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Dealing with subjects who are unable to attain a proper level of performance, that is,
those with brain–computer interface (BCI) illiteracy or BCI inefficients, is still a major issue
in human electroencephalography (EEG) BCI systems. The most suitable approach to
address this issue is to analyze the EEG signals of individual subjects independently
recorded before the main BCI tasks, to evaluate their performance on these tasks. This
study mainly focused on non-linear analyses and deep learning techniques to investigate
the significant relationship between the intrinsic characteristics of a prior idle resting state
and the subsequent BCI performance. To achieve this main objective, a public EEG
motor/movement imagery dataset that constituted two individual EEG signals recorded
from an idle resting state and a motor imagery BCI task was used in this study. For the
EEG processing in the prior resting state, spectral analysis but also non-linear analyses,
such as sample entropy, permutation entropy, and recurrent quantification analyses
(RQA), were performed to obtain individual groups of EEG features to represent intrinsic
EEG characteristics in the subject. For the EEG signals in the BCI tasks, four individual
decoding methods, as a filter-bank common spatial pattern-based classifier and three
types of convolution neural network-based classifiers, quantified the subsequent BCI
performance in the subject. Statistical linear regression and ANOVA with post hoc
analyses verified the significant relationship between non-linear EEG features in the
prior resting state and three types of BCI performance as low-, intermediate-, and
high-performance groups that were statistically discriminated by the subsequent BCI
performance. As a result, we found that the frontal theta rhythm ranging from 4 to
8 Hz during the eyes open condition was highly associated with the subsequent BCI
performance. The RQA findings that higher determinism and lower mean recurrent time
were mainly observed in higher-performance groups indicate that more regular and
stable properties in the EEG signals over the frontal regions during the prior resting
state would provide a critical clue to assess an individual BCI ability in the following
motor imagery task.

Keywords: electroencephalography, brain computer interface, recurrent quantification analysis, BCI illiteracy,
convolution neural network
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INTRODUCTION

As a means of controlling external devices without real limb
movement, motor imagery (MI)-based brain-computer interface
(BCI) technology enables the translation of the user’s motor
intentions into specific commands to perform the corresponding
actions (Schalk et al., 2004; Lotte et al., 2018). MI-BCI technology
has been widely used not only in the neurorehabilitation system
for subjects to recover their sensorimotor ability after stroke (Ang
et al., 2010; Leamy et al., 2014), but also as a ubiquitous system
for healthy individuals to control external devices (Liao et al.,
2012; Marshall et al., 2013; He et al., 2015; Kim et al., 2019). Non-
invasively, scalp electroencephalography (EEG) signals, which
record electrical activity in the brain from the scalp surface, have
been regarded as the most important modality for the MI-BCI
system that can be decoded by a variety of signal processing
and decoding methods (Nicolas-Alonso and Gomez-Gil, 2012;
Padfield et al., 2019; Stegman et al., 2020). Although there have
been many advances in the field of EEG-BCI technology over the
decades, BCI illiteracy still remains a major problem (Vidaurre
and Blankertz, 2010). Although the inappropriate usage of this
terminology is controversial (Thompson, 2019), some specific
terms such as BCI-illiteracy, BCI-deficient, and low-performance
groups have been widely used to describe the subject group who
could not achieve BCI performance at satisfactory levels. To deal
with the problem of BCI illiteracy appropriately, previous studies
have attempted to design more efficient BCI paradigms (Jeunet
et al., 2016; Abiri et al., 2019) or to discriminate low-performance
groups and others prior to the main BCI tasks (Bamdadian et al.,
2014; Suk et al., 2014). Many past studies have focused on finding
capable predictors for the following BCI performance. If the
individual degree of the subsequent BCI performance can be
estimated, much time and resources can be saved (Blankertz et al.,
2010; Ahn et al., 2013; Bamdadian et al., 2014; Suk et al., 2014;
Kwon et al., 2020).

The idle EEG signals recorded during prior resting states in
the eyes-open (REO) or eyes-closed (REC) condition can be
used to predict subsequent BCI performance (Hammer et al.,
2012). For example, Blankertz et al. (2010) have proposed a
specific predictor of BCI performance as a set of hyperparameters
of the power spectral density (PSD) functions covered with
sensorimotor rhythms recorded at two central regions during the
REO condition. Another study used the normalized theta band
power during the REO condition as a BCI-performance predictor
by performing a binary classification with a filter-bank common
spatial pattern and support vector classifier (Bamdadian et al.,
2014). Ahn et al. (2013) demonstrated that BCI performance
was highly related to the proposed performance potential factor
(PPfactor) as a combination of high theta (4–8 Hz) and low
alpha (8–13 Hz) powers during the REO condition. A recent
follow-up study has modified the PPfactor proposed in Ahn’s
study by considering both REO and REC conditions (Kwon
et al., 2020). Apart from the well-known spectral characteristics
of sensorimotor rhythms recorded from a specific motor-relevant
area, there is also a line of research that aims to reveal the
neural mechanisms underlying motor imagery (MI) processes
through large-scale brain connectivity analysis between multiple

EEG signals and to find some useful predictors of subsequent
BCI performance from the neural dynamics of the brain network
(Zhang et al., 2015; Corsi et al., 2020). Because there is no
actual movement, but only imagination, the cognitive process
for MI is known to be highly related to motor-related neural
substrates, and comparative studies have attempted to reveal
the common (Holmes and Collins, 2001) or different motor-
related cognitive networks (Glover and Baran, 2017) compared
to motor execution or preparation (Hardwick et al., 2018;
Glover et al., 2020; Van der Lubbe et al., 2021). For example,
a study has performed dynamic causal modeling (DCM) to
delineate dynamic changes in the effective connectivity of EEG
sensorimotor rhythms, including the mu and beta bands, across
four regions of interest, such as the primary motor cortex (M1),
supplementary motor area (SMA), premotor cortex (PMC),
and dorsolateral prefrontal cortex (DLPFC). By investigating
significant changes in the connectivity strength between the
DLPFC and others, it was shown that the DLPFC is a part of a
critical area, not only in various cognitive processes, but also in
motor-related cognitive processes (Kim et al., 2018). In addition,
recent studies have addressed the significant relationship between
the characteristics of brain connectivity and subsequent BCI
performance (Phang and Ko, 2020; Vidaurre et al., 2020). For
example, Vidaurre et al. (2020) have studied some specific
characteristics of functional connectivity between the motor
and somatosensory systems by performing imagery coherence
analysis of the EEG sensorimotor rhythm, including the mu
and feedback bands recorded during the MI task with an
online feedback paradigm. By investigating ipsilateral (within)
and contralateral (between) functional connectivity between
the primary motor and somatosensory cortices, the authors
showed that the within connectivity strength was positively
correlated (r = 0.31) with BCI feedback accuracy and proposed
that this connection could be a predictor of subsequent BCI
performance (Vidaurre et al., 2020). Another study has calculated
the functional connectivity of sensorimotor rhythm as alpha and
beta bands recorded during a binary classification MI task. Based
on the parietal area centered on the contralateral parietal regions
(P3/5/6), investigation of the characteristics of EEG alpha (8–
13 Hz) rhythms within the parietal network and between others
has shown that the subsequent BCI performance is positively
correlated with the connectivity strength of the intralobular
parietal network (r = 0.31), but were negatively correlated
with the interlobular parietal network (r = −0.34) (Phang and
Ko, 2020). Similar to studies on the spectral characteristics of
single EEG signals with the subsequent BCI performance, there
is a series of EEG studies on the characteristics of dynamic
brain connectivity in the resting state (Zhang et al., 2015; Lee
et al., 2020; Yoon and Lee, 2020). For example, Zhang et al.
(2015) investigated the relationship between MI classification
accuracy and several network measurements of the brain network
constructed by spectral coherence among multivariate EEG
signals within 4–14 Hz recorded during the resting state with
eyes closed condition. By showing the positively and negatively
correlated network measurements with the MI classification
accuracy, the authors proposed that the intrinsic characteristics
of functional connectivity of the EEG signals in resting states
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could be used as predictors for the subsequent BCI performance
(Zhang et al., 2015).

As mentioned above, various spectral and brain connectivity
studies have been conducted on resting state EEG signals
for accurate prediction and significant relation with individual
ability to upcoming BCI performance. However, most of these
methodologies was based on a linear model in which the EEG
signal to be analyzed is stationary. It is worthy adopting a
non-linear analysis to the subsequent BCI performance because
the EEG signal is a non-stationary signal and is successfully
used in clinical and cognitive psychology research that mainly
deals with individual or group differences in specific difference
conditions. For this reason, this study mainly investigated the
feasibility of using non-linear EEG features for the problem
of BCI illiteracy. Specifically, we attempted to adopt several
well-known non-linear EEG features such as sample entropy
(Richman and Moorman, 2000), permutation entropy (Bandt
and Pompe, 2002), and recurrence quantification analysis (RQA)
(Marwan et al., 2007) to achieve this. In various EEG research
fields, these non-linear approaches have been successfully used
to characterize conscious and sleep stages (Kreuzer et al.,
2014; Rolink et al., 2015; Shabani et al., 2016; Mateos et al.,
2018) and to find a significant relationship between several
brain disorders such as epilepsy (Niknazar et al., 2013), autism
(Heunis et al., 2018; Kang et al., 2019), and schizophrenia
(Takahashi et al., 2010; Hauge et al., 2011). Non-linear EEG
analysis, thus, could provide very useful features for tracing
the changes or discriminating the individual differences in the
intrinsic properties of EEG signals between specific groups or
individuals. In contrast to the common use of non-linear EEG
features in clinical and neuroscience research, the availability of
these features in BCI application systems has remained relatively
insignificant. Because, more computing time and resources are
required to extract non-linear features than simple spectral-based
features, it is not suitable for online BCI application systems
that require fast response. However, recent developments in
computer hardware and efficient algorithm technology, have led
to a gradual increase in the use of non-linear features in offline
BCI research. In particular, some studies that actively utilized
the RQA measurements for BCI- or motor-related systems are
reported below. Recent EEG-BCI research has measured the
similarity between pairwise EEG electrodes by using one of the
RQA measurements, space-time recurrence (STR). By calculating
the STR between all EEG pairs, the authors constructed a specific
adjacency matrix for estimating functional connectivity over all
EEG sites. They showed the availability of these RQA approaches
to distinguish MI tasks in the BCI context (Rodrigues et al.,
2019). Another EEG study conducted the RQA to estimate
the specific temporal changes in the regularity and complexity
during motor execution tasks. By showing the temporal changes
in two RQA measurements as determinism (DET) and the
recurrence time entropy (RTE), the authors addressed that
the complexity of EEG signals significantly modulated by the
execution of real motor tasks (Pitsik et al., 2020). In a more
relevant study on BCI applications, by using a steady-state
motion visual evoked potentials (SSMVEP)-based BCI paradigm,
Gao and colleagues addressed the significant differences in two

RQA network measurements, the weighted local efficiency and
clustering coefficients, from the multivariate weighted recurrence
network across five EEG literates and five EEG illiterates (Gao
et al., 2019). The studies introduced above show good examples
of RQA usage for the BCI systems. However, to the best of
our knowledge, no study to date has addressed the use of non-
linear measurements as predictors of the subsequent MI-BCI
performance or BCI applications. Another important point is
that most of the significant evidence revealed by past studies
was obtained from relatively simple linear classifiers, such as
linear discriminant analysis (LDA) or a support vector machine
(SVM) based on online BCI tasks. From the perspective of the
implementation of real BCI applications focused on low cost, it
is logical to adapt these simple and light approaches. Past studies
on individual EEG characteristics of BCI performance did not use
deep learning technology because of its high computational cost.
However, many studies have recently adopted the convolutional
neural network (CNN)-based (Schirrmeister et al., 2017; Lawhern
et al., 2018; Zhang et al., 2018) or long short-term memory
(LSTM)-based (Wang et al., 2018) classifiers to decode the
specific intentions in the MI-BCI task (Craik et al., 2019; Roy
et al., 2019). From the perspective of the original goal of dealing
with the low-performance BCI groups intensively, decoding
approaches using deep learning should be considered in order
to reveal the relationship between BCI performance and some
individual EEG characteristics or predictors in the prior states. In
particular, it is necessary that the innate and invariant EEG ability
of individuals be extracted by various types of decoding methods
in order to determine their influence on BCI performance.

To overcome the limitations of linear spectral-based
approaches and simple classifiers, this study aimed to solve
the problem of identifying a low-performance BCI group by
adopting non-linear EEG features in the prior state and deep
learning decoding methods in the subsequent BCI tasks. Two
types of EEG signals – recorded at the prior resting state and for
MI tasks – were separately processed. For the prior resting states,
non-linear analyses were mainly used to generate EEG features
for the intrinsic properties of an individual. For subsequent BCI
tasks, decoding methods based on traditional and CNN-based
classifiers were mainly used to quantify the EEG ability of
performing relevant MI tasks. The results demonstrate that
RQA can estimate upcoming BCI performance by indicating the
significant relationship between the RQA measurements derived
from the prior resting state and the subsequent BCI performance.

MATERIALS AND METHODS

EEG Motor Movement/Imagery Database
This study used the EEG motor movement/imagery database
(EEGMMIDB) (Schalk et al., 2004) which is publicly accessible
via Physionet (Goldberger et al., 2000) because it is suitable for
the goal of this study, which is to investigate the relationship
between two different kinds of EEG signals recorded in the prior
resting state and the subsequent BCI tasks. Most importantly,
a relatively large number of subjects (109) were recruited
from this database compared to other BCI databases. In the
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EEGMMIDB, all EEG signals were commonly recorded in
accordance with 14 individual experimental blocks, where the
first two blocks correspond to one-minute REO and REC
conditions, respectively, and the remaining blocks were four
different types of binary tasks: (1) open and close left or right fist,
(2) imagine opening and closing left or right fist, (3) open and
close both fists or both feet, and (4) imagine opening and closing
both fists or both feet, three times. This study solely focused on
the signals during motor imagery tasks so that we used only two
imagery tasks as (2), (4) and ignored the real execution tasks as
(1), (3). All MI trials were identically conducted during a fixed
period from 0 to 4 s with the prior 2-s fixation duration based
on the onset of MI action cue. All EEG signals were recorded
with the BCI2000 system using 64 channels sampled at 160 Hz
according to the international 10/10 layout system. We removed
the data recorded from five subjects in which there was some
serious fluctuation or data missing in the signals to prevent
reliable EEG analyses. In addition, we used only 56 channels out
of the 64 EEG channels, eliminating the redundant eight channels
(AF7/8, FT7/8, T9/10, Iz, Oz) that were also removed in the
relevant past studies due to superfluous motion artifacts (Rocca
et al., 2014; Kang et al., 2018). To investigate the relationship
of the EEG features from the prior resting state with the BCI
performance in the following BCI tasks, individual EEG signals
in the EEGMMIDB were divided into resting states and binary
MI-BCI tasks. And then, these two distinct parts of the EEG
signal were separately processed with individual pipelines for the
relevant EEG analyses after simple preprocessing. Broadly, the
EEG signals in the prior resting state were converted into three
distinct groups of EEG features to represent the intrinsic EEG
properties of individual subjects. By contrast, the EEG signals in
the MI-BCI tasks were decoded to the specific intention of the
corresponding MI tasks by four different decoding methods. For
the assessment of EEG capability of individual subjects, we finally
quantified the subsequent BCI performance by maximizing the
results of four different methods.

Resting State
The prior resting states in the EEGMMIDB consisted of two one-
minute EEG signals during the REO and REC conditions. To
characterize these parts of EEG signals efficiently, we converted
the signals into a group of EEG features by performing a
linear spectral analysis and three types of non-linear analyses
in both REO and REC conditions separately. Each analysis
generated a corresponding set of EEG features that represented
the intrinsic properties of individual EEG signals. Prior to these
EEG analyses, both one-minute EEG signals were band-pass
filtered with frequencies ranging from 0.1 to 55 Hz. These
procedures for EEG filtering are commonly conducted using
linear-phase finite impulse response (FIR) filters with forward
and backward operations to avoid phase distortion and edge
effects. Next, the filtered EEG signals were randomly segmented
into 30 2-s epochs. Note that all following EEG procedures for
both REO and REC conditions in this study were performed in an
epoch. Subsequently, all EEG features extracted from all epochs
were pooled and finally constructed into a set of EEG features by
calculating the average or standard deviation across all epochs.

Spectral Power
In the spectral analysis, a fast Fourier transform (FFT) with a
Hamming window estimated the power spectral density (PSD) of
all resting state EEG signals in an epoch. The median frequency
and Shannon entropy of the PSD were also calculated. The
frequency range of PSD was bounded to 4 and 50 Hz and then
separated into the four distinct band powers (BPs) by averaging
across the corresponding frequency ranges [theta (θ): 4–8 Hz;
alpha (α): 8–13 Hz; low beta (Lβ): 13–20 Hz; high beta (Hβ):
20–30 Hz]. And then, 10 ratios of BPs from all possible pairs
were calculated from these BPs. To sum up, a procedure of linear
spectral analysis converted the prior resting state EEG signals into
12 EEG features such as a median frequency, a Shannon entropy,
and 10 ratios of BPs.

Sample Entropy
As one of the well-known linear analysis for EEG signals, sample
entropy (SE), which was proposed by Richman and Moorman
(2000), has been widely used to represent the complexity
of time series. Similar to another entropy-based non-linear
complexity measurement called approximate entropy (Pincus
et al., 1991), the sample entropy indicates the regularity and
similarity of a time series. However, sample entropy has two
significant advantages over approximate entropy: bias reduction
and consistency, independent of data length (Richman and
Moorman, 2000). Sample entropy is defined as the negative
logarithm of the conditional probability that two sequences
that are similar to each other up to m points remain similar
within a tolerance r at the (m+ 1)-th point, except for
the self-match condition. Given N data points, a template
vector is defined that starts at a specific point i and has a
length m such that xm (i) = {xi, xi+1, xi+2, · · · , xi+m−1} .
Next, the distance between two vectors, d

[
Xm (i) ,Xm

(
j
)]

, is
obtained by calculating the maximum absolute difference of their
corresponding scalar components and counting the number of
template vector pairs that are matched within r. Then, the sample
entropy can be expressed as

SE (m) = − log
(
Pm+1

Pm

)
, (1)

where Pm+1 is the probability that two sequences will match for
the (m+ 1)-th point, and Pm is the probability that two sequences
match for m points. In this study, N was 320 as the number of
points in a 2-s EEG epoch. In the parameters for SE calculation,
we set m as 1, and r was 0.2.

Permutation Entropy
Permutation entropy (PE) proposed by Bandt and Pompe (2002)
quantifies the complexity of a time series based on the number
of times that similar symbolic motifs occur in the phase space.
Compared to other non-linear quantities, PE can be calculated
more easily owing to the model-free method with the concept
of symbolic sequences (Staniek and Lehnertz, 2008). Given an
embedded signal Xj with the embedding dimension (D) and time
delay (τ), the elements of Xj are arranged in the ascending order{
xj+(i1−1)τ ≤ xj+(i2−1)τ ≤ · · · xj+(iD−1)τ

}
, where iD denotes

the index of the largest element in Xj, i(D−1) is the second largest,
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and so forth. Then, each vector Xj with the resulting index vector
[i1, i2, · · · , iD] is mapped to a single motif among D! possible
permutations. Let f (πi) denote the frequency of the i-th motif
(denoted by πi) in a time series. Then, the probability distribution
of distinct motifs is defined as:

p (πi) =
f (πi)∑D!
i=1 f (πi)

for i = 1, ..,D!. (2)

Having the probabilities of all of the motifs, the PE is defined
as

H = −
D!∑

i = 1

p (πi) ln p (πi). (3)

Finally, the PE is normalized in the range between 0 and 1:

0 ≤ PE =
H

ln (D!) ≤ 1
, (4)

where PE = 0 when there is only one motif in the time series, and
PE = 1 when all of the motifs occur with equal probabilities. For
the parameters of PE calculation in this study, we used the D as 3
and τ as 1.

Recurrence Quantification Analysis
To derive some useful non-linear dynamic properties from
the prior resting state EEG signal, we also performed a
recurrent quantification analysis (RQA). Contrary to the two
entropy-based non-linear analyses described above, RQA is
fundamentally based on the concept of recurrence in a dynamic
system (Marwan et al., 2007). Recurrence refers to the trajectory
returning to the former state in the phase space, which is generally
constructed from a time-series signal using a time-embedding
method. A recurrent plot (RP), which was proposed by Eckmann
et al. (1987), was used to visualize the amount of recurrence in a
multidimensional dynamic system by simply illustrating a white-
black dot square matrix into a two-dimensional space. According
to Eq. 5., RP is calculated for each sample i, j of time series x,
under the predefined threshold distance ε.

Ri,j = 2
(
ε−

∣∣∣∣xi − xj
∣∣∣∣) , i, j = 1, 2, ...N, (5)

where 2(·) is the Heaviside function, |·| is the maximum
norm, and N is the number of samples in the phase-space
trajectory. That is, if the distance in the phase space between
xi and xj falls within the ε, two samples are considered to be
recurrences, indicated as Ri,j = 1 (black); otherwise, Ri,j = 0
(white) in an N × N RP matrix. Based on the constructed
black-white dot square matrix of RP, RQA was developed to
characterize various types of graphical patterns in RPs by defining
a group of RQA measurements. For example, RQA quantified
not only the density of recurrence points but also the histograms
of the lengths of the diagonal and vertical lines in an RP. For
the procedures of RQA, we fixed the ε as 0.3 according to
previous RQA studies (Ngamga et al., 2016; Yang et al., 2018). By
using pyRQA toolbox (Rawald et al., 2017), we calculated three
RQA measurements as determinism (DET), Laminarity (LAM),
and Mean recurrence time (MRT). Compare to other RQA

measurements, these representative measurements were widely
used in neural signal analysis because it could be intuitively
explained as the characteristic of signal properties. First, DET is
defined as the fraction of recurrence points which from a diagonal
line of minimal length (Imin), as follows:

Nl∑
l=lmin

lP
(
l
) / Nl∑

l,j=1

Ri,j, (6)

where P
(
l
)

denotes the frequency distribution of the length l of
the diagonal line in the RP. As it quantifies the predictability of
the system, the DET value tends to 0 for the chaotic system, while
it is equal to 1 for the periodic system. Second, LAM is defined as
the histogram of the lengths of the vertical lines as follows:

Nv∑
v = vmin

vP (v)
/ Nl∑
l,j = 1

Ri,j. (7)

Because it calculates the relative number of vertical patterns over
the entire RP, in turn, it represents slowly changing states and,
thus, the occurrence of laminar states in the system. LAM will
decrease if the RP contains recurrent points that are more isolated
than in vertical or diagonal structures. The mean recurrence time
(MRT) is the average length of white vertical lines in the RP as
follows:

Nw∑
w = 1

wP (w)
/ Nw∑
w = 1

P (w), (8)

where p (w) denotes the frequency distribution of the lengths w
of white vertical line. It mainly defines the temporal variations of
the time-series signals by measuring for harmonic oscillations in
the corresponding the period length (Gao, 1999). In this study,
we set the Imin, Vmin as 2.

BCI Performance
Contrary to the procedures for EEG feature extraction in the
resting state, the EEG signals recorded in the MI tasks were
decoded to determine the type of motor intention in the signals.
To do this, four different decoding methods were used in this
study. All methods are proposed to classify two goal-directed
intentions based on the corresponding binary MI tasks in the
EEGMMIDB. The EEG signals of MI tasks had a fixed period
from −2 to 4 s that consisted of 2-s fixation and 4-s MI task
durations. Prior to the EEG decoding analyses, the EEG signals
during the MI tasks were first segmented into 6-s epochs, and 4-s
signals in the BCI task had zero mean values by subtracting from
the mean of 2-s fixation. All the following decoding methods
were conducted using zero-mean EEG signals corresponding to
the 4-s MI duration. For the binary classification test, all the
decoding methods, which will be described in sequence, were
conducted using a 5 × 5-fold cross-validation test. In this test,
all the EEG trials during the MI tasks were randomly segmented
into training and test sets; training and testing were done for four
and one epochs, respectively. This process was repeated five times
by randomizing the order of trials.
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Classical Decoding Approach – FBCSP
First, we adopted the filter bank common spatial pattern (FBCSP)
method proposed by Ang et al. (2012). This method is based on
the CSP analysis, which is intended to find the optimal spatial
filter that maximizes the variance of signals in one condition and
minimizes the variance of signals in another condition at the
same time. In FBCSP, the EEG signals containing specific goal-
directed motor intentions were filtered and decomposed into a set
of specific band-pass signals by the corresponding linear-phase
FIR filters. This study also adopted a total of nine band-pass filter
banks: 4–8, 8–12,..., 36–40 Hz, like the previous study (Ang et al.,
2012). Specifically, assuming Wb as a projection matrix of the
spatial filter in the specific bth band-pass filtered signal at the ith
trial after spatial filtering is defined as

Zb,i = WT
b Eb,i, (9)

where Zb,i, Eb,i are the CSP spatial filtered signal and the band-
pass filtered EEG signal in the ith trial and the bth band,
respectively. The projection matrix can be obtained using the
following equation:

∑
b,1

Wb =

∑
b,1

+

∑
b,2

WbDb,1, (10)

where b,1 and b,2 are the covariance matrices of the bth band-pass
filtered signals under the two conditions, and Db is the diagonal
matrix that contains the eigenvalues of b,1. That is, the projection
matrices of all bands could be calculated in the training session
and used to convert the EEG signals to spatially filtered signals
that highlight the degree of binary discrimination between the
two classes. The CSP features as input matrices for the classifier
were obtained using the following equations.

Vb,i = log
(
diag(WT

b Eb,iE
T
b,iWb)/tr

[
WT

b Eb,iE
T
b,iWb

])
, (11)

where Vb,i ∈ R2m; Wb represents the first m and the last m
columns of Wb, diag(·) is the diagonal element of the square
matrix, and tr(·) is the sum of the diagonal elements in the
square matrix. To calculate the CSP feature, m was set as
2. Next, the extracted FBCSP features were classified using a
quadratic discriminant analysis (QDA) classifier instead of the
Naive Bayesian Parzen Window (NBPW) classifier proposed
in the original paper (Ang et al., 2012), because the QDA
classifier exhibited better performance than the NBPW classifier
for the EEGMMIDB.

CNN-Based Decoding Approach – ShallowConvNet,
DeepConvNet, and EEGNet
We also performed deep-learning approaches to decode the EEG
signals using three types of convolutional neural network (CNN)-
based classifiers: ShallowConvNet, DeepConvNet, and EEGNet.
The first two network models were proposed by Schirrmeister
et al. (2017), and the last model was proposed by Lawhern
et al. (2018). From the perspective of EEG signal processing,
it is likely that these CNN-based methods commonly consist
of three types of neural networks that correspond to different

roles of signal processing: temporal filtering, spatial filtering, and
binary classifiers, although there are different types of layouts
in neural networks among these methods. Detailed descriptions
and specific parameters in the corresponding layout in the
three neural networks are tabulated in the Supplementary
Information (Supplementary Tables 1–3). Each CNN method
processed the raw EEG signals during the BCI task, and then
converted them into specific input features to a binary classifier
that implemented by a fully connected network at the end of
the corresponding CNN model. Consequently, three individual
CNN models conducted the binary classification in a subject, and
the results of classification were quantified as binary accuracy in
each subject. The dropout rate was set to 0.2, and the activation
functions were the exponential linear unit (ELU) in EEGNet and
DeepConvNet, rectified linear unit (RELU) in ShallowConvNet,
and softmax function in all fully connected networks. The loss
functions are the cross-entropy function, and the optimizer is
adaptive moment estimation (ADAM). All CNN-based decoding
methods were realized by Keras and TensorFlow 2.0.

BCI-Performance Groups
Based on all binary accuracies in subjects from the four
different decoding methods addressed above, we first defined the
subsequent BCI performance which is responsible for the criteria
to be investigated with the EEG features obtained from the prior
resting state. Because we focused on measuring the degree of
implicit EEG information in a subject as maximally as possible,
all individual BCI performances were assigned as the maximum
accuracy among all results of these four decoding methods. Based
on the obtained BCI performance, therefore, we intentionally
divided all subjects in the EEGMMIDB into three groups: low-,
intermediate-, and high-performance groups according to the
following statistical procedures. First, we followed Muller-Putz’s
statistical method (Müller-Putz et al., 2008) which enabled us
to calculate the significant confidence interval under certain
predefined conditions in a balanced dataset, such as the total
number of subjects, the number of subjects in a class, and the
significance level (p-value). Specifically, the unbiased estimator
of the mean and confidence intervals is then given as follows:

X =
1
N

N∑
i=1

Xi (12)

p̃ =
NX + 2
N + 4

, (13)

C.I = p̃ ±

√
p̃
(
1− p̃

)
N + 4

·Z1− α
2
, (14)

where Xi is the individual maximal accuracy rate in the ith
subject, N is the total number of subjects, and Z is the standard
normal distribution with a significance level α. Typically, α is 0.1,
0.05, or 0.01. In this study, because the number of subjects was
104, the upper values of the two confidence levels at α 0.05 or
α 0.01 were obtained as 0.594 and 0.658, respectively. Second,
based on these criteria, we divided all subjects into three types
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according to BCI performance. The high-performance group was
above 0.658, the intermediate-performance group was between
0.594 and 0.658, and the low-performance group was below
0.594. Finally, after the discrimination of BCI performance
groups, we used the value of subsequent BCI performance as
the kappa (~) values, which were converted from the maximum
accuracy rates according to Eq. 12, because the kappa values were
normalized from 0 (chance level) to 1 (perfect classification). For
the linear correlation or regression with individual EEG features
in the prior states, the converted kappa values would limit the
output values by preventing unnecessary bias.

~ =
pa − pc
1− pc

(15)

Statistical Analysis
The individual EEG features in both the REO and REC
conditions were analyzed by linear correlation along with analysis
of variance (ANOVA) to clarify which EEG features in the
resting state strongly affected the subsequent BCI performance.
First, one-way ANOVA tests were carried out to investigate
the significant differences in individual EEG features across
three BCI groups. Due to the unequal size of the BCI groups,
the Kruskal-Wallis test was first conducted, followed by the
Welch’s t-test, and the results were post hoc analyzed to
individually investigate whether there were significant differences
between the high-performance group and the others or the
low-performance group and the others. For cases where the
statistical results of ANOVA indicated a significant difference
(p < 0.01), additional linear correlation analyses were conducted
to verify the significant linear tendency between the value of
individual EEG features in the prior resting state and the
subsequent BCI performance based on the absolute values of
linear correlations (|r| > 0.3). All statistical results exhibited
significant differences, satisfying the significance level of 0.01,
with Bonferroni-adjusted p-values. All EEG features in the prior
resting state could be constructed as the average or standard
deviation of individual features across all epochs. However, we
could not find any meaningful statistical results for a group
of EEG features defined as the standard deviations across
all epochs. Therefore, all the statistical results were obtained
only by means of the average across all epochs in both REO
and REC conditions.

RESULTS

Decoding Performance in Subsequent
BCI Tasks
Four individual decoding methods, FBCSP, ShallowConvNet,
DeepConvNet, and EEGNet, were used to calculate the
corresponding individual binary accuracy rates for the motor
imagery tasks in the subject. Figure 1 compares all individual
binary accuracy rates and the differences in maximum accuracy
rates, which were the maximum values among four individual
classifiers in the subject, between the three types of BCI-
performance groups. As shown in Figure 1A, the mean

accuracy rates for all the individual decoding methods did not
significantly differ from each other in the ANOVA analysis
(p < 0.01). The means and standard deviations with maximum
and minimum accuracy rates for each method were 0.588± 0.058
(max: 0.772, min: 0.461) in the FBCSP, 0.556 ± 0.073 (max:
0.789, min: 0.333) in the ShallowConvNet, 0.635 ± 0.116
(max: 0.956, min: 0.367) in the EEGNet, and 0.627 ± 0.109
(max: 0.944, min: 0.422) in DeepConvNet. The six scatter
plots in Figure 1C show a comparison of the decoding
methods. The Pearson coefficients with statistical significance
(p < 0.05) were 0.296 between ShallowConvNet and EEGNet,
0.210 between ShallowConvNet and DeepConvNet, and 0.778
between EEGNet and DeepConvNet. All the other comparisons
were not statistically significant. Therefore, these results showed
that the performances of EEGNet and DeepConvNet were
relatively similar to those of the other methods. Figure 1B
shows a comparison of the BCI performance between the
low-, intermediate-, and high-performance BCI groups. The
groups were intentionally divided based on BCI performance,
which is indicated by the maximum accuracy rate among all
decoding methods. The means and standard deviations of the
accuracy rates with the number of subjects in each group were
0.570 ± 0.020, 0.631 ± 0.017, and 0.743 ± 0.073 in the low- (15
subjects), intermediate- (30 subjects), and high-performance (57
subjects) groups, respectively.

Relationship Between the EEG Features
and the BCI Performance
First, none of the EEG features in the REC condition showed
a significant relationship with subsequent BCI performance.
In other words, the EEG features obtained from the REC
condition did not have any information related to the subsequent
BCI tasks. In contrast, several EEG features derived from the
REO condition were highly associated with the subsequent
BCI performance. All the significant results of individual EEG
features in the REO condition are summarized in Table 1
(no significant results were omitted). Figure 2A illustrates
topographically the four representative EEG features in the
prior REO resting state, which were highly associated with
the subsequent BCI performance. Most spectral EEG features
were insignificant. However, compared to other bands or other
areas, the ratio of theta to beta power at the frontal area were
significantly correlated with the subsequent BCI performance.
Another spectral feature, the Shannon entropy in the PSD at the
left frontal areas, also had a significant negative correlation with
the BCI performance shown in Figure 2A. Considering the non-
linear entropy features, both sample entropy and permutation
entropy did not show any significant results across all brain
areas. In other words, both non-linear entropy-based features
were not suitable for the prediction of upcoming BCI tasks.
RQA features such as DET, LAM, and MRT were significantly
correlated with the subsequent BCI performance. Similar to
the ratio of theta to beta power, the topographic distribution
of significance in the three RQA features shown in Figure 2A
indicated that significant differences were mainly observed on the
frontal and central areas.
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FIGURE 1 | Four decoding results and three BCI groups. (A) Comparison of accuracy rates between four different decoding methods. (B) Boxplots indicating BCI
performance as the maximum accuracy rates across four decoding methods in the three BCI groups. (C) Scatterplots of binary classification accuracy rates for all
possible pairwise comparisons between two decoding methods. The tick labels of the x- and y-axes in all the plots are the same as tick labels presented in the right
bottom axis.

For clarification, Figures 2B–D show the group differences
and linear relationships of subsequent BCI performances with
the exemplar EEG features extracted from the left frontal region
(F3) in prior resting states. The left-hand side panel illustrates
the bar plots with the levels of maximum and minimum values
in the corresponding three BCI groups, and the right-hand side
panel shows the linear relationship with the subsequent BCI
performance. In the ratio of theta to beta power at F3 shown in
Figure 2B, the means and standard deviations were 1.497± 0.434
in the high-performance group, 1.234± 0.346 in the intermediate
group, and 1.149 ± 0.460 in the low-performance group. The
linear correlation value was 0.38. Figure 2C shows a significant
relationship at the F3 site between the DET and BCI performance.
Figure 2D shows the corresponding results of MRT at the same
F3 site. According to these results, the brain rhythms at the frontal
areas were highly related with the subsequent BCI performance.
As shown in Table 1, four EEG features, two ratios of band

powers and two RQA features (DET, LAM), were positively
correlated with the subsequent BCI performance, whereas two
EEG features, Shannon entropy and an RQA feature (MRT),
were negatively correlated. According to these statistical results,
the EEG features were strongly correlated or there was some
effect on the frequency of EEG oscillations. To verify these
results, linear correlation analyses were performed among the
EEG features, and all the correlation coefficients were plotted, as
shown in Figure 3A. These results showed that DET and LAM
were positively correlated, and MRT was negatively correlated
with other RQA features. In Figure 3B, the strong relationship
of median frequency between two main RQA measurements is
depicted as the negative correlations of the DET and the positive
correlation of the MRT. Considering this evidence, we suggest
that the predictability of subsequent BCI performance is highly
associated with specific EEG characteristics in the prior resting
state EEG under the REO condition, in which the enhanced low
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TABLE 1 | Significant results of the linear relationship between the prior EEG features in the REO condition and the subsequent BCI performance (p < 0.01,
Bonferroni-adjusted p-values; L, H in table are the abbreviations of low-performance and high-performance group, respectively).

Variable Channel Linear regression Others vs. L H vs. Others Variable Channel Linear regression Others vs. L H vs. Others

Slope r-value t dof t dof Slope r-value t dof t dof

θ/L FC5 0.14 0.31 2.0 21.9 4.0 98.9 DET FCz 0.72 0.38 2.9 25.6 3.4 96.9

FC3 0.13 0.31 1.6 19.6 3.7 97.7 Fp1 0.45 0.41 2.2 21.2 3.9 96.8

Fp1 0.09 0.41 2.1 28.0 4.6 92.9 Fpz 0.42 0.37 1.9 21.2 3.8 96.3

Fpz 0.08 0.37 1.4 22.4 4.5 96.3 AFz 0.62 0.44 3.1 27.3 4.4 98.1

Fp2 0.08 0.36 1.8 22.5 4.0 96.7 AF4 0.40 0.37 2.1 19.9 3.4 94.1

AF3 0.11 0.41 1.5 23.6 4.1 94.0 F7 0.52 0.42 2.3 21.7 4.1 94.1

AFz 0.11 0.40 1.6 23.0 4.8 96.5 F5 0.52 0.42 3.0 22.3 3.7 98.7

AF4 0.10 0.41 2.1 23.4 4.6 96.4 F3 0.58 0.42 3.1 23.7 3.9 98.8

F7 0.14 0.42 2.3 28.3 5.2 90.8 F1 0.70 0.44 2.9 26.5 4.4 98.7

F5 0.12 0.39 2.2 23.1 4.5 92.8 Fz 0.68 0.42 2.8 24.6 4.0 95.2

F3 0.13 0.36 1.8 22.0 4.4 97.4 F2 0.57 0.38 1.9 20.9 3.6 94.3

F1 0.13 0.35 1.3 21.3 4.5 98.7 F4 0.50 0.37 2.1 19.7 3.4 93.3

Fz 0.12 0.32 1.1 20.1 4.3 98.3 F8 0.49 0.41 2.5 20.8 3.7 95.6

F2 0.12 0.33 1.2 20.7 4.1 99.0 MRT FC5 0.00 −0.39 −2.0 21.6 −3.6 86.5

F4 0.11 0.34 1.5 21.0 4.2 98.2 FC3 −0.01 −0.47 −2.7 20.2 −4.3 84.4

F6 0.11 0.38 2.5 26.8 3.7 91.3 FC1 −0.01 −0.43 −2.7 23.1 −3.9 88.1

F8 0.12 0.42 3.1 29.0 4.9 93.4 FCz −0.01 −0.45 −2.8 24.3 −4.2 87.5

θ/H Fp1 0.09 0.45 2.4 26.7 4.1 97.2 FC2 −0.01 −0.45 −3.1 23.8 −4.1 88.2

Fpz 0.08 0.40 1.9 22.6 3.8 97.9 FC4 −0.01 −0.42 −3.2 22.2 −3.9 89.3

AF3 0.11 0.43 2.0 23.6 3.7 97.0 C1 −0.01 −0.38 −2.6 22.5 −3.3 82.7

AFz 0.13 0.45 2.1 20.8 4.3 99.0 Cz −0.01 −0.37 −2.4 22.3 −3.3 88.3

AF4 0.11 0.45 2.6 23.7 4.1 97.1 AFz −0.01 −0.38 −2.0 21.8 −4.1 80.5

F7 0.14 0.43 2.9 25.0 4.6 98.6 AF4 0.00 −0.38 −2.5 19.4 −3.7 81.9

F5 0.14 0.42 2.6 22.8 3.9 97.1 F7 0.00 −0.41 −2.2 21.9 −4.3 78.0

F3 0.14 0.38 2.1 20.3 3.6 98.6 F5 0.00 −0.42 −2.4 18.6 −3.7 88.3

F4 0.13 0.37 1.8 19.4 3.5 97.5 F3 −0.01 −0.41 −2.3 19.0 −3.9 91.8

F8 0.13 0.44 4.0 28.6 4.6 97.8 F1 −0.01 −0.43 −2.1 22.0 −4.4 87.4

LAM Fp1 0.27 0.40 2.2 21.7 3.7 98.2 Fz −0.01 −0.44 −2.3 22.5 −4.5 84.7

Fpz 0.25 0.37 1.9 21.0 3.6 96.8 F2 −0.01 −0.43 −2.3 22.0 −4.4 82.0

AFz 0.35 0.43 3.0 25.5 4.2 98.1 F4 −0.01 −0.43 −2.7 20.1 −4.2 81.6

F7 0.32 0.43 2.6 22.4 4.0 97.4 F8 −0.01 −0.47 −3.3 22.7 −4.1 90.8

F5 0.31 0.41 3.2 26.2 3.5 98.7 shanEn Fp1 −0.22 −0.40 −2.1 20.1 −3.5 93.0

F3 0.33 0.41 3.4 27.3 3.7 98.8 AFz −0.29 −0.41 −3.2 29.0 −3.8 98.5

F1 0.38 0.43 2.8 26.4 4.1 99.0 F5 −0.27 −0.38 −2.9 23.1 −3.5 98.9

Fz 0.37 0.42 2.9 24.4 3.8 97.3 F3 −0.27 −0.36 −3.2 27.1 −3.7 98.7

F8 0.29 0.41 2.7 21.3 3.6 97.2 F1 −0.27 −0.34 −2.4 25.9 −3.7 99.0

oscillations (theta rhythm) at the frontal area reduce the non-
linear complexity of EEG signals. DET and LAM indicate the
degree of complexity in a signal, whereas MRT indicates the
degree of predictivity in a signal. That is, if a signal is more chaotic
and unpredictable, the DET and LAM values decrease and the
MRT value increases, and vice versa.

DISCUSSION

In this study, we intensively investigated a group of spectral
and non-linear EEG features in the resting state. We revealed
that both spectral and RQA features extracted from the REO
condition before the BCI task were highly correlated with the

subsequent BCI performance. Comparing two distinct resting
conditions, REO and REC, our results apparently indicated
that the EEG features of the REC condition were more highly
correlated with the subsequent BCI performance than those of
the REO condition. We thought that the dominance of alpha
rhythm that drastically occurred during the eyes closed states
would contaminate the critical information in the sensorimotor
rhythm and other bands. In the spectral analysis, the subsequent
BCI performance was closely associated with a lower (theta
frequency) rhythm rather than a higher (above beta rhythm)
rhythm over the frontal area.

Furthermore, it should be noted that this study mainly
addressed the significant relationship between RQA features and
the subsequent MI-BCI tasks. It was observed that some groups
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FIGURE 2 | Significant relationship between the prior EEG features and subsequent BCI performance. (A) Four exemplar topographies for significant EEG features in
the REO condition with significant statistical results (p < 0.01 and |r| > 0.3). (B–D) Three exemplar EEG features at the F3 site corresponding to (B) θ/Hβ , (C) DET,
and (D) MRT. Boxplots of each feature corresponding to three BCI groups (left) and scatterplots of each feature corresponding to the BCI performance (right).

with higher DET, LAM, and lower MRT in the frontal and
central areas were able to achieve higher BCI performance in
the subsequent MI-BCI tasks. The linear correlation analysis also
showed a significant relationship of the median frequency among
these RQA features in which it was positively correlated with
both DET and LAM and negatively with MRT. Based on this
evidence, we confirmed that the higher performance BCI group
had a specific EEG characteristic in which more stable and period
dynamic patterns were derived from enhanced theta oscillations
in the frontocentral area because both DET and LAM indicate
the regularity of a time-series signal; but, the MRT indicates the
complexity of a signal.

Despite some spatial differences in topographic distribution,
both spectral and RQA results in this study consistently addressed
the effect of frontal theta oscillations in the idle resting state on
the subsequent BCI performance. More specifically, it should be
noted that the enhancement of theta oscillations in the frontal
area largely entailed the regular and periodic characteristics of the
EEG signals over the frontocentral areas. We believe that these
findings apparently indicated the critical role of frontal regions
in the idle resting state, whereas the ERD/ERS properties of
sensorimotor rhythm during the main BCI tasks directly affected
the real BCI performance.

Our main findings indicated a significant relationship between
the intrinsic property of frontal theta rhythms in the prior resting
state and the subsequent BCI performance. Some subjects who
held regular and stable theta activities in the frontal area would
be able to perform subsequent MI-BCI tasks. We conjecture
the neural mechanism underlying this facilitation of frontal
theta activity on the MI-BCI performance as follows: First,
it is well known that both ME and MI tasks modulate not
only local neural activation in specific motor-relevant regions
as somatosensory areas, but also global brain connectivity

between other motor-irrelevant regions (Kim et al., 2018; Corsi
et al., 2020). More specifically, the frontal regions such as
the medial prefrontal cortex (MPFC), dorsolateral prefrontal
cortex (DLPFC), and anterior cingulate cortex (ACC) plays
very important roles in motor-related cognitive processes with
functional connections with other regions (Hardwick et al., 2018;
Kim et al., 2018; Van der Lubbe et al., 2021). Interestingly, it
has been proposed that the frontal region is closely associated
with the default mode network (DMN) in resting states, and
the frontal theta rhythm plays a major role in this connection
(Scheeringa et al., 2008). In the idle resting state, EEG theta
activity in the frontal regions was negatively correlated with
BOLD activity in the DMN. An increase in frontal theta activity
indicated a decrease in BOLD activity in the DMN, which
implied DMN inactivation. In addition, a recent EEG study
on effective connectivity between the frontal regions and DMN
in the resting state reported that there was significant causal
interaction from the MPFC to DMN in the idle resting state
and some groups who highly sustained the strong connectivity
within the frontal regions, such as the MPFC, DLPFC, SMA,
and ACC, facilitated the subsequent BCI performance (Yoon
and Lee, 2020). Similarly, according to previous studies on the
subsequent BCI performance with EEG functional connectivity,
better BCI performance would be observed in conditions where
there was higher connectivity within motor-relevant areas, but
remained relatively less connected between motor-irrelevant
areas (Corsi et al., 2020; Lee et al., 2020; Phang and Ko, 2020).
Based on the evidence from previous studies, we proposed
that our results in this study showed a strong effect of the
frontal region in the resting state on the subsequent BCI
performance. Consequently, more inactivated DMN functionally
connected with the frontal region via theta oscillations facilitated
the subsequent MI-BCI tasks. The corresponding critical
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FIGURE 3 | Linear relationship among all types of prior EEG features at the F3
site. (A) Matrix of linear correlation coefficients between all pairs of EEG
features. (B) Scatterplots of the DET and MRT with median frequency.

clues underlying this neural mechanism would be sufficiently
represented as RQA measurements.

This study proposed the critical role of the frontal area in the
prior resting state to estimate the subsequent BCI performance;
however, there are still several limitations to be revealed in
further studies.

First, this study used only the EEGMMIDB to adopt the
prior resting state with both REO and REC conditions, and
the subsequent MI-BCI tasks in which the EEG signals over
the whole brain were obtained from a relatively large number
of subjects. However, our results that the availability of RQA
as a predictor of MI-BCI performance should be verified again
by other types of large-scale EEG databases. Therefore, our
next study will follow the various uses of non-linear EEG
analysis in BCI applications by including the additional different
types of EEG databases to improve BCI illiteracy. Second,
despite of our inferences based on the past studies addressed
in the discussion, there is still a lack of understanding of
the neural mechanisms underlying the regularity and stability
of the frontal theta rhythms. Further studies that would use

several different types of EEG databases will adopt the source
localization and non-linear functional connectivity to reveal the
causal relationship of the frontal regions between other motor-
irrelevant regions via frontal theta rhythm, not only based on
the MI-BCI paradigm but also general EEG ability to BCI
application in subjects.

CONCLUSION

This study showed that a group of RQA features extracted from
the REO condition was highly reflected at the individual level
of BCI performance. Both DET and MRT obtained from RQA
indicated that more regular and periodic theta rhythms enhanced
in the frontal regions during the prior resting state led to higher
performance during the subsequent MI-BCI tasks. In conclusion,
we address that the evidence in this study suggests the availability
of RQA for further BCI applications.
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