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Abstract. We used in vitro translocation and 
cosedimentation assays to study the microtubule bind- 
ing properties of sea urchin sperm outer arm dynein 
and its/3/IC1 subunit. Microtubules glided on glass- 
absorbed sea urchin dynein for a period of time 
directly proportional to the initial MgATt n- concentra- 
tion and then detached when 70-95 % of the MgATP 2- 
was hydrolyzed. Detachment resulted from MgATP 2- 
depletion, because (a) perfusion with fresh buffer con- 
taining MgATP 2- reconstituted binding and gliding, (b) 
microtubules glided many minutes with an ATP- 
regenerating system at ATP concentrations which 
alone supported gliding for only 1-2 min, and (c) 
microtubules detached upon total hydrolysis of ATP by 
an ATP-removal system. The products of ATP hydroly- 
sis antagonized binding and gliding; as little as a 

threefold excess of ADP/Pi over ATP resulted in com- 
plete loss of microtubule binding and translocation by 
the/~/IC1 subunit. In contrast to the situation with sea 
urchin dynein, microtubules ceased gliding but re- 
mained bound to glass-absorbed Tetrahymena outer 
arm dynein when MgATP 2- was exhausted. 
Cosedimentation assays showed that/ktrahymena outer 
arm dynein sedimented with microtubules in an ATP- 
sensitive manner, as previously reported (Porter, 
M.E., and K. A. Johnson. J. Biol. Chem. 258: 
6575-6581). However, the/3/IC1 subunit of sea urchin 
dynein did not cosediment with microtubules in the 
absence of ATE Thus, this subunit, while capable of 
generating motility, lacks both structural and rigor- 
type microtubule binding. 

YNelNS are large, multicomponent ATPases responsi- 
ble for minus-end-directed microtubule-based cell 
motility, such as ciliary and flagellar beating, certain 

types of intraceUular transport, and organeUe sorting (65). 
In cilia and flagella, they form the inner and outer rows of 
arms which connect the outer doublet microtubules. Several 
lines of evidence indicate that the arms are permanently 
bound to the A-tubule of each doublet, and that, concomitant 
with a cycle of ATP binding and hydrolysis, they undergo a 
cycle of attachment to and detachment from the B-tubule of 
the adjacent doublet, giving rise to interdoublet sliding (42, 
43, 52). When this sliding is resisted by structures within the 
axoneme, axonemal bending results (49). Because the arms 
appear to push on an adjacent doublet only in a base-to-tip 
direction (6, 41), it has been proposed that at any one time 
the arms on only one side of an axonemal bend are actively 
generating sliding, while arms on the opposite side of the ax- 
oneme must be disengaged to permit passive interdoublet 
sliding in the opposite direction (44). When the axoneme 
bends back the other way, the previously active arms must 
be switched off and the previously disengaged arms switched 
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on. Bend formation, coordinated wave propagation, and cy- 
clic beating must be achieved by controlling the timing and 
positioning of dynein arm activity and resistance to sliding 
(3, 4, 51, 68). 

The best understood of all dyneins is the outer arm dynein, 
which is composed of three ATPase-containing subunits in 
Chlamydomonas and Tetrahymena, but only two such sub- 
units in sea urchins and vertebrates (7, 67). In all cases, each 
subunit is organized around a single copy of a high molecular 
weight polypeptide (o~,/~, and in Chlamydomonas and Tetra- 
hymena, 3' heavy chains); each subunit also contains one or 
more intermediate and/or light chains (for reviews see refer- 
ences 67, 69, 70). In cases where the individual subunits have 
been isolated and characterized, they have been found to 
differ substantially in their enzymatic and structural proper- 
ties (1, 20, 21, 22, 35, 36, 54, 55). However, little is known 
about the specific roles of the different subunits in flagellar 
movement. 

A complete understanding of how ciliary and flagellar 
movement is generated and controlled will require detailed 
knowledge of how the inner and outer arms and their in- 
dividual subunits interact with outer doublet microtubules to 
produce force and regulate both active and passive sliding. 
The microtubule-binding properties of axonemal dynein 
have been investigated in the intact axoneme (8, 9, 10, 29, 
30, 33, 50, 62), but the presence of both inner and outer 
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arms, and of multiple ATPase-containing subunits within 
each arm, has made the results of these studies difficult to 
interpret in terms of the function of individual dyneins and 
dynein subunits. Therefore, to better understand dynein- 
microtubule interactions at the molecular level, these inter- 
actions have been investigated in progressively simpler sys- 
tems, including rebinding of isolated dynein to extracted 
axonemes or outer doublet microtubules (Fay and Witman, 
1977. J. CellBiol. 75:286(abstract); and 25, 26, 53, 63, 64), 
and ultimately to microtubules assembled in vitro from pu- 
rified tubulin (for reviews see references 5, 14). These stud- 
ies, all of which were carried out using dynein isolated either 
from Chlamydomonas or Tetrahymena, indicated that dynein 
binds to microtubules in a tight "rigor" complex in the ab- 
sence of ATP, and this has been accepted as a fundamental 
property of dynein. 

We demonstrated previously that the force-transducing ac- 
tivity of purified dynein could be examined in vitro using a 
gliding microtubule assay (32). This assay revealed for the 
first time that outer arm dynein by itself was capable of force 
production, and the assay subsequently has been used for in- 
vestigating the force-producing properties of one of the sub- 
units of the outer arm (40, 58, 59). We now show that the 
same assay can be used to investigate directly the micro- 
tubule-binding properties of motility-competent dynein and 
dynein subunits. A major advantage of this assay is that bind- 
ing and force production can be monitored simultaneously 
in precisely the same population of dynein molecules. More- 
over, because the dynein is immobilized on a glass surface 
and bound microtubules are held in close proximity to that 
surface, the physical conditions of the assay resemble those 
that exist in the axoneme. Finally, this solid-phase assay re- 
quires lesser amounts of both dynein and microtubules than 
binding assays based on cosedimentation or turbidometric 
methods, and thus should be very useful for studying the 
dyneins of those organisms from which only limited amounts 
of material are available. 

The results presented here show that microtubules bind to 
and are translocated by isolated sea urchin outer arm dynein 
and its purified/3/IC1 subunit absorbed to a glass coverslip 
as long as sufficient ATP is present, but are released upon 
depletion of MgATt n-. These observations are contrary to 
the generally accepted notion that dynein forms "rigor cross- 
bridges" to microtubules in the absence of ATP. In the ac- 
companying paper (27), we show that intact sea urchin outer 
arm dynein does form rigor cross-bridges in solution; pre- 
sumably this property is not evident in the solid-state binding 
assay because the ~ subunit, which appears to be responsible 
for rigor binding, is not available to interact with the 
microtubules. Thus, the/3/IC1 subunit of sea urchin outer 
ann dynein has microtubule-binding properties significantly 
different from those of the intact outer ann dynein of either 
sea urchin or Tetrahymena (37). It is possible that one or 
more force-generating subunits of all dyneins have a low 
affinity for microtubules in the absence of ATE but that in 
solution assays this has been masked by the properties of the 
other subunits in the intact dynein. 

Materials and Methods 

Isolation of Axonemal Dynein 
Sea urchins (Strongylocentrotus purpuratus) were spawned by intraeoe- 

lomic injection of 0.5 M KCI, and their sperm collected either dry onto a 
plastic Petri dish on ice, or into ice-cold unbuffered 0.5 M NaCI. Intact 21S 
outer ann dynein was extracted as described previously (32) by a one-step 
homogenization in I% Triton-X100 or by the sucrose homogenization/NP- 
40 method of Sale and Fox (40), followed by sedimentation in a 5-20% su- 
crose gradient prepared in 10 mM Tris/HC1, pH 7.3, 200 mM NaC1, 4 mM 
MgSO4, 0.2 mM EDTA, 0.2 mM PMSE The 13/IC1 subunit was isolated 
by the method of Sale and Fox (40). Motile 7ktrahymena 22S outer arm 
dynein was generously provided by Drs. S. Marchese-Ragona and K. John- 
son and Mr. K. Facemyer (Pennsylvania State University, State College, 
PA). Motile 7btrahymena 14S dynein was prepared by the method of John- 
son (19) except that cultures were grown in 4-liter diptheria toxin flasks aer- 
ated at 32~ and the crude high salt extract was layered directly on a 5-25 % 
sucrose gradient for ultracentrifugation. The sucrose gradient-purified 
dyneins were used fresh, or frozen in 100-200-/zl aliquots by immersion 
in liquid nitrogen and stored in liquid nitrogen until use. The ATPase and 
motile properties of the frozen dynein were unchanged from fresh material. 

Taxol-stabilized Microtubules 
Taxol-stabilized bovine brain microtubules were routinely prepared as de- 
scribed by Vallee (60). Briefly, microtubule protein was carried through 
three cycles of assembly/disassembly and DEAE-Sephadex column 
purification, and frozen as purified tubulin in 50-#1 aliquots by immersion 
in liquid nitrogen for subsequent storage at -80"C. Aliquots were thawed, 
and microtubules polymerized at 37~ for 20 min and then stabilized by 
the addition of 250-300/zl of motility buffer (see below) containing 20/~M 
taxol. Microtubules used for the motility assay were typically 2-10 #m in 
length. Microtubules used for sedimentation assays were washed once by 
centrifugation at 39,000 g for 30 rain at 22~ in taxol-containing motility 
buffer, and resuspended to '~6 mg/ml stock concentration, as determined 
by protein dye binding (2). 

Solid Phase In Vitro Motility Assay 
Sucrose gradient-purified dynein was routinely diluted to ,0200 #g/ml in 
cold TEMK (10 mM Tris/HCl, pH 7.8, 0.5 mM EDTA, 4 mM MgSO4, 25 
mM KC1) or TEMA (10 mM Tris/HCl, pH 7.8-8.0, 0.5 mM EDTA, 4 mM 
MgSO4, 100 mM CH3COOK) motility buffer before application to the mo- 
tility chamber. The dynein was then perfused through a '~20/~1 motility 
chamber consisting of a clean cover glass and slide sealed on two sides with 
vacuum grease (Dow Coming, Coming, NY) (In early trials, we found that 
Vaseline petroleum jelly inhibited motility). After 3-5 min, the chamber 
was flushed with 200/zl of TEMK containing 20/~M taxol. Subsequently, 
200 #1 of the test solution in TEMA with or without 200-300 ~g/ml taxol- 
stabilized bovine brain microtubules (previously shown to have no con- 
taminating ATPase activity) were similarly perfused through the chamber. 
All perfusions and observations were carded out at 28"C. For experiments 
in which ADP was added to the motility buffer, the concentrations of 
MgATP 2- and MgADP- were computed as described previously (16). Both 
slides and cover slips were detergent washed, using a 1:100 dilution of Con- 
trad 70 (Curtin Matheson Scientific, Wilmington, MA) with sonication for 
15 min, followed by extensive rinsing with 18 MOhm deionized water. 

Video Microscopy 
Microtubules were imaged with an inverted microscope (IM-35; Carl Zeiss, 
Oberkochen, Germany) equipped with a 100x planachromat oil immersion 
objective (1.25 NA), differential interference contrast optics, and a 16x 
projection ocular. The final magnification to the video monitor (12-inch 
screen measured diagonally) was 7,500x. Illumination was provided by a 
high pressure mercury arc lamp model 910426; Carl Zeiss. Images were 
digitized, irregularities in illumination subtracted, and contrast enhanced 
using computer-driven video processing sohware and hardware (Image-l; 
Universal Imaging, Media, PA). Sequences were recorded on a high resolu- 
tion 3/4 inch U-Matic (model 5800H; Sony, Montvale, NJ) video recorder. 
Successive fields were permanently numbered using a field/frame counter 
(model VFF6030; QSI Systems, Newton, MA). 

Analysis of Translocating Microtubules 
The number of gliding and "nongliding-bound" microtubules was deter- 
mined by counting the number of each class of microtubules per field over 
a 30-s or l-rain period. The field of view was changed every 30 s or 1 min 
by the operator. "Nongliding-bound" micmtubules were not moving and ad- 
hered closely along their length to the cover slip. A few microtubules were 
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attached by their tips; these could not be reliably quantified because of their 
variable orientation and weak image. Gliding rates were determined without 
regard to microtubuie length, since it was previously shown that there is no 
relationship between length and gliding rate (32). 

Measurement of MgAT1 ~- Hydrolysis by 
Glass-adsorbed Dynein 
ATP hydrolysis was measured in motility chambers as follows: chambers 
were coated with dynein as described above and washed with 100 #1 of 
TEMA. [3,-32p]ATP in TEMA with microtubules was perfosed into the 
chamber as usual, and allowed to incubate until the microtubuies released 
from the cover slip. 2/tl  of the solution was then removed from the motility 
chamber, immediately spotted on a 0.l-ram thick polyethyleneamine- 
impregnated cellulose-coated plate and chromatographed using a 0.5 M 
LiCI, 1.0 M formic acid solvent system. The locations of the ATP and phos- 
phate on the plate were determined by autoradiography, the spots cut out, 
and the radioactivity in each determined by liquid scintillation counting. 
Percent hydrolysis was expressed as the cpm in the phosphate spot divided 
by the total cpm in the ATP and phosphate spots. This system separates 
phosphate (Rf~-0.604 + 0.006, n=9) very effectively from ADP (Rf=0.478 
+ 0.009, n=7) and ATP (Rf=0.069 + 0~ n=17), and provides accurate 
quantification of the relative hydrolysis of ATE 

Cosedimentation Assays 

Cosedimentation assays were performed as follows: 10-20/~l of dynein- 
containing solution (1 mg/ml stock, diluted as necessary) and 10-20 #1 of 
microtubule-containing solution (~5 mg/ml) in TEMA plus 20 ~M taxol 
were mixed in 1.5-ml microcentrifuge tubes with additional TEMA to bring 
the total volume to 10 times the dynein volume. The tubes then were capped 
and allowed to incubate at room temperature for 30 rain. In some samples, 
MgATP 2- was added to a final concentration of 1 mM (pH 7.8-8.0) 5 rain 
before the end of the incubation period. Samples were then centrifuged at 
39,000 g (18,000 rpm) (SS-34 rotor; Sorvall Instruments, Newton, CT) for 
30 rain at 20-22~ The supernatant was carefully pipeted away from the 
pellet, and samples brought to identical final volumes in gel electrophoresis 
sample buffer. Samples were boiled before gel electrophoresis. 

Gel Electrophoresis 
Polypeptide composition was assayed on discontinuous SDS-polyacryl- 
amide gels (23). 8-cm long, 8 % polyacrylamide slab gels were used to assay 
tubulin and dynein content of pellets and supernatants from cosedimenta- 
tion experiments, t5-cm gels consisting of 3-6% linear gradients of acryl- 
amide (12) were used to resolve the dynein heavy chains. 

Reagents 
Hepes, SDS, apyrase, and hexokinase were from Sigma Chemical Co. (St. 
Louis, MO), as were all nucleotides and analogs, except adenosine 5'-tri- 
phosphate (ATP) and adenosine 5'-o-thiotriphosphate (ATP-ffS), which 
were obtained from Bochringer Mannheirn Biochemicals (Indianapolis, 
IN). Tris and ultra-pure sucrose were from Schwartz/Mann (Spring Valley, 
NY). Phosphocreatine and phosphocreatine kinase were from Boehringer 
Mannheim Biochemicals. Potassium acetate was from Fisher Scientific Co. 
(Pittsburg, PA). All remaining salts were from Mallinkrodt Inc. (St. Louis, 
MO). To eliminate contaminating ATP (34), AMP-PNP was treated with 
apyrase (10 U/ml) for I h before use. Taxol was kindly provided by Dr. M. 
Suffness of the National Cancer Institute (NIH, Bethesda, MD). 

For experiments investigating the effects of ADP on ATP-dependent bind- 
ing and gliding, ADP was further purified by anion exchange chromatogra- 
phy using a Mono-Q column (FPLC system; Pharmacia, Uppsala, Sweden). 
The ADP sample was applied at ,x,1 mM in 500-/~1 increments to a 4-cm- 
long by 0.5-cm-diam MonoQ column equilibrated with 10 mM ammonium 
bicarbonate (pH 8.0). The column was then flushed with a 80-250 mM am- 
monium bicarbonate gradient (pH 8.0). The ADP eluted at "~160 mM am- 
monium bicarbonate. After determining purity by thin-layer chromatogra- 
phy (see above), samples were vacuum evaporated in a centrifugal rotary 
evaporator (model RH40-12, Speed Vac concentrator; Savant, Farmingdale, 
NY). ADP solutions were reconstituted from the dried sample and concen- 
tration determined by direct measurement at A2~0 using a molar extinction 
coefficient of 15.4 x 103 M-lcm (66). ATP concentrations were similarly 
determined for the competition experiments. 

Results 

Microtubule Gliding Rate Is Dependent upon 
MgATI ~- Concentration 

Perfusion of the chamber with microtubule- and MgATP 2-- 
containing buffer resulted in binding of microtubules to the 
sea urchin dynein-coated cover slip. Immediately upon 
binding, microtubules began gliding across the cover slip. 
The number of bound microtubules increased rapidly during 
the first few minutes (Fig. 1, A and B); after this time gliding 
microtubules were probably in equilibrium with free micro- 
tubules, as detachment of bound microtubules and attach- 
ment of free microtubules was commonly observed. Gliding 
microtubules underwent net unidirectional displacement by 
a series of starts and stops and transient backward steps 
(Moss, A. G., J.-L. Gatti, and G. B. Witman. 1988. J. Cell 
Biol. 107:245a) (59), and exhibited considerable lateral mo- 
bility (32). 

Gliding rate was dependent upon the concentration of 
MgATP 2- in buffer containing an ATP-regenerating system 
(10-25 mM phosphocreatine, 0.1-0.2 mg/mi phosphocrea- 
tine kinase) (Fig. 2, A and B). Both the intact outer ann 
dynein and its/3/IC1 subunit had an apparent Km for gliding 
of •17 #M MgATP 2-. The intact outer arm had a Vm~ of 
~6.9/~m/s, whereas V~,~ was ,'~11.5 #m/s for the/3/IC1 
subunit, confirming the observation of Sale and Fox (40) that 
the isolated/3/IC1 subunit translocates microtubules at a rate 
faster than that of the intact dynein. 

Both the intact outer arm dynein and its/3/IC1 subunit sup- 
ported motility even at 5 pM MgATlm- in the presence of 
an ATP-regenerating system, but fewer microtubules were 
observed to glide at such low MgATP 2- concentrations, and 
those that did moved in a more saltatory manner. Microtu- 
bules did not bind to the cover slip at MgATP 2- concentra- 
tions <5 #M. The translocation rate for both the intact 
dynein and its ~/IC1 subunit increased up to 250/~M free 
MgATP 2- and then leveled off (Fig. 2 A). Microtubules 
translocated by the/~/IC1 subunit had relatively more lateral 
mobility, and progressed in a more discontinuous manner 
than those being translocated by the intact dynein (data not 
shown). A consistent feature of the microtubule-sea urchin 
dynein interaction was that there were very few nonmotile, 
bound microtubules (Fig, 3 A). Those that did bind without 
gliding were usually attached at only one point, or by one 
end, not along their full lengths, as were gliding microtu- 
bules. 

Binding of Microtubules by Sea Urchin Dynein 
Requires MgAT1 ~- 
In the absence of an ATP-regenerating system, the microtu- 
bules eventually detached from the cover slip. The length of 
the motile period before detachment was directly propor- 
tional to the amount of added MgATP 2- (Figs. 1 A and B). 
Motility became less steady over time, and shorter microtu- 
bules were released first, so that the observed population was 
composed progressively of longer and longer microtubules. 
These results strongly suggest that the number of dynein- 
microtubule cross-bridges per unit length of microtubule de- 
creased over time; longer microtubules could interact with 
more dynein arms, and so remain attached to the glass for 
a longer period of time. 
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Figure 1. Number of microtubules bound to glass-absorbed dynein 
as a function of time for different initial concentrations of 
MgATP 2-. (A) Intact sea urchin 21S outer arm dynein. Gliding 
continued for 33 min in 2 mM initial MgATP 2- (not shown). (B) 
Sea urchin outer arm ~/IC1 subunit. MgATP 2- concentrations, in 
millimolar: (--~-), 2; (-v-), 1; (--l-), 0.5; (-~-), 0.1; (-<>-), 0.1 plus 
phosphocreatine (20 mM) and phosphocreatine kinase (0.2 mg/ml). 
(C) Tetrahymena outer arm dynein at 2 mM MgATP 2-. (--e-) Non- 
gliding, bound mierotubules (present in significant numbers only 
in Tetrahymena dynein preparations); (--o-) gliding microtubules. 
Ordinate: Number of mierotubules observed per 30-s interval. 

The time course of decrease in the number of gliding 
microtubules differed between the intact dynein and its #/IC1 
subunit. With millimolar initial ATP the number of microtu- 
bules gliding upon intact dynein was stable over a long 
period and then dropped quickly (Fig. 1 A). Nearly all of the 
microtubules completely detached from the glass, with a few 
remaining attached by one end. In contrast, the number of 
microtubules gliding upon the ~/IC1 subunit decreased 
linearly over time until again only a few microtubules re- 
mained attached by one end (Fig. 1 B). 

Inclusion of an ATP-regenerating system greatly prolonged 
movement (Fig. 1, A and B). For example, in the presence 
of 100 #M MgATt n-, 10 mM phosphocreatine, and 0.2 mg/ 
ml creatine kinase, microtubule gliding continued unabated 
for at least 25 min, whereas without the regenerating system, 
100 #M MgATt n- supported motility for only 2-3 min. 
When no regeneration system was used, and microtubules 
detached from the coverslip, subsequent perfusion of the 
chamber with motility buffer containing MgATP 2- and mi- 
crotubules reconstituted motility, confirming that the dynein 
was still functional. Perfusion of the chamber many times 
with motility buffer with or without microtubules caused no 
diminution in the capacity of the dynein subsequently to 
translocate microtubules. Chambers could be stored for sev- 
eral days at 4~ at high humidity with little or no loss of 
motility-generating activity. 

Addition of a droplet of buffer containing 1 mM 
MgATP 2- without microtubules to the edge of the coverslip 
reconstituted motility in the vicinity of the droplet, with mo- 

tility spreading away from the site of the applied droplet. 
Therefore, detachment was not due to an irreversible change 
in the microtubules. 

When the sea urchin dynein-coated chamber was perfused 
with microtubule-containing TEMA without ATP (Table I), 
or TEMA containing an ATP-depleting system (10 U/ml 
apyrase) (Fig. 3 A), neither gliding nor lengthwise binding 
of microtubules was observed. Binding and gliding were 
highly specific for ATP; millimolar Pi, AMP, ADP, 
ADP/Pi, GTP, CTP, UTP, ITP, ATP-'yS, and AMP-PNP 
supported neither binding nor translocation (Table I). How- 
ever, binding with little or no net translocation was observed 
if micromolar concentrations of vanadate accompanied a 
concentration of ATP that by itself supported net transloca- 
tion. Microtubules under these conditions "shuttled", or 
moved axially backwards and forwards (59), in an ATP- 
dependent manner (Moss, A. G., J.-L. Gatti, and G. B. Wit- 
man. 1988. J. Cell Biol. 107:245a). 

Direct Measurement of  MgATP 2- Hydrolysis 
in Motility Chambers 

The above observations strongly suggested that cessation of 
gliding and detachment of microtubules was a direct conse- 
quence of the reduction of MgATP 2- concentration as a re- 
sult of dynein hydrolytic activity. To determine the extent of 
MgATP ~- hydrolysis under the conditions of our experi- 
ments, ATP and Pi were  measured in aliquots removed 
from the motility chamber at the time of microtubule detach- 
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Figure 2. (A) Rate of microtu- 
bule gliding as a function of 
MgATP 2- concentration for 
the intact sea urchin outer arm 
dynein (--~) and its i$/IC1 
subunit (-O-). All cases in- 
eluded 25 mM phosphocrea- 
title and 0.2 mg/ml phospho- 
creatine kinase to maintain 
the MgATt n- concentration 
at a constant level throughout 
the period of rate measure- 
ments. Mierotubules do not 
bind at concentrations of 
MgATt n- below 5 #M. (B) 
Double reciprocal plot of 
MgATP 2- concentration ver- 
sus velocity of microtubule 
gliding. Same key as in A. Km 
was 17 #M for both the intact 
dynein and the/$/IC1 subunit. 
Data are from two representa- 
tive experiments in TEMK 
buffer; each point is the aver- 
age of 14 measurements for 
the intact outer arm, and 50 
measurements for the #/IC1 
subunit. Error bars depict 
standard error of the mean 
(71). Points fitted by eye. 

ment (see Materials and Methods). Beginning with an initial 
MgATP 2- concentration of 2.0 raM, the intact dynein had 
hydrolyzed nearly 95% of the MgATt m- by the time the 
microtubules were released (Table H). Thus the concentra- 
tion of MgAT1 m- at the time of microtubule detachment was 
~100 #M. In the case of the B/IC1 subunit, when the initial 
concentrations of MgATt n- ranged from 0.5 to 2.0 mM, 
only 64-78 % of the nucleotide was hydrolysed at microtu- 
bule release (Table II). 

Effects of  Products of  Hydrolysis on Microtubule 
Binding and ~,anslocation 

For intact dynein, and certainly for its B/IC1 subunit, the re- 
sidual MgAT/n- concentration at the time of microtubule 
release should have been sufficient, by itself, to support 

microtubule binding and translocation (Fig. I). This finding 
suggested that other components in the solution, most likely 
the products of ATP hydrolysis, were facilitating microtu- 
bule release. We therefore examined the effects of ADP and 
inorganic phosphate (Pi) on ATP-supported microtubule 
binding and gliding (Table III). In these experiments, total 
ATP was kept constant at 1.0 mM while various amounts of 
ADP and/or Pi were added. The concentration of total 
Mg 2+ was maintained at two millimolar greater than the 
concentration of total nucleotide to ensure that nearly all of 
the nucleotide was complexed with Mg ~+. With the intact 
dynein, binding and gliding were completely eliminated by 
addition of 10 mM ADP; under these conditions, the concen- 
trations of MgATP 2- and MgADP- were 0.96 and 8.0 raM, 
respectively. In the case of  the/~/IC1 subunit, reduced motil- 
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Figure 3. Effects of depletion of free MgATP 2- by perfusion with 10 U/ml apyrase-containing motility buffer (first arrow) on binding and 
gliding of microtubules on sea urchin (A) and Tetrahymena (B) dyneins. Perfusion was incomplete to prevent removal of all microtubules 
from the chamber. Subsequently, the chamber was washed with motility buffer and the ATP-depleted solution replaced with motility buffer 
containing microtubules and an ATP-regenerating system (second arrow). (--0-) Microtubules gliding on intact sea urchin or Tetrahymena 
outer arm dynein; (--o-) microtubules gliding on the/3/IC1 subunit of sea urchin dynein; (-~-) non-gliding microtubules bound to intact 
sea urchin or Tetrahymena outer arm dynein; (-~-) non-gliding microtubules bound to the/3/IC1 subunit of sea urchin dynein. (A) Deple- 
tion of ATP by apyrase caused gliding microtubules to detach from the surface of sea urchin dynein-coated cover slips. Perfusion of the 
ATP/regeneration system buffer resulted in microtubules becoming reattached to the surface and gliding as before treatment. (B) Depletion 
of MgATP 2- resulted in the recruitment of many nonmoving microtubules from the motility buffer to the cover slip when the latter was 
coated with Tetrahymena outer arm dynein. During the period of depleted ATP, microtubules became closely attached to the dynein-coated 
surface of the coverslip, and displayed no lateral or longitudinal movement. Microtubules so bound could withstand repeated perfusion 
of the chamber with hundreds of microliters of ATP-free buffer without being washed away, thus demonstrating that they were tightly bound. 
Upon perfusion with 2 mM MgATP and an ATP-generating system, many microtubules began gliding. The apyrase was not completely 
washed out in this case, and microtubules were rapidly recruited again to the cover slip surface near the end of the record. 

Table 1. Effect of Various Nucleotides on the Binding and Motility Properties of Axonemal Dyneins from Sea Urchin 
and Tetrahymena 

Sea Urchin Tetrahymena 

Condition Concentration 21S j3/IC 1 22S 

Buffer alone N/A - b 
MgATP ~- 5/~M-5 mM G G G 
MgATP 2- run-down variable - b 
AMP 1 m M  - b 
AMP-PNP 1 mM - N.T. 
Pi (phosphate) 1 mM - N.T. b 
ADP 1 mM - b 
MgADP/P~ 1 mM each - b 
MgATP--rS 2- 1 mM - - G 
GTP 1 mM - - N.T. 
CTP 1 rnM - - N.T. 
ITP 1 mM - - N.T. 
UTP 1 mM - - N.T. 
Vanadate/MgATP 2- 5-100/~M/1-5 mM s s s 

G, Gliding; b, binding (no gliding); -, no binding; s, shuttle; N.T., not tested. For explanation of "shuttle" see Results. 

Table II. Hydrolysis of MgATP 2- at Time of Microtubule Release 

Dynein Initial MgATP 2- concentration Percent MgATP 2- hydrolysis 

Intact 21S dynein 2.0 mM MgATI ~-  95 
/3/IC1 subunit 2.0 mM MgATP 2- 77.5 

1.0 mM MgATP 2- 66.6 
0.5 mM MgATP 2- 63.6 
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Table IlL Effect of ADP and Pi on the Motility and Binding Properties of Sea Urchin Dynein 

Free cation-nucleotide 
complex (mM) MgADP Enzyme 

Concentration of added 
nucleotide MgATP 2- MgADP- MgADP + MgATP Intact Dynein B/ICI 

1 mM ATP >0.95 0 0* + + +  + + +  
Inorganic (sodium) phosphate 

(P0 alone 1 not applic. 0* - N.T. 
1 mM ADP alone 0 >0.95 1 - - 
1 mM ADP/P~ 0 >0.95 1 - - 

For each of the following, 1 mM ATP added, and [Pd = [ADP]: 
1 mM ADP 0.92 0.7 0.432 + + 
2 mM ADP 0.95 1.5 0.612 + / -  + / -  
3 mM ADP 0.94 2.2 0.701 N.T. - / +  
4 mM ADP 0.94 3.0 0.761 - / +  - 
8 mM ADP 0.95 6.3 0.869 - / +  N.T, 
10 mM ADP 0.96 8.0 0.893 - N.T. 

+ / - ,  indicates more robust binding and motility than - / + .  +, binding; - ,  no binding; N.T. = not tested; [Mg2+]t~ maintained at 2 mM > [ A T P ] ~  4- 
[ADP]~ .  
* ADP content of the commercial ATP was not determined; it is typically very low (Moss, A.G., unpublished results). 

ity and diminished binding were observed when as little as 
2.0 mM ADP/Pi were added, corresponding to 0.95 mM 
MgATP 2-, 1.5 mM MgADP-, 2 mM P~. In both cases, the 
concentration of MgATP 2- was well above the minimum re- 
quired to support motility. These ratios of ATP/product are 
very similar to those that would have been in the chamber 
at the time of microtubule release (see Table III). Therefore, 
ADP and possibly Pi antagonize microtubule attachment 
and translocation, probably by competing with ATP for a 
nucleotide binding site. This effect is likely to be enhanced 
in the boundary layer at the glass surface, where dynein- 
microtubule interactions are occurring and the products of 
hydrolysis are most concentrated. 

The release of protons during hydrolysis of ATP was not 
responsible for detachment. Direct measurement of the pH 
of motility buffer following complete hydrolysis of 1 mM ini- 
tial ATP by apyrase revealed that the pH dropped only 0.4 U, 
from pH 8.0 to 7.6. The latter pH is still permissive for motil- 
ity (40). Moreover, if a decrease in pH was responsible for 
detachment of the microtubules, then the microtubules should 
have detached at least as rapidly in the presence of high as 
in low concentrations of ATE In fact, the converse was true. 

Microtubules Bind to Glass-adsorbed Tetrahymena 
Dynein without ATP 

Tetrahymena 22S outer arm dynein has been shown to bind 
to brain microtubules with very high affinity in a "rigor" state 
upon depletion of free MgATP 2- (37). To determine if the 
contrasting and unexpected result obtained with sea urchin 
dynein was due to a species or subunit difference or to our 
assay method, we examined Tetrahymena outer arm dynein 
in the same solid-phase assay. As previously reported (57), 
Tetrahymena dynein adsorbed to a glass cover slip binds 
microtubules and translocates them over the surface of the 
cover slip in the presence of millimolar MgATP 2-. In con- 
trast to the results with sea urchin dynein, microtubules re- 
mained bound to Tetrahymena dynein upon hydrolysis of 
ATP by the glass-bound dynein (cf. Fig. 1, A and B vs. C) 
or by an exogenously applied ATP-depletion system (cf. Fig. 
3, A vs. B); indeed, the number of bound nonmoving micro- 

tubules substantially increased upon removal of ATE If the 
chamber was subsequently perfused with fresh buffer con- 
taining MgATP 2- and microtubules, gliding resumed. Tet- 
rahymena dynein also differed from sea urchin dynein in 
that it bound microtubules to the glass coverslip in the pres- 
ence of added AMP, ADP, Pi, o r  ADP and Pi together (Ta- 
ble I). Although microtubules did not bind to sea urchin 
dynein-coated coverslips in the presence of MgATP-3,S 2-, 
MgATP-?S 2- supported microtubule gliding with Tetrahy- 
mena 22S outer arm dynein. This is consistent with studies 
of Tetrahymena outer arm substrate specificity (46, 47). 

Effects of Ionic Strength on Microtubule Binding and 
Translocating Activity of Axonemal Dyneins 

We wished to determine whether the B/IC1 subunit might ex- 
hibit rigor binding under different ionic strength conditions 
than those used in our standard assay, and also to compare 
the ionic strength dependency of the/3/IC1 subunit's micro- 
tubule-translocating activity with that of other axonemal 
dyneins. Therefore, we examined the binding and motility of 
that subunit, of the intact sea urchin outer arm dynein, and 
of Tetrahymena 22S and 14S dyneins over a wide range of 
potassium acetate concentrations. Potassium acetate was 
chosen as the variable salt in these experiments because ace- 
tate is the preferred anion for supporting reactivation of de- 
membranated sea urchin sperm (11), and also because it is 
the anion in greatest abundance in our standard in vitro mo- 
tility assay. 

For the ~/IC1 subunit, the rate of microtubule transloca- 
tion increased from 10 to 120 mM potassium acetate (Fig. 
4 A); above and below these concentrations no binding was 
observed. Microtubules were released from the /~/IC1 
subunit upon depletion of ATP at all salt concentrations that 
supported binding and motility, and no binding was observed 
in the absence of ATP at any of the salt concentrations. 
Therefore, the lack of rigor bond formation by this subunit 
in our standard assay was not simply because the ionic 
strength was not optimal for such binding. 

The binding and force-generating properties of the intact 
sea urchin outer arm dynein showed a similar dependence 

Moss et al. Motility without Rigor 1183 



I0 

I 
60 

E 

o" 
C~ 
k _  

CD r 
~  
"X2 
~  

(_9 i 
0 

i t 

I I I 

- 1  
[ S a l t ] ,  m m o l  I 

I 
U) 

2.5 

B 

2.0' 

E c 
: I .  

1.5 

- 4 - J  

0 
L. 1.0 

O~ 

:• 
0.~ 

0.0 
200 0 200 50 100 150 

- 1  
[Salt], m m o l  I 

Figure 4. Effect of salt concentration on the gliding rate of microtubules upon glass-adsorbed axonemal dyneins. Abscissa indicates the 
concentration of potassium acetate. (A) Sea urchin dynein: (-o-) intact 21S outer arm; (-r B/IC1 subunit. (B) Tetrahymena 14S (-<>-) 
and 22S dynein (--e-). Error bars, standard error of the mean. Data represent microtubules that were detectably moving; all nonmoving 
microtubules were ignored. The background of nonmoving microtubules was inversely related to the ionic strength in the intact dynein 
samples, with the most pronounced effect occurring with Tetrahymena 14S dynein. 

on ionic strength from 10 to 120 mM potassium acetate (Fig. 
4 A). However, some microtubules remained bound to the 
intact dynein and translocated slowly even in the absence of 
potassium acetate. Above 120 mM potassium acetate, the 
number of bound microtubules dropped off dramatically but 
the rate of gliding of the remaining microtubules continued 
to increase up to 180 mM potassium acetate, at which con- 
centration the gliding rate matched the maximum rates ob- 
served for microtubules being translocated by the purified 
B/IC1 subunit. Above 180 mM potassium acetate, no bind- 
ing or gliding was observed. These results suggest that as 
ionic strength increases, sea urchin dynein proceeds through 
its mechanochemical cycle more rapidly, and its affinity for 
microtubules diminishes. Like the B/IC1 subunit, the intact 
arm released microtubules upon depletion of ATP and did 
not bind microtubules in the absence of ATP at all ionic 
strengths tested. 

Tetrahyraena 22S outer arm dynein translocated microtu- 
bules at a maximal rate of 1.5/~m/s at 120 mM potassium ace- 
tate (Fig. 4 B); the rate of gliding decreased above and below 
this concentration, although many microtubules remained 
bound but did not glide at both the higher and lower ionic 
strengths. In contrast, Tetrahymena 14S dynein bound and 
translocated microtubules maximally at low ionic strength, 
and exhibited only marginal motility at potassium acetate 
concentrations of 100 mM or higher (Fig. 4 B). These re- 
sults suggest that these two dyneins interact with microtu- 
bules via different types of bonds. In contrast to the situation 
with the sea urchin dyneins, microtubules remained bound 
to the glass-adsorbed Tetrahymena 22S and 14S dyneins in 
the absence of ATP or upon depletion of ATP at all salt con- 
centrations that supported motility. 

All glass adsorbed dyneins recovered translocating activ- 
ity after high or low salt treatment; therefore, loss of activity 
at these concentrations did not result in irreversible denatu- 
ration of the enzyme. 

Cosedimentation Assays 
To determine if soluble dynein had the same microtubule- 

binding properties as glass-adsorbed dynein, we investigated 
the microtubule-binding characteristics of sucrose gradient- 
purified Tetrahymena and S. purpuratus dyneins using con- 
ventional cosedimentation assays. 

As previously reported (37), Tetrahymena 22S dynein 
bound to microtubules in the absence of MgATP2-; almost 
all of the 22S dynein sedimented with microtubules up to a 
molar ratio of -,1 dynein/29 tubulin monomers, at which 
saturation of binding was clearly evident (Fig. 5). Addition 
of 2 mM MgATP ~- released most of the Tetrahymena 
dynein from the microtubules (data not shown; see reference 
27), indicating that most of the Tetrahymena dynein was 
bound by ATP-sensitive sites, again as previously reported 
(37). 

Most of the intact sea urchin dynein partitioned into the 
pellet at low molar ratios of dynein/tubulin, but increasing 
amounts of dynein remained in the supernatant as the molar 
ratio increased. Saturation of binding became evident at a 
molar ratio of "~1 dynein molecule/39 tubulin monomers 
(Fig. 5). A portion of this bound dynein was released from 
the microtubules by MgATt n- (data not shown; see refer- 
ence 27), indicating that some of the intact arms were bound 
by rigor bonds whereas the remainder were bound by ATP- 
insensitive bonds. In the accompanying paper (27), we inves- 
tigate the origin of ATP-sensitive and -insensitive binding in 
intact sea urchin dynein, and conclude that both are proper- 
ties of the o~ subunit. 

In contrast to the situation with the intact sea urchin and 
Tetrahymena dyneins, the sea urchin /~/IC1 subunit never 
sedimented with microtubules, even at a high molar ratio of 
1 dynein molecule/8.8 tubulin monomers (Fig. 5). Addition 
of 2 mM MgATt n- to the mixture had no effect on the sedi- 
mentation behavior of the/~/IC1 subunit (data not shown; see 
reference 27). Therefore, the cosedimentation assay, like the 
solid-phase assay, provides no evidence for rigor bond for- 
marion by this subunit. Moreover, these results indicate that 
the isolated/~/IC1 subunit also is incapable of ATP-insensi- 
five, structural binding to microtubules. 

Electrophoretic analysis of supernatant and pellet samples 
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Figure 5. Comparison of the microtubule-binding properties of axonemal dyneins by cosedimentation assay. To determine whether different 
dynein:tubulin ratios affected the ability of the dynein to bind, outer arm dyneins were added in different final concentrations to the taxol- 
stabilized microtubules. Tubulin concentration was 1.1 mg/ml for all trials except those represented by the right most pair of lanes of the 
respective groups, in which the tubulin concentration was 0.55 mg/ml. P, microtubule pellet; S, supematant. (TET22S) Tetrahymena 22S 
outer arm dynein. Composition of samples is as follows: 143, 290, 710, 710 #g/ml dynein; molar ratio of tubulin to dynein; 292, 146, 
58, 29. (21S) S. purpuratus intact 2tS outer arm dynein. Composition of samples: 70, 143, 290, 710/~g/ml dynein; molar ratio of tubu- 
lin:dynein 389, 195, 39, 19.5. (a/IC) S. purpuratus B/IC1 subunit of outer arm dynein. Composition of samples: 70, 143, 290, 710/~g/ml 
dynein; molar ratio of tubulin to dynein: 177, 88, 44, 8.8. 

showed that there was no selective partitioning of either the 
sea urchin u or/~ or the Tetrahymena a,  ~, or ,y heavy chains 
into either the pellet or supernatant (not shown). These 
results indicate that the outer arm dyneins remained structur- 
ally intact under our conditions. 

Discussion 

Dynein-Microtubule Interactions 

The outer dynein arm in situ has at least two microtubule- 
binding sites: an" A-end" or ATP-insensitive structural bind- 
ing site that permanently binds the dynein to the A-tubule of 
an outer doublet, and a "B-end" or ATP-sensitive site be- 
lieved to interact transiently with the B-tubule of the adjacent 
outer doublet during force generation. In the solid phase in 
vitro motility assay, sea urchin dynein translocates micro- 
tubules in the presence of ATP, and does not bind microtu- 
bules in an ATP-insensitive manner. The observed dynein- 
microtubule interactions are thus those of the B-end of the 
dynein arm. 

Characteristics of  B-end Binding 

The intact sea urchin sperm outer arm dynein and its ~/IC1 
subunit bound and translocated microtubules in an ATP- 
dependent manner, indicating that the glass-bound dynein 
was functional. Nevertheless, neither the intact dynein nor 
the ~/IC1 subunit formed tight bonds with the microtubulcs 
upon depletion of ATP, or in the absence of added nucleotidc. 
That rigor binding was not observed with the intact dynein 

in the solid-phase assay does not mean that sea urchin dynein 
is unable to form such bonds; indeed, the intact dynein 
can bundle microtubules in an ATP-sensitive manner (Moss, 
A. G., W. S. Sale, L. A. Fox, and G. B. Witman. 1990. Z 
Cell Biol. 111:26a) (27), but apparently the part of the arm 
that is responsible for rigor binding (the a subunit) simply 
is not available to the microtubule in the solid-phase assay. 
However, we have not observed rigor formation with the iso- 
lated/3/IC1 subunit in either the solid-phase or cosedimenta- 
tion assays. Therefore, although this subunit is capable of in- 
teracting with and translocating microtubules in the presence 
of ATP, it appears to lack the ability to form a rigor complex, 
which has been generally accepted to be a property of all 
force-producing proteins. 

Although the tx subunit of the intact arm does not appear 
to interact directly with the microtubules in the solid phase 
assay, the rate of translocation, the kinetics of microtubule 
release, and the affinity of the glass-bound dynein for 
microtubules as a function of ionic strength differed between 
the purified/~/IC1 subunit and the intact arm. These differ- 
ences may reflect modulation of the B/IC1 subunit's activity 
as a result of allosteric interaction with the c~ subunit and/or 
the intermediate chain/light chain complex in the intact arm 
(70). Pfister and Witman (35) showed that the ATPase activ- 
ity of the isolated B subunit of Chlamydomonas outer arm 
dynein is reduced upon reassembly with the ct subunit. 

The absence of rigor formation by the functional sea ur- 
chin/3/IC1 subunit is surprising inasmuch as intact Tetra- 
hymena dynein has been shown to form such a bond in this 
and many previous studies (17, 31, 37, 38; see references 18, 
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39 for reviews). A possible explanation for the different be- 
haviors is that the/~/IC1 subunit of sea urchin dynein and the 
force-generating subunit(s) of Tetrahymena dynein differ in 
their relative affinities for microtubules during one or more 
stages of the mechanochemical cycle. Kinetic analysis of the 
isolated Tetrahymena outer arm dynein has clearly estab- 
lished that microtubules bind to the Tetrahymena dynein/ 
ADP/P~ complex and remain tightly bound during product 
release and in the absence of bound products; dissociation 
of the microtnhule/dynein complex occurs rapidly upon ad- 
dition of ATP (15, 17, 31, 38). Our finding that the/~/IC1 
subunit of sea urchin dynein releases microtubules when 
ATP is depleted and does not bind microtubules in the ab- 
sence of added MgATP 2- suggests that this subunit, in con- 
trast to Tetrahymena dynein, has a lower affinity for microtu- 
bules when its hydrolytic site is empty than when the site is 
occupied (isolated sea urchin outer arm dynein is unlikely 
to contain bound nucleotide at its hydrolytic sites, because 
vanadate-dependent photolysis of the heavy chains is not de- 
tected without added ADP or ATP [24]). 

Addition of excess ADP and Pi enhanced release of 
microtubules from sea urchin dynein in the presence of ATE 
suggesting that the /~/IC1/ADP and /~/ICI/ADP/Pi com- 
plexes also have relatively low affinities for microtubules. 
However, it is possible that the complexes formed by the ad- 
dition of exogenous product differ in their affinities for 
microtubules from those formed by the hydrolysis of bound 
ATP (Shimizu, T., S. Ohashi, and T. Katsura. 1990. J. Cell 
Biol. 111:118a). 

Schemes for the mechanochemical cycle of the /~/IC1 
subunit of sea urchin dynein also can be constructed that are 
in agreement with our data and that differ more profoundly 
from that of Tetrahymena dynein. It will be necessary to de- 
termine the rate constants for specific steps in the cycle to 
know if such schemes are realistic. Nevertheless, it appears 
that the ability to form a rigor bond is not a prerequisite for 
microtubule binding and force generation. 

An alternative explanation for the observed differences be- 
tween the ~/IC1 subunit of sea urchin dynein and intact 
Tetrahymena dynein is that the activity of the former may be 
regulated in an ATP-dependent manner not seen in the latter. 
The/3 heavy chain contains multiple ATP-binding consensus 
sequences (13, 28), suggesting that it binds ATP at more than 
one site. It is possible that loss or hydrolysis of ATP at one 
site affects the activity at a second site coupled to microtu- 
bule binding and force generation. Current models for the 
mechanism of axonemal bending dictate that the arms must 
have a low affinity for microtubules during at least one-half 
of each beat cycle to permit passive sliding of the outer dou- 
blet microtubules facing them (51, 61). The existence of a 
biochemical regulatory mechanism that turned the arms on 
and off at the appropriate time in the beat cycle would pro- 
vide more precise control over interdoublet sliding than 
could be achieved if the "off' time were simply determined 
by how fast the arm independently proceeded through its 
mechanochemical cycle. Such active control of dynein/mi- 
crotubule interactions probably is necessary for the regula- 
tion of flagellar beat frequency and curvature. 

The above discussion notwithstanding, the differences in 
the rigor-forming capabilities of intact Tetrahymena dynein 
and the/~/IC1 subunit of sea urchin dynein do not necessarily 
mean that the force-generating moieties of these dyneins are 

fundamentally different. The intact Tetrahymena dynein con- 
tains three subunits, and although the head of each subunit 
appears to interact directly with microtubules (45), increas- 
ing biochemical and structural data indicate that there are 
differences between the subunits (55, 56, 58). If one of the 
heads binds tightly to microtubules in the absence of ATE 
that interaction could prevent detection of weak ATP- 
dependent binding by another head in the intact particle. 
Further analysis of isolated subunits of protistan dyneins will 
be necessary to determine if a low affinity for microtubules 
in the absence of ATP is a property that is common to at least 
one subunit (possibly the motility-generating subunit) of all 
outer arms but which has gone unnoticed because of the 
rigor-forming properties of one or more other subunits in the 
intact particle. 

A-end Binding 
A substantial proportion of the intact outer arm dynein of sea 
urchin sperm flagella bound to microtubules in the cosedi- 
mentation assay. In the accompanying paper (27), we show 
that some of this bound dynein is not released by ATE sug- 
gesting that these molecules are interacting with the microtu- 
bules via their structural A-end binding site. Such binding 
was not observed with the isolated ~/IC1 subunit, indicating 
that structural A-end binding requires a dynein component 
either not present or not functional in the ~/IC1 preparation. 
This component appears to be the a subunit (27). 

The Utility of Various Assays for Determining 
Dynein/Microtubule Binding Properties 
In general, comparable qualitative results were obtained 
with the solid-phase and solution microtubule-binding as- 
says. In the absence of ATE the/3/IC1 subunit of sea urchin 
dynein neither bound microtubules to the glass coverslip nor 
cosedimented with microtubules. Similarly, intact Tetra- 
hymena dynein bound microtubules tightly to the coverslip 
in the absence of ATP and cosedimented with microtubules 
in an ATP-sensitive manner. However, some dynein/micro- 
tubule interactions were apparent in one assay but not the 
other. For example, ATP-insensitive A-end binding of the in- 
tact sea urchin dynein was apparent in the solution assay but 
not the solid phase assay (27). Conversely, because the sea 
urchin/~/IC1 subunit does not form a rigor bond, its transient 
B-end interactions with microtubules could be detected only 
in the solid-phase assay. Therefore, both assays are of value 
for studying dynein-microtubule interactions. The solid- 
phase assay is quicker and can be carried out with much less 
dynein and tubulin, and allows real-time observation of mo- 
lecular interactions, whereas the solution assay is at present 
more readily quantified. 

Implications for the Isolation of Novel 
Microtubule-associated Motors 
An increasingly popular method for isolating microtubule- 
associated motors takes advantage of the rigor-forming prop- 
erties of the motor: the motor is bound to microtubules in 
the absence of nucleotide, sedimented with the microtu- 
bules, and specifically released into the supernatant in the 
presence of nucleotide. Our findings suggest that not all 
microtubule motors may be identified and isolated on the ba- 
sis of rigor formation. Some mechanochemical transducers 
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may remain in the original homogenate under ATP-depleted 
conditions. This should be kept in mind when attempting to 
isolate uncharacterized force-generating molecules from 
cytosolic extracts. 
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