones, but markedly alleviates
the body weight loss and tumor-related cachexia in
a breast cancer bone metastasis mouse model [74].

Heparin prevents cancer relapse by inhibiting
cancer stem cells

Inhibiting cancer stem cells (CSCs) is a critical mechan-
ism being proposed for preventing cancer relapse and
targeting CSCs is expected to be a promising approach
for cancer treatment. Various mechanisms are under
consideration in identifying how heparin or heparin-
like molecules modulate CSCs. For instance, G2.2,
a sulfated nonsaccharide GAG mimetic of heparin hex-
asaccharide was found to selectively inhibit colonic
CSCs in vitro, in vivo and ex vivo. The CSC self-
renewal inhibiting function of G2.2 was mediated
through p38 MAP kinase activation [75].

As shown in Figure 5, heparin can inhibit cancer metas-
tasis by blocking the binding of CXCL12 and CXCR4.
CXCL12/CXCR4 also mediates the sequestration of the
quiescent leukemic stem cells (LSCs) in marrow. These
LSCs will cause chemotherapy resistance in acute myelo-
genous leukemia (AML). CX-01 is a low-anticoagulant
heparin derivative that can block CXCL12/CXCR4 activity
and therefore disrupt the LSCs in marrow, and CX-01 has
been clinically verified to promote chemotherapy efficiency
in the treatment of AML [76]. In addition to affecting
AML, the same mechanisms support the therapeutic
potential of CX-01 for myelodysplastic syndrome, multiple
myeloma, and lymphoma.

GAGs HS and chondroitin sulfate (CS) have been
reported to regulate self-renewal and pluripotency of
CSCs thorough cellular signaling. Recent evidence

demonstrates that exogenous CS enhanced hepatoma
sphere formation by blocking specific protein binding
to CD44, while the addition of exogenous heparin
inhibited sphere formation, indicating that heparin
and its derivatives are potential candidates for reducing
hepatoma stem cells [77].

Other studies focused on the safety of heparin and
its derivatives. M. Reza Sadaie [78] demonstrated that
heparin and its derivatives could influence the release
and expansion of bone CSCs. Bone morphogenetic
proteins (BMPs) either potentiate or inhibit the growth
of bone CSCs. Heparin and its derivatives bind to
BMPs and modulate CSCs positively or negatively,
which subsequently has either positive or negative
effects on tumorigenesis.

Conclusions and prospects

Heparin is used in the prevention and treatment of
venous thromboembolism for cancer patients owing to
its strong anticoagulant activity. Clinical studies suggest
anticoagulant therapy with heparin leads to better prog-
nosis and survival for patients with diversiform tumors.
These findings have revealed that heparin is not only an
effective anticoagulant, but may also be an undiscovered
novel anti-cancer agent. A growing body of evidence
suggests that heparin can decelerate the development of
cancer and metastases. However, for both UFH and
LMWH, the risk of bleeding caused by anticoagulants
limits the application of traditional heparin in cancer
treatment, leading to the development of a number of
synthetic heparin derivatives. Compared with traditional
heparin, these new synthetic heparin derivatives possess
much lower anticoagulant activity, but maintain the basic
structure and biological functions of heparin. Moreover,
the conjugated group also increases the affinity of heparin
to its target molecule. As outlined in this article, various
types of heparin and its derivatives can inhibit tumor cell
proliferation, migration, invasion, and enhance the che-
mosensitivity of tumor cells. Heparin derivatives modu-
late hematogenous metastasis by inhibiting the
interaction between platelets and tumor cells, and control
lymphatic metastasis by inhibiting lymphangiogenesis.
Furthermore, heparin derivatives bind to a range of
heparin-binding proteins to block signal pathways includ-
ing TGF-β1, integrins, CXCL12-CXCR4 axis, and VEGF-
C/VEGFR-3 axis. Moreover, several mimetics of heparin
have been developed as anti-cancer agents. For instance,
G2.2 was found to selectively inhibit colonic CSCs in vivo
[75]. Due to their potential anti-metastatic ability and
good biocompatibility, heparin and its derivatives have
been used in the construction process in nanomedicine,
with results indicating that nanoparticles based on
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heparin and its derivatives are promising agents for post-
operative chemotherapy [79]. Heparin and its derivatives
such as LMWH and S-NACH can enhance the uptake of
chemotherapeutics, as demonstrated in an in vivo study
with a xenograft cancer model [80]. Consequently,
heparin and its derivatives should be developed as pro-
mising new adjuvant anti-cancer drugs which can operate
via a range of pathways to affect multiple stages of tumor
progression.
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