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The intricate task of precisely segmenting retinal vessels from images, which is critical for diagnosing various eye 
diseases, presents significant challenges for models due to factors such as scale variation, complex anatomical 
patterns, low contrast, and limitations in training data. Building on these challenges, we offer novel contributions 
spanning model architecture, loss function design, robustness, and real-time efficacy. To comprehensively 
address these challenges, a new U-Net-like, lightweight Transformer network for retinal vessel segmentation 
is presented. By integrating MobileViT+ and a novel local representation in the encoder, our design emphasizes 
lightweight processing while capturing intricate image structures, enhancing vessel edge precision. A novel 
joint loss is designed, leveraging the characteristics of weighted cross-entropy and Dice loss to effectively 
guide the model through the task’s challenges, such as foreground-background imbalance and intricate vascular 
structures. Exhaustive experiments were performed on three prominent retinal image databases. The results 
underscore the robustness and generalizability of the proposed LiViT-Net, which outperforms other methods in 
complex scenarios, especially in intricate environments with fine vessels or vessel edges. Importantly, optimized 
for efficiency, LiViT-Net excels on devices with constrained computational power, as evidenced by its fast 
performance. To demonstrate the model proposed in this study, a freely accessible and interactive website was 
established (https://hz -t3 .matpool .com :28765 ?token =aQjYR4hqMI), revealing real-time performance with no 
login requirements.
1. Introduction

Retinal imaging techniques, which enable noninvasive observation 
of the deep microvasculature in the human body, play a pivotal role 
in enabling doctors to intuitively detect early-stage changes in reti-

nal vascular structures caused by diseases like diabetes and glaucoma. 
The urgent need for real-time analysis in scenarios such as emergency 
diagnostics, especially in remote areas with limited computational re-

sources, underscores the necessity for efficient and lightweight models. 
This importance of retinal vascular analysis for detecting and diag-

nosing retinal diseases has spurred researchers to intensively explore 
ways to enhance the performance of segmentation algorithms, with a 
particular emphasis on models that can operate effectively in resource-

constrained environments. However, due to challenges such as thin 
vessels, lesions, complex vascular structures, and low contrast in fun-
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dus images, achieving accurate segmentation remains a formidable task 
[1]. Lately, there has been a marked focus on the detection and segmen-

tation of arteries and veins within retinal vessel images [2,3], where 
lightweight, efficient models can be particularly transformative.

In addition, the emergence of Vision Transformer (ViT) models 
in recent fields of computer vision, including object detection, image 
classification, and semantic segmentation. Unlike their convolutional 
neural network (CNN)-based predecessors, ViT models not only offer 
robust global context modeling but also display exceptional adaptabil-

ity when extensively pretrained on downstream tasks. Consequently, 
several studies have leveraged Transformer blocks as the network’s 
backbone for medical image analysis [4–6]. For instance, SwinUNet 
[7] employs hierarchical Transformer blocks to construct the encoder 
and decoder components of a U-Net-like architecture. Similarly, DS-

TransUNet [5] introduces an encoder that accommodates inputs of 
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varying sizes. However, these models often falter when tasked with 
small datasets, such as those used in medical imaging. The considerable 
number of parameters in these models not only diminishes their efficacy 
but also accentuates their dependence on high-performance hardware, 
impeding practical algorithm implementation.

The success of fully convolutional networks (FCNs) has resulted in 
numerous FCN-based models, such as U-Net [8] and DeepLab [9] series, 
which are excellent establishing state-of-the-art models for semantic 
segmentation tasks. U-Net has emerged as the most widely utilized 
model in medical Several studies have integrated CNNs with ViTs to 
mitigate the limitations of ViT-based models [10–12]. Chen et al. pro-

posed TransUNet [13], a framework that capitalizes on ViT’s potential 
in medical image segmentation. The architecture of TransUNet com-

prises a convolutional component for feature extraction and a Trans-

former component to assist in encoding global context information. 
Zhang et al. introduced TransFuse, a parallel-in-branch architecture that 
combines Transformers and CNNs for efficient global and low-level spa-

tial detail modeling in medical image segmentation; this architecture 
was further enhanced by a novel BiFusion module for effective feature 
fusion. However, those methods are not sufficiently effective at in-

terweaving long-term dependencies with convolutional representations 
containing precise spatial information. Consequently, the advantages of 
combining both CNNs and ViT remain suboptimal.

In medical image analysis tasks, to minimize the overfitting prob-

lem caused by scarce samples, designing suitable loss functions to guide 
the learning process of models is crucial. Several loss functions, in-

cluding cross-entropy, Dice loss, and focal loss, are often employed in 
this specialized domain of medical imaging. The cross-entropy loss is 
straightforward to understand and implement. Consequently, several 
methods for retinal vessel segmentation utilize binary cross-entropy to 
optimize the network [7,14,26]. Unfortunately, this approach tends to 
exhibit a bias toward the dominant class in imbalanced datasets. While 
Dice loss can effectively handle class imbalances, its noncontinuous and 
nonconvex nature makes it challenging to optimize [15]. In contrast, fo-

cal loss, an enhanced version of the cross-entropy loss, also addresses 
class imbalances effectively. Authors in [16–18,29] have employed Dice 
and focal loss functions, which prevent the network from inaccurately 
favoring well-performing samples (such as background objects) over 
samples of interest (such as vessels, especially micro-vessels). However, 
this kind of loss requires careful tuning due to the presence of an ad-

ditional hyperparameter. It is essential to explore effective methods for 
integrating multiple loss functions to harness their respective advan-

tages and make appropriate adjustments tailored to the tasks at hand.

In retinal image analysis, accurate, real-time, and generalizable 
models are essential for early ocular diseases diagnosis. Current mod-

els encounter challenges in vessel segmentation due to data depen-

dencies and computational demands. This study addresses these key 
concerns:

• Establishing an efficient integration of the strengths of CNNs and 
Transformers to enhance feature extraction from retinal images, es-

pecially in accurately identifying minute vessels and vessel bound-

aries and improving computational efficiency.

• Devising a new loss function to guide the model more effectively in 
learning the intricate parts of retinal images, and its performance 
is enhanced on datasets with limited data.

• Exploring the model’s generalizability across diverse datasets and 
evaluating its real-time performance in resource-constrained set-

tings such as mobile devices or embedded systems are pivotal, 
especially in scenarios demanding instant analysis.

By addressing these objectives, our research contributes to reti-

nal imaging techniques by developing a more efficient and effective 
segmentation algorithm. The remainder of the paper is organized as 
follows. Section 2 provides a review of related work in retinal image 
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segmentation. Section 3 introduces the proposed LiViT-Net method, de-
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tailing the hybrid network architecture and the novel loss function. 
Section 4 describes the experimental setup, including dataset prepara-

tion, evaluation metrics, and implementation details. Section 5 presents 
and discusses the results, including comparisons with state-of-the-art 
methods. Finally, Section 6 concludes the paper.

2. Related work

In this section, deep learning-based methods for fundus vascular seg-

mentation tasks and methods based on Transformer for medical image 
segmentation are reviewed.

2.1. Deep learning for retinal vessel segmentation

Deep learning methods can automatically learn image features from 
large quantities of data without manual intervention. Furthermore, they 
have become the leading methods in this domain. Gu et al. [19] de-

veloped the Context Encoder Network (CE-Net) to enhance high-level 
information capture and spatial information preservation for medical 
image segmentation. Jiang et al. [20] introduced a down-sampling co-

efficient and Joint Expansion Convolution to reduce information loss 
and address the “grid problem” in expansion convolution. Feng et al. 
[21] designed a cross-stitching network to integrate multi-scale fea-

tures and increase approach robustness by eliminating preprocessing 
hyperparameters. Kamran et al. [22] proposed the multi-scale RV-

Gan for improved retinal microvessel structure extraction. Wang et 
al. [23] devised a dual-channel encoder structure network with a fea-

ture fusion module, attention jump module, and Structure Loss for 
enhanced microvessel segmentation and boundary detection. Zhang et 
al. [24] presented Bridge-net, which combines recurrent neural net-

works (RNNs) with CNNs, and introduced a patch-based loss weight 
mapping to correct vessel morphology-related imbalances. The method-

ologies presented in that study [25] utilized Dense U-Nets to optimize 
the learning process. By mitigating the creation of redundant activa-

tion maps and conserving intricate information, these algorithms have 
accomplished improved predictions, while maintaining a minimum pa-

rameter usage and computational expense. These methods suffer from 
loss of spatial information, inability to use global information, and mor-

phological differences between thick and thin vessels. Li et al. [26]

developed a U-Net-based model with an attention module to capture 
global information and enhance features. Wang et al. [27] proposed 
HAnet, an end-to-end deep learning architecture with three decoder 
networks and an attention mechanism for retinal vessel segmentation. 
Similarly, the study [28] adopted a Weighted Attention Gate strategy 
in which extraneous background features were discarded to refine the 
segmentation process further. Several methods based on CNN were pro-

posed for the task, such as Scs-Net [29], NFN+ [30], Sa-Nnet [31]. 
Several methods have contributed to optimizing model efficiency, such 
as Cc-net [32], which, by proposing a network compression strategy 
based on image complexity, significantly optimizes the model’s param-

eter count and computational load, making an important contribution 
to the lightweight design of deep learning models. This demonstrates 
the utility of sophisticated techniques for enhancing the efficiency and 
effectiveness of retinal vessel segmentation. Researchers have proposed 
methods, such as attention modules and patch-based loss weight map-

ping, explicitly to address issues such as the loss of spatial information, 
and the inability to utilize global information and morphological dis-

parities between thick and thin vessels. However, room for the devel-

opment of more effective techniques to address additional problems and 
challenges remains.

2.2. Methods based on Transformer for medical image segmentation

In recent years, with the excellent performance of Vision Trans-

former (ViT) models in various fields of computer vision, ViT models 

have gradually been introduced into medical image processing. Chen et 
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Fig. 1. Overview of the proposed method.
al. [12] introduce ViT modules into a model based on U-Net, which 
solved certain limitations of conventional convolution operations in 
modeling long-range dependencies. Cao et al. [6] proposed a U-Net 
structure composed purely of Transformer blocks for medical image seg-

mentation, named Swin-UNet, which uses a layered Swin Transformer 
with shift windows as an encoder for extracting contextual features. 
DS-TransUNet [5] further added an encoder to accept inputs of differ-

ent sizes. Wu et al. [33] proposed an adaptive Transformer network 
based on classic encoder-decoder architecture, called FAT-Net, which 
integrates a dual encoder consisting of CNN and Transformer branches 
to effectively capture long-range dependencies and global background 
information. However, current methods are still limited in their abil-

ity to accurately segment complex medical images, particularly when 
dealing with small objects or objects with irregular shapes. Addition-

ally, these models require a large number of computational resources 
and may be computationally expensive.

In contrast, this paper presents a hybrid network architecture named 
LiViT-Net, which leverages the advantages of convolutions and Trans-

formers. LiViT-Net utilizes a lightweight convolutional module (inverted 
residual block) to capture fine, high-resolution spatial information in 
shallow images prior to the MobileViT+ block. These convolutional 
modules encode precise spatial information at the pixel level, provid-

ing low-level but high-resolution features for subsequent processing. 
The proposed MobileViT+ block, which interweaves lightweight con-

volution and Transformer, enables distant dependencies and high-level 
object concepts to be fully integrated across different scales. Addition-

ally, a parallel convolution module is incorporated to extract richer 
semantic information and better introduce inductive bias into the fea-

ture maps, thereby improving the model’s generalizability and robust-

ness.

The contributions of this paper are described in greater depth as 
follows:

• A new, U-Net-like, lightweight Transformer network is designed for 
retinal vessel segmentation. The MobileViT+ block is introduced, to 
amplify the model’s sensitivity to vascular edges. Within this block, 
a local representation is employed by integrating parallel convolu-

tions, which further enhances ViT’s inductive bias and interpatch 
relations.

• A remapped, weighted joint loss mechanism is introduced to ad-

dress the pronounced pixel imbalances and intricate vascular struc-

tures in retinal vessel segmentation. By synergizing weighted cross-

entropy and Dice loss, our method emphasizes pixel-level accuracy 
while mitigating class disparities.

• Comprehensive tests were conducted on three renowned retinal 
image datasets: DRIVE, CHASEDB1, and HRF. The evaluations un-

derscore the robustness of our proposed approach. Performance on 
edge devices also indicates its computational efficiency and promis-
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ing potential for broader application in diverse scenarios.
3. Methodology

3.1. Preprocessing

To highlight the performance of the proposed model and to facil-

itate comparison with other methods, only the most commonly used 
preprocessing methods are applied in this paper. As shown in Fig. 1, 
the preprocessing step uses limited adaptive histogram equalization 
(CLAHE) [34] to enhance image quality. After that, random cropping 
is used to increase the number of images in each dataset.

3.2. LiViT-Net architecture

Overview. LiViT-Net, which evolved from the U-shaped model, 
consists of an encoder and a decoder. The segmentation procedure in-

volved: (1) fundus image preprocessing and random cropping to obtain 
an image patch 𝑋 ∈ ℝ𝐶×𝐻×𝑊 , where 𝐶 is the number of channels, 𝐻
is the image height, and 𝑊 is the image width; (2) feeding the cropped 
patches to LiViT-Net for prediction; and (3) reconstructing the output 
results. The overall flowcharts of the method and architecture are de-

picted in Fig. 1 and Fig. 2, respectively.

Encoder. The encoder, consists of CNN blocks and Transformer 
blocks. However, this model differs from traditional models, which 
typically integrate both components in the upper or lower layers of 
the network or in parallel encoding sections, a crossover arrangement 
of CNN blocks and Transformer blocks are employed to leverage the 
ability of CNNs to capture local spatial features and the capacity of 
Transformers to model long-range dependencies effectively.

Compared to CNNs, Transformers demonstrate a greater sensitivity 
to structural information in images, while CNNs are adept at capturing 
local details [35]. This insight informed the design of LiViT-Net, which 
utilizes an inverted residual block to extract local features from the input 
image before processing it with the MobileViT+ block. The inverted resid-

ual block, composed of CNNs, efficiently captures image details, while 
the MobileViT+ block excels at extracting structural information from 
the image. When employed in retinal vessel segmentation, these char-

acteristics ensure enhanced edge detection of vessels and substantially 
mitigate instances of vessel segmentation fragmentation.

The existing Transformer-based networks mostly are too large in 
terms of the number of parameters and lack of inductive bias [36], 
increasing the difficulty of training pure Transformer networks on 
datasets with a small number of images. Inspired by the MobileViT 
[37], the MobileViT+ block which introduces spatial inductive bias into 
the Transformer blocks through unfolding and folding operations, is 
included in the Transformer portion of the LiViT-Net encoder. Con-

sistent with previous scholarly endeavors, the computation method 
of self-attention within the MobileViT+ block can be described as fol-
lows:
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Fig. 2. Overall architecture of LiViT-Net.

Fig. 3. Comparison between Vision Transformer and MobileViT.
Attention(𝑄,𝐾,𝑉 ) = Softmax

(
𝑄𝐾𝑇√

𝑑

)
𝑉 (1)

Here, 𝑄, 𝐾 , and 𝑉 denote the query, key, and value matrices, re-

spectively. The variables 
√
𝑑 embody the dimensionality of the query 

or key. To mitigate the prospective issue of gradient vanishing in sub-

sequent softmax procedures; the dot product results are divided by the 
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square root of the feature dimension.
As illustrated in Fig. 3, in the MobileViT+ block workflow, the initial 
action on the input feature map is the innovative local representation

step. This critical stage employs multiple parallel convolutions with 
varying kernel sizes. Specifically, local representation ensures detailed 
local modeling of the feature map while integrating essential spatial in-

ductive bias, which is vital for capturing complex image structures. As 

shown in Fig. 2, the use of atrous convolutions in these parallel con-
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volutions is a strategic choice. This technique significantly mitigates 
the computational burden while preserving the integral benefits of ViT, 
thus enhancing the structure capture capabilities of MobileViT+ block in 
a lightweight format. Mathematically, the computation of atrous convo-

lutions is as follows:

𝑋𝐿[𝑖] =
𝐾⨁
𝑗=1

𝑋[𝑖+ 𝑟𝑗 ] ⋅𝑤𝑗 (2)

In this equation, 𝑋[𝑖] represents the input feature map, and 𝑋𝐿[𝑖]
denotes the final feature map obtained by concatenating the feature 
maps. Specifically, for the parallel convolution operation, we have 
𝐾 different dilation rates denoted as 𝑟1, 𝑟2, ..., 𝑟𝐾 . When calculating 
each element 𝑋𝐿[𝑖] of the merged feature map, the input feature map 
𝑋[𝑖 + 𝑟𝑗 ] is multiplied by the corresponding weight 𝑤𝑗 for each dilation 
rate 𝑟𝑗 . Finally, the results from all the parallel convolution operations 
are concatenated to obtain the final feature map 𝑋𝐿[𝑖]. Integrating con-

volutions with different kernel sizes within the local representation is 
designed to extract a more nuanced semantic context. This enables each 
pixel to embody the surrounding feature information after this stage 
and proves beneficial in the context of the vessel segmentation task. 
Specifically, this approach allows for the extraction of more detailed 
information from images, thereby enhancing the accuracy when seg-

menting minute vessels. The feature map is then projected to the target 
dimension through a pointwise convolution step. This step compensates 
for the information loss that occurs during the unfolding process in the 
Transformer stage.

In the global representation step, LiViT-Net employs a novel ap-

proach with the MobileViT+ architecture, which is distinct from con-

ventional Vision Transformers. Here, the input feature map 𝑋𝐿 ∈
ℝ𝑑×𝐻×𝑊 undergoes an innovative patch division using the predefined 
patch size (𝑤, ℎ), resulting in 𝑋𝑈 ∈ℝ𝑑×𝑁×𝑃 , where 𝑃 =𝑤ℎ represents 
the total number of pixels within a patch, and 𝑁 = 𝐻𝑊

𝑃
signifies the 

patch count. The divided patches are then flattened and input into the 
Transformer for computation, as illustrated in equation (3), where 𝑝 be-

longs to the set {1, … , 𝑃 }. The inter-patch relationships are encoded 
by leveraging Transformers, consequently yielding 𝑋𝐺 ∈ℝ𝑃×𝑁×𝑑 . This 
unique patch processing, a core aspect of MobileViT+, significantly re-

duces the computational load. For instance, with a 2 × 2 patch size, 
complexity is reduced from 𝑂(𝑊𝐻𝐶) to a more manageable 𝑂(𝑊𝐻𝐶

4 ).

𝑋𝐺(𝑃 ) = Transformer(𝑋𝑈 (𝑝)),1 ≤ 𝑝 ≤ 𝑃 (3)

Furthermore, the convolution operations preceding the unfolding 
operations ensure that each pixel in 𝑋𝐿 is enriched with information 
from adjacent pixels, as shown in Fig. 4. This means, for example, when 
red and blue pixels within a patch interact in the Transformer, the blue 
pixel has preencoded information from neighboring pixels, allowing 
comprehensive image encoding. Each cell in the illustrated grids cor-

responds to a patch and pixel, highlighting how MobileViT+ facilitates 
efficient information encoding across patches while maintaining lower 
computational demands.

As illustrated in Fig. 2, the inverted residual block processes the in-

put feature map by first increasing and then decreasing its dimensions, 
facilitating the extraction of more information. Subsequently, a short-

cut is employed to combine the inverted residual block with the original 
input feature map, generating a new, enriched feature map.

Decoder. In the decoder section of LiViT-Net, the implementation 
of the CSEC block plays a significant role, in facilitating enhanced as-

similation of information from the encoder and the feature maps of the 
upstream layers. Such integration becomes particularly critical in the 
task of retinal vessel segmentation, where intricate features spanning 
various scales need to be seamlessly melded for accurate results.

As demonstrated in Fig. 2, this process begins with the concatenation 
of feature maps from the encoder and the upstream layers. A trans-

posed Convolution is then employed to project the feature maps onto 
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a specific dimension, followed by a squeeze-and-excitation (SE) block, 
Computational and Structural Biotechnology Journal 24 (2024) 213–224

Fig. 4. After convolution, the pixels contain information from their surrounding 
pixels.

colloquially known as the SE block, to enhance CNN models by explicitly 
modeling interchannel correlations. The primary basis of this block is 
the generation of distinctive weights, predicated upon the significance 
of each channel’s feature map. This mechanism is mathematically de-

fined as follows:

𝐹se(𝐴) = 𝐹scale(𝐴,𝐹ex(𝐹sq(𝐴))) (4)

𝐹sq(𝐴) =
1

𝐻𝑊
∗ Σ𝐴(𝑖, 𝑗, 𝑐) (5)

𝑠 = 𝐹ex(𝑍,𝑊 ) = 𝜎(𝑔(𝑍,𝑊 )) = 𝜎(𝑊2𝛿(𝑊1𝑍)) (6)

𝑋 = 𝐹scale(𝐴,𝑠) = 𝑠 ∗𝐴 (7)

Herein, Eq. (5) (squeeze operation) condenses each channel’s feature 
map into a scalar using global average pooling. Here, 𝐻 and 𝑊 denote 
the height and width of the feature map, respectively, while 

∑
𝐴(𝑖, 𝑗, 𝑐)

signifies the summation of each location and channel on the feature 
map. Eq. (6) (excitation operation) defines each channel’s weights us-

ing a compressed-and-reconstructed fully connected layer structure. 𝑍
is the squeeze operation output, 𝑊 1 and 𝑊 2 are the two fully con-

nected layer weights, 𝜎 denotes the sigmoid activation function, and 𝛿
is the ReLU activation function. Eq. (7) (the scale operation) adjusts the 
original feature map’s channels based on the weights. Here, 𝑠 represents 
the excitation operation output, and 𝐴 is the SE block input.

The feature maps produced by the SE block are subsequently pro-

cessed through a convolutional layer. This step extracts detailed infor-

mation from the processed feature maps, providing a richer context 
for the minute vessels in retinal images. This enriched information is 
subsequently fed into the next layer, contributing to more accurate seg-

mentation in subsequent steps.

3.3. Loss function

In medical imaging tasks, the region of interest (ROI) generally 
passes through a relatively small area within the image. This can cause 
the model to become trapped in a local minimum during training, re-

sulting in significant prediction bias toward the background. To address 
this issue, the Dice coefficient is often used as a metric to assess the simi-

larity between the model prediction and the target [38]. The calculation 
process of the Dice coefficient is shown in Eq. (8), where 𝑋 represents 
the model output prediction and 𝑌 represents the target label:

2 ⋅𝑋 ∩ 𝑌

Dice coefficient =

𝑋 + 𝑌
(8)
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Milletari et al. [39] proposed the Dice loss to balance the rela-

tionship between the background and foreground based on the Dice 
coefficient. As shown in Eq. (9), where 𝑋 represents the model out-

put and 𝑌 represents the target label, the higher the Dice coefficient is, 
the lower the corresponding Dice loss is, indicating a greater degree of 
overlap between 𝑋 and 𝑌 .

Dice Loss = 1 − 2 ⋅𝑋 ∩ 𝑌

𝑋 + 𝑌
(9)

The characteristic of weighted cross-entropy, which is suitable for 
binary classification tasks, particularly in imbalanced datasets, makes 
this approach highly applicable to such tasks. Here, weighted cross-

entropy is referred to as the binary weighted cross-entropy loss function, 
which is represented as shown in formula (10), where 𝑋 represents the 
prediction result, 𝑌 represents the target label, 𝑤0 is the weight for the 
background class, and 𝑤1 is the weight for the foreground class:

Weighted Cross-Entropy Loss

= −
(
𝑤1 ⋅ 𝑌 ⋅ log(𝑋) +𝑤0 ⋅ (1 − 𝑌 ) ⋅ log(1 −𝑋)

)
(10)

Joint loss, as formulated in Eq. (11), which integrates the strengths 
of Dice loss and weighted cross-entropy Loss are often applied to miti-

gate training instability with high gradients in weighted cross-entropy 
loss, especially when 𝑋 and 𝑌 have minuscule values and the dataset 
is imbalanced. This combination ensures a holistic approach to segmen-

tation cascades by balancing the contribution of each class to the loss 
function:

Joint Loss = 𝛼 ⋅Dice Loss+ 𝛽 ⋅ Weighted Cross-Entropy Loss (11)

Dice loss, known for its efficacy in balancing the representation 
of positive and negative samples, is crucial for enhancing the mod-

el’s sensitivity, especially in detecting finer and sparser targets such 
as small blood vessels. However, its sole use might overlook the accu-

racy of individual pixels, which is where weighted cross-entropy loss 
plays a vital role. Weighted cross-entropy loss, obtained by focusing on 
pixel-level precision, improves the accuracy but could introduce class 
biases. Therefore, in the joint loss formulation, a higher weight is as-

signed to Dice loss (𝛼) to ensure the model’s robustness in capturing 
detailed features, while a smaller weight to weighted cross-entropy loss 
(𝛽) sharpens pixel-level classification accuracy. The joint loss function 
effectively marries Dice loss and weighted cross-entropy loss, with a ra-

tio of 𝛼∕𝛽 = 0.8∕0.2, enhancing precision and class diversity in retinal 
vessel segmentation. This balanced formula improves the detection of 
complex structures while ensuring overall segmentation accuracy, cru-

cial for accurate medical diagnoses.

Since fine vessels often pose a challenge in terms of accurate de-

tection and delineation in the task of retinal vessel segmentation, we 
seek to remap joint loss, which is particularly crucial. The goal is to 
penalize regions where the Dice coefficient is small and the weighted 
cross-entropy loss is large, effectively improving the segmentation of 
such intricate areas. Conversely, we reward areas where the Dice coef-

ficient is large and the weighted cross-entropy Loss is small, as these 
regions are typically easier to segment and often require less correc-

tion. This approach is inspired by the concept of sample weighting in 
loss functions, and we employ the Smoothln function [28] to remap the 
joint loss, as illustrated in Eq. (12):

Smooth𝑙𝑛(𝑥) =

{
1 − 1

𝑒2𝑥
if 𝑥 ≤ 𝜎

(1 − 𝜎) ⋅ (2𝑥+ ln(1 − 𝜎)) + 𝜎 if 𝑥 > 𝜎
(12)

Where 𝜎 ∈ [0, 1) is set artificially to define linear or nonlinear 
reweighting. When 𝜎 = 0, it is a linear mapping, and when 𝜎 → 1, it 
is a steeply smooth monotonically increasing concave curve. The vari-

able 𝑥 denotes the loss value to be remapped, derived from the joint loss 
in Eq. (11). More intuitively, the smooth joint loss amplifies the joint 
loss to varying extents, specifically penalizing samples with a low Dice 
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coefficient and high weighted cross-entropy. This adjustment guides the 
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learning process to concentrate more on the challenging regions of reti-

nal images, such as the fine vessels and the edges of the blood vessels.

4. Experimental setup

4.1. Datasets

We use three public datasets—DRIVE [40], CHASEDB1 [41], and 
HRF [42]—for validating the LiViT-Net model’s performance. These 
datasets, sourced from high-end medical optical instruments, offer an 
authentic evaluation environment for our method.

The DRIVE dataset consists of 40 fundus images captured by a Canon 
camera with a field-of-view (FOV) of 45° and a resolution of 584×565. 
The number of images for both the training and test sets is 20. For this 
dataset, the annotation of each fundus image was performed by two in-

dependent observers, and the annotation provided by the first observer 
was selected to evaluate the performance of the proposed method.

The CHASEDB1 dataset includes 14 images of 28 fundus pho-

tographs obtained from different children; these images were captured 
with an NM-200-D camera with a field of view (FOV) of 30° and a reso-

lution of 999×960. For this dataset, each fundus image was annotated 
by two nonexpert observers. We selected the annotations of the first 
observer to evaluate the performance of the proposed method in this 
paper.

The HRF (High-Resolution Fundus) dataset consists of three types of 
images: healthy patients, patients with glaucoma, and diabetic retinopa-

thy with 15 images of each type and a resolution of 3504×2336. For 
each image, a corresponding binary gold-standard vessel segmentation 
image was generated by a group of experts in retinal image analysis 
and the collaborating ophthalmologic clinic. In addition, masks for de-

termining the FOV are provided for specific datasets.

4.2. Evaluation metrics

For the dense prediction task of retinal vessel segmentation, pixels 
considered as vessels (foreground) by the expert are defined as true pos-

itives (TPs) if it is correctly classified as vessel pixels; while the pixels 
erroneously detected as background are defined as false positives (FPs). 
For the dense prediction task of retinal vessel segmentation, pixels are 
considered to be background (nonvessels) by the expert are defined as 
true negatives (TNs) if they are correctly classified as background pix-

els; while the pixels erroneously detected as vessels are defined as false 
negatives (FNs).

To provide a more comprehensive assessment, a series of metrics are 
adopted, including accuracy (Acc), sensitivity (Sen), specificity (Spe), 
precision (Pre) and F1 score (F1). The definitions of the above metrics 
are as follows:

Acc = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
(13)

Sen = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(14)

Spe = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(15)

𝐹1 = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(16)

In addition to these metrics, we utilize the structural similarity in-

dex measure (SSIM) because of its ability to measure perceptual quality 
in segmented images, which is vital in medical image analysis. The 
SSIM evaluates the similarity between segmented and original images 
in terms of structural integrity and luminance. Its formula is:

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 +𝐶1)(2𝜎𝑥𝑦 +𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 +𝐶1)(𝜎2𝑥 + 𝜎2𝑦 +𝐶2)
(17)

Here, 𝜇𝑥 and 𝜇𝑦 represent average intensities, 𝜎2𝑥 and 𝜎2𝑦 are the 

variances of images 𝑥 and 𝑦.
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Fig. 5. Screenshot of the website interface.
4.3. Implementation details

LiViT-Net’s training was developed based on Pytorch, utilizing an 
NVIDIA T4 graphics card. Employing SGD with an initial learning rate 
of 0.02 and weight decay of 1e-4, we used a dynamic learning rate 
scheduler and increased the batch size to 8 for efficiency. To address 
the class imbalance inherent in retinal vessel segmentation, we utilized 
a weighted cross-entropy loss function during training. This choice was 
essential for enhancing the model’s sensitivity, especially for recogniz-

ing smaller vessel structures. Kaiming initialization [43] was used to 
stabilize the gradients. The mixed precision training accelerated the 
process, achieving convergence within 250 epochs. Continuous perfor-

mance monitoring and model checkpointing based on the Dice coeffi-

cient were integral to optimizing training effectiveness.

5. Results

In this section, the proposed model is deployed on a dedicated web-

site (Fig. 5), allowing readers to gain a more intuitive understanding of 
its capabilities. The website, accessible at https://hz -t3 .matpool .com :
28765 ?token =aQjYR4hqMI, not only showcases the real-time perfor-

mance of the model but also provides detailed insights into the ap-

plication context and the methodology underpinning it. Users can in-

teractively explore various features of the model, offering a hands-on 
experience that deepens the understanding of its practical application 
and effectiveness.

5.1. Comparison with state-of-the-art methods

5.1.1. Segmentation performance

We compare the proposed LiViT-Net with eleven commonly used 
and state-of-the-art methods, including U-Net [8], Cc-net [32], Ce-net 
[19], D-Net [20], Ccnet [21], CSU-Net [23], RV-Gan [22], Bridge-Net 
[24], U-Net with attention module [26], SCS-Net [29], and NFN+ [30].

Table 1 presents a comparison of the performances of our proposed 
method and other advanced methods on the RGB datasets (DRIVE, 
CHASE_DB1 and HRF). As demonstrated in our methodology, admirable 
results are achieved on two key metrics: F1 score and the SSIM score. 
A heightened F1 score indicates that our approach excels in terms of 
precision and recall, which is particularly relevant in the context of 
retinal medical image segmentation where correct identification (pre-

cision) and completeness of this identification (recall) are essential for 
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accurate diagnosis.
As illustrated in Table 1, our method showcases a commendable 
SSIM score, emphasizing its ability to preserve the structural informa-

tion of segmented images during retinal medical imaging. Such preser-

vation of structural details, like variations in vessel width or branching 
patterns, is vital for detecting pathological changes, highlighting the ef-

fectiveness of our method in these contexts.

In real-world scenarios, particularly for devices with limited com-

putational capabilities often found in resource-limited areas, achieving 
good performance across various metrics is more crucial than dominat-

ing a single metric. LiViT-Net provides the optimal balance in terms of 
performance, underscored by its remarkable F1 score and SSIM, which 
are essential for retinal imaging. This finding positions LiViT-Net as a 
reliable and effective choice for retinal vessel segmentation in practical 
applications.

5.1.2. Efficiency

In addition to better performance on the metrics, LiViT-Net also has 
superior requirements for hardware devices when showing similar per-

formance. This is reflected in the number of model parameters and 
FLOPs (floating point operations per second), a standard measure of 
computational workload indicating the number of floating-point opera-

tions the model requires to process an image. Fig. 6 shows a comparison 
of the parameter count and computational load for various models. 
The area of each circle is indicative of the model’s parameter count. 
A smaller circle area implies a lower number of model parameters, sig-

nifying a more compact and efficient model. The vertical axis of the 
figure represents the F1 score, a harmonic mean of precision and recall, 
providing a single metric for evaluating the model’s accuracy in terms of 
both FPs and FNs. A higher F1 score indicates better overall model per-

formance. The horizontal axis represents FLOPs for computation, with 
smaller values indicating a reduced dependency on hardware perfor-

mance. As shown in Fig. 6, LiViT-Net clearly outperforms the other 
models in terms of both performance and computational efficiency. To 
more clearly showcase the features of the compared methods, the model 
parameter settings shown in the figure are based on the default settings 
from their respective papers. The computing FLOPs in the figure are 
calculated based on the input image size of 512 × 512 × 3.

Furthermore, we compared the real-time performance of several 
popular methods on a terminal device (Honor 30 pro Kirin 990 CPU). 
To vividly demonstrate the superiority of our LiViT-Net model, we ob-

served the runtime, FLOPs, and the number of parameters of these 
models at the same resolution. As illustrated in Table 2, the LiViT-Net 

model not only has the shortest runtime but also possesses fewer FLOPs 

https://hz-t3.matpool.com:28765?token=aQjYR4hqMI
https://hz-t3.matpool.com:28765?token=aQjYR4hqMI
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Table 1

Comparison with other advanced models on three different datasets.

Datasets Methods Accuracy Specificity Sensitivity F1 score SSIM

DRIVE

Jiang [20], 2019 0.9709 0.9890 0.7839 0.8246 -

Mishra [32], 2019 0.9789 0.9879 0.7655 0.7859 0.9655

Feng [21], 2020 0.9528 0.9809 0.7625 - -

Wang [23], 2020 0.9565 0.9782 0.8071 0.8251 -

Li [26], 2020 0.9568 0.9810 0.7921 - -

Wang [27], 2020 0.9581 0.9813 0.7991 0.8293 -

Wu [30], 2020 0.9668 0.9790 0.8002 0.8295 -

Kamran [22], 2021 0.9790 0.9969 0.7927 0.8690 0.9237

Wu [29], 2021 0.9697 0.9838 0.8289 0.8189 -

Zhang [24], 2022 0.9565 0.9818 0.7853 0.8203 -

U-Net [8], 2015 0.9640 0.9808 0.7915 - -

LiViT-Net(Ours) 0.9907 0.9963 0.7657 0.8772 0.9705

CHASEDB1

Jiang [20], 2019 0.9721 0.9894 0.7839 0.8062 -

Mishra [32], 2019 0.9551 0.9915 0.7175 0.7391 0.9033

Feng [21], 2020 0.9635 0.9866 0.7760 0.7434 0.9136

Wang [23], 2020 0.9706 0.9836 0.8427 0.8105 -

Li [26], 2020 0.9635 0.9819 0.7818 - -

Wang [27], 2020 0.9670 0.9813 0.8239 0.8191 -

Wu [30], 2020 0.9735 0.9855 0.7933 0.8369 -

Kamran [22], 2021 0.9697 0.9806 0.8199 0.8957 0.9266

Wu [29], 2021 0.9744 0.9839 0.8365 - -

Zhang [24], 2022 0.9667 0.9840 0.8132 0.8293 -

U-Net [8], 2015 0.9716 0.9861 0.7617 - -

LiViT-Net(Ours) 0.9678 0.9833 0.7816 0.8965 0.9205

HRF

Jiang [20], 2019 0.9517 0.9789 0.7276 0.7685 0.9056

Mishra [32], 2019 0.9660 0.9904 0.6755 0.7553 0.9184

Feng [21], 2020 0.9635 0.9830 0.7318 0.8510 0.9233

Wang [23], 2020 0.9673 0.9847 0.7604 0.7833 0.9188

Li [26], 2020 0.9420 0.9491 0.8578 0.7765 0.8919

Wang [27], 2020 0.9654 0.9843 0.7803 0.8074 -

Wu [30], 2020 0.9656 0.9749 0.8114 - -

Kamran [22], 2021 0.9631 0.9846 0.8326 0.8737 0.9254

Wu [29], 2021 0.9687 0.9823 0.8114 - -

Zhang [24], 2022 0.9590 0.9690 0.8570 - -

U-Net [8], 2015 0.9638 0.9776 0.8044 - -

LiViT-Net(Ours) 0.9686 0.9807 0.8284 0.8740 0.9288

Fig. 6. LiViT-Net outperforms other state-of-the-art methods. The networks used 
were RV-GAN [22], Swin-UNet [6], TransUNet [13], Cc-Net [32], U-net [8], and

Table 2

Comparison of deep learning network models on a Honor 30 pro Kirin 990 
CPU.

Network Resolution Run Time (ms) FLOPs (G) Params (M)

RV-GAN 512×512 7044 440.0 31.0

Swin-Unet 512×512 2944 94.7 27.2

TransUNet 512×512 6629 395.6 105.3

U-net 512×512 2575 670.6 31.2

Cc-net 512×512 2789 168 7.7

LiViT-Net (Ours) 512×512 1195 71.1 6.9

and fewer parameters, highlighting its friendliness and efficiency on 
terminal devices.

The LiViT-Net model demonstrates remarkable runtime efficiency, 
operating at 1195 ms, which is a significant reduction compared to 
TransUNet, Swin-Unet, and Cc-net. Specifically, LiViT-Net’s runtime is 
about 78% faster than TransUNet’s 6629 ms, 59% faster than Swin-

Unet, and 57% faster than Cc-net’s 2789 ms. This enhanced speed is crit-

ical for real-time applications, particularly in edge computing scenarios. 
In terms of computational complexity, measured in FLOPs, LiViT-Net 
requires only 71.1G, markedly less than U-net’s 670.6G, Swin-Unet, 
TransUNet, and also lower than Cc-net’s 168G. This reduction in com-

putational demand makes LiViT-Net highly suitable for deployment on 
edge devices, where resources are limited.

LiViT-Net’s design, with a mere 6.9 M parameters, showcases a re-

markable compactness compared to TransUNet’s 105.3 M and Cc-Net’s 
7.7 M, as revealed in our experiments. This significant reduction in pa-
220

LiViT-Net (Ours) on the CHASEDB1 dataset.
 rameters, coupled with its leading-edge runtime of only 1195 ms and 
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Fig. 7. Typical visual results for different methods in the ablation study on the HRF dataset. (a) Original image, (b) detailed view, (c) ground truth, (d) baseline, (e) 

LiViT-Net.

minimal computational demand of 71.1G FLOPs, underscores the mod-

el’s tailored fit for edge devices. These results not only demonstrate 
LiViT-Net’s ability to efficiently manage limited memory and processing 
power but also its superiority in operational speed and computational 
efficiency over models such as Cc-Net, making it an ideal solution for 
resource-constrained environments.

5.2. Ablation study

To evaluate the effectiveness of our proposed method, we conducted 
an ablation study. In this section, we meticulously validate the effi-

cacy of both our model and the proposed loss function, with the results 
clearly illustrated through images and tables.

5.2.1. Effectiveness of the MobileViT+ block

To evaluate the effectiveness of the MobileViT+ block within our 
LiViT-Net, we established a baseline model. This variant of the LiViT-

Net replaces the MobileViT+ block with an inverted residual block, 
serves as a point of comparison and is applied to the HRF dataset. 
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Fig. 7 presents four distinctive instances of retinal vessel segmentation 
Table 3

Statistical comparison of ablation studies on HRF dataset.

Method SE SP ACC AUC F1 SSIM

baseline 0.7345 0.9889 0.9666 0.9836 0.8643 0.9262

LiViT-Net 0.8284 0.9807 0.9686 0.9800 0.8740 0.9288

results, effectively demonstrating the ability of the proposed Mobile-

ViT+ module to segment vessels in varying scales. It is noteworthy 
that the module excels in accurately identifying minuscule vessels and 
discerning vessel edges more effectively, whereas the baseline net-

work finds these tasks challenging. As shown in Table 3, compared 
with “baseline”, “baseline + MobileViT+” improved the performance 
from 0.7345/0.8643 to 0.8284/0.8740 in terms of sensitivity/F1 score, 
which demonstrates that the long-range feature extraction is necessary 
to improve segmentation accuracy.

To quantify the generalization capacity and robustness of the pro-

posed model, we conduct additional cross-dataset experiments and im-
plement a cross-training evaluation on the DRIVE, CHASEDB1, and HRF 
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Table 4

Results of cross-training. The best values are marked by bold.

Methods
CHASEDB1 (train) DRIVE (test) HRF (train) CHASEDB1 (test)

Acc Sen F1 Auc_Roc Acc Sen F1 Auc_Roc

U-net -0.0013 -0.1010 -0.0467 -0.0166 -0.0293 -0.4385 -0.3371 -0.0303

LiViT-Net -0.0013 -0.0642 -0.0392 -0.0274 -0.0082 -0.1027 -0.0677 -0.0026

Table 5

Comparison of Proposed Loss (green) and CE+Dice loss.

Methods
DRIVE HRF

Acc Sen F1 AUC_ROC Acc Sen F1 AUC_ROC

CE Loss+Dice loss 0.9907 0.7412 0.8725 0.9556 0.9679 0.8255 0.8737 0.9795

Proposed Loss 0.9907 0.7657 0.8772 0.9650 0.9686 0.8284 0.8740 0.9800

Fig. 8. Comparison of Proposed Loss (green) and CE+Dice loss on Dice coefficient.
datasets. We directly apply the well-trained proposed model to other 
datasets without retraining the model on the new dataset. Table 4

presents the statistical cross-training evaluation results of LiViT-Net, 
where a smaller value indicates a less significant fluctuation in the in-

dex post-cross-validation, indicating sufficient model robustness.

5.2.2. Effectiveness of the joint loss

To verify the effectiveness of the newly proposed joint loss, we com-

pare it with the commonly used weighted cross-entropy loss and Dice 
loss by combining the Losses.

As shown in Table 5, the comparison results demonstrate that the 
model performs better when using the proposed joint loss. As illustrated 
in Fig. 8, the green line indicates the variations of metric Dice during 
the training process with the proposed joint loss, while the blue line rep-

resents the variations of the metric when using weighted cross-entropy 
Loss and Dice loss. It can be observed that the model trained with the 
newly proposed joint loss method demonstrates faster learning speed 
and superior performance under the same conditions.

5.2.3. Optimal configuration of loss ratios

To determine the optimal values for 𝛼 and 𝛽 in the joint loss func-

tion, defined as Eq. (11), we conduct ablation studies on the DRIVE 
dataset, varying their ratios to assess their influence on the model’s per-

formance (Table 6).

According to the experimental results, setting the 𝛼∕𝛽 ratio to 
0.2/0.8 yielded the highest F1 score (0.8772) among all the configura-

tions. Moreover, the sensitivity, specificity, and global accuracy under 
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these settings are comparable to those of other configurations, indi-
Table 6

Ablation study results with varying ratios of 𝛼 and 𝛽 in joint loss.

Ratio Global Accuracy Specificity Sensitivity F1 score SSIM

0.0/1.0 0.9907 0.9968 0.7608 0.8709 0.9707

0.1/0.9 0.9906 0.9964 0.7696 0.8677 0.9703

0.2/0.8 0.9907 0.9963 0.7657 0.8772 0.9705

0.3/0.7 0.9907 0.9969 0.7614 0.8759 0.9705

0.5/0.5 0.9906 0.9966 0.7609 0.8671 0.9702

0.7/0.3 0.9906 0.9967 0.7567 0.8687 0.9703

0.9/0.1 0.9902 0.9982 0.7332 0.8445 0.9696

1.0/0.0 0.9905 0.9974 0.7422 0.8598 0.9702

cating that these combinations provide a good balance for the model, 
allowing it to effectively capture fine vessel regions while maintaining 
high classification accuracy. Additionally, the SSIM score also showed 
good predictive performance.

Considering the characteristics of Dice loss and weighted cross-

entropy loss, it is understandable why the 𝛼∕𝛽 ratio of 0.2/0.8 achieved 
the best outcomes. Dice loss offers robustness against the sample imbal-

ance, especially when target regions like vessels are sparse. On the other 
hand, weighted cross-entropy loss ensures accurate predictions for ev-

ery pixel. Therefore, increasing the Dice loss weight helps individuals 
capture fine vessels and reduces misjudgments at boundary regions.

6. Conclusion

In this study, we propose a U-Net-like, lightweight Transformer net-
work, LiViT-Net, for retinal vessel segmentation. By integrating the 
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innovative local representation strategy and the MobileViT+ module, 
the model efficiently captures intricate image structures without ex-

cessive parameters, merging the benefits of CNNs and Transformers. 
Furthermore, a remapped, weighted joint loss is designed to address the 
challenges of retinal vessel segmentation, including pixel imbalances 
and complex vascular structures, ensuring a balance between accuracy 
and class equilibrium.

Transitioning to practical applications, LiViT-Net’s architecture not 
only occupies the primary domain but is also remarkably adaptable 
to computational constraints. Specific tests conducted on edge de-

vices demonstrate the ability of edge devices to work in environments 
with restricted computational capabilities, emphasizing their stream-

lined efficiency. Furthermore, comprehensive evaluations of esteemed 
databases such as DRIVE, CHASEDB1, and HRF reinforce our model’s 
supremacy, as these evaluations consistently eclipse the performance 
metrics of its contemporaries.

In future endeavors, we intend to enhance the precision of LiViT-Net 
by exploring advanced optimization techniques. We aim to incorporate 
sophisticated regularization methods and structures, minimizing com-

putational costs without compromising performance. We are also inter-

ested in adapting the model to various medical imaging fields to ensure 
its resilience and versatility. We are interested in introducing real-time 
data augmentation to bolster the model’s adaptability. Engaging with 
medical experts is on our agenda, aligning LiViT-Net’s capabilities with 
clinical needs for maximum impact.
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