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ABSTRACT: The previously unknown coronavirus that caused severe
acute respiratory syndrome (SARS-CoV) affected more than 8,000 per-
sons worldwide and was responsible for more than 700 deaths during the
first outbreak in 2002—2003. For reasons unknown, the SARS virus is less
severe and the clinical progression a great deal milder in children younger
than 12 years of age. In contrast, the mortality rate can exceed 50% for
persons at or above the age of 60. As part of the Sino-European Project on
SARS Diagnostics and Antivirals (SEPSDA), an immune phage-display
library is being created from convalescent patients in a phagemid sys-
tem for the selection of single-chain fragment variables (scFv) antibodies
recognizing the SARS-CoV.
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INTRODUCTION

In February 2003, the new and previously unknown deadly coronavirus
causing severe acute respiratory syndrome (SARS-CoV) was brought to the
attention of the World Health Organization (WHO) by Dr. Carlo Urbani and
his colleagues.!

The SARS virus originated in the province of Guangdong in southern China
in November 2002 where it initially was thought to cause atypical pneumo-
nia.> However, within a short time the virus spread to Hong Kong, Singapore,
Vietnam, Canada, the United States, Taiwan, and several European countries.
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Concerted efforts of the scientific community led to a very rapid identification
of a novel coronavirus as the etiological agent of SARS and the full genome
sequencing of the virus.> The SARS-CoV genome is ~30 kb in length and
contains 14 potential open reading frames (ORFs).”10

According to the WHO, the SARS-CoV affected more than 8,000 indi-
viduals worldwide and was responsible for over 700 deaths during the first
outbreak in 2002—-2003. For reasons unknown the SARS virus is less severe
and the clinical progression a great deal milder in children younger than 12
years of age.!! In contrast, the mortality rate was highest among patients >65
years'? and can exceed 50% for persons at or above the age of 60 years.! In
Hong Kong, where 298 people died from SARS, the mortality rate for children
(age 0—14 years) was 0%. On the other hand, 63.9% of the cases were in per-
sons older than 65 years, most of whom showed a history of chronic disease
(http://www.hku.hk/ctc/sars_hk_23). At present no experimental evidence can
explain the observed age distribution. However, it should be noted that a re-
cently discovered coronavirus strain, NL63, exhibits a markedly different age
distribution with regard to clinical symptoms.

The coronaviruses are a group of viruses that have a crown-like (coronal)
appearance. The SARS-CoV are positive-strand RNA viruses and the virion
consists of a nucleocapsid core encapsulated by the three envelope glycopro-
teins: spike (S), membrane (M), and envelope (E) proteins that are common
to all members of the genus. The RNA is packaged by the nucleocapsid (N)
protein into a helical nucleocapsid.'* The SARS virus N protein has only a
32% identity with the other known coronaviruses and has been suggested to
be a major immunogen.'> The S protein is known to be a major target of the
cellular immune response and plays an important role in the initial roles of
infection.

SARS DIAGNOSIS AND THERAPY

Continuous work is being performed to find an early diagnosis and therapy
of SARS. Several different approaches have been taken. Diagnosis has been
performed by serologic testing using indirect fluorescent antibody or enzyme-
linked immunosorbent assays (ELISA) specific for SARS-CoV antibody.!®!”
Detection of the SARS-CoV itself has been done using clinical specimens of
serum, nasal secretions, and stool. This was done through viral isolation and
electron microscopy, viral culture, or reverse transcription polymerase chain
reaction (RT-PCR) to test for viral RNA. >3

Neutralizing antibodies (NAbs) have been found against the SARS virus.
One of the targets of these NADs is the S glycoprotein, especially toward the
metallopeptidase angiotensin-converting enzyme 2 (ACE2) binding domain
[S(318-510)]."® NAbs have been selected against the ACE2 domain.!'??°
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SINO-EUROPEAN PROJECT ON SARS DIAGNOSTICS AND
ANTIVIRALS (SEPSDA)

Within the SEPSDA consortium significant progress has been made, with
regard to both a structural understanding of the SARS-CoV?'"23 and the
development of putative therapies.*

To further increase the understanding of viral biology and to help devise
novel therapies, an effort to harvest the protective immunity generated by con-
valescent patients has been initiated. Antibodies against the SARS proteins
can be obtained in different ways. The most commonly used are hybridomas to
make monoclonal antibodies?> and immunization followed by collection of an-
tiserum.?® Selections using phage display have been performed, selecting scFv
antibodies from semi-synthetic (nonimmune) libraries?’?° and with immune
library.*°

The first time a fusion protein was displayed on the surface of filamen-
tous bacteriophages was in 1985 by G.P. Smith,?! who showed that foreign
DNA fragments could be inserted in the middle of gene III to create a fusion
protein. The phage particle displays a protein or peptide on the surface and
carries the gene for the displayed protein or peptide inside the particle, giving
a linkage between phenotype and genotype.>' This allows for the selection
of phage displaying a protein or peptide with affinity for a given target, and
at the same time the gene encoding the protein or peptide is co-selected. In
this way, it is possible to screen millions of different displayed proteins or
peptides.

In 1990 a single-chain antibody fragment (scFv) was displayed on the surface
of filamentous bacteriophage for the first time by McCafferty et al.3? In 1991
came the first publications displaying libraries of fragment antigen-binding
(Fab) fragments on gIlIp**3* and on gVIIIp.>> Subsequently, better and larger
libraries have been constructed and used for selection of antibodies against
numerous different antigens.

The creation of large phage-display libraries gives the potential of isolating
human antibodies against most antigens,>® making it possible to bypass both
hybridoma technology and immunization.’” In addition, because no immune
system is involved in the selection of antibodies by phage display, it is possible
to select antibodies against toxic compounds, lethal pathogens, and highly
conserved antigens.®

In general two kinds of antibody libraries can be created from donors:
immune and naive (nonimmune) libraries. The immune libraries are made
from immunoglobulin (Ig) variable region (V) genes derived from immunized
donors.?” An immune library is biased toward a specific antigen, which leads
to the selection of higher-affinity antibodies (compared to naive libraries of
the same size). The naive libraries are made from Ig V genes derived from non-
immunized donors or from synthetic V-genes.3® The naive library is unbiased
and can therefore select antibodies against virtually any antigen.
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Creation of immune phage-display libraries for immunized donors has
shown a particular efficiency in selecting neutralizing antibodies (NABs)
against different viruses, for example, rabies,* varicella-zoster,*’ hepatitis
A*! and E,*? measles,* and respiratory syncytial virus.*

The use of phage display seems ideal for the selection of antibodies against
the SARS-CoV. Creating an immune library, based on peripheral blood lym-
phocytes from convalescent patients in a phagemid system, would provide the
possibility of developing an early diagnosis and therapy of SARS. NAb has
been selected, but an early and fast diagnosis is still important, should another
outbreak occur.
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