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and Sá N. Lisboa2

1School of GeoSciences, The University of Edinburgh, Edinburgh, UK
2Faculty of Agronomy and Forest Engineering, Universidade Eduardo Mondlane, Maputo, Mozambique
3Department of Biological Sciences, University of Zimbabwe, Harare, Zimbabwe
4Ce3C—Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Lisboa, Portugal

EW, 0000-0002-6504-4835; CMR, 0000-0002-1802-0128; NR, 0000-0002-5369-5905

African woodlands form a major part of the tropical grassy biome and support

the livelihoods of millions of rural and urban people. Charcoal production in

particular is a major economic activity, but its impact on other ecosystem

services is little studied. To address this, our study collected biophysical and

social datasets, which were combined in ecological production functions, to

assess ecosystem service provision and its change under different charcoal

production scenarios in Gaza Province, southern Mozambique. We found

that villages with longer histories of charcoal production had experienced

declines in wood suitable for charcoal, firewood and construction, and

tended to have lower perceived availabilities of these services. Scenarios of

future charcoal impacts indicated that firewood and woody construction ser-

vices were likely to trade-off with charcoal production. However, even under

the most extreme charcoal scenario, these services were not completely lost.

Other provisioning services, such as wild food, medicinal plants and grass,

were largely unaffected by charcoal production. To reduce the future impacts

of charcoal production, producers must avoid increased intensification of

charcoal extraction by avoiding the expansion of species and sizes of trees

used for charcoal production. This is a major challenge to land managers

and policymakers in the area.

This article is part of the themed issue ‘Tropical grassy biomes: linking

ecology, human use and conservation’.
1. Introduction
African savannahs, including the Mopane woodlands that are the focus of this

study, are characterized by discontinuous tree cover and a continuous C4 grass

layer [1]. Woodlands, which are at the more wooded end of the savannah spec-

trum [2], constitute a major part of savannahs on the continent, covering

an estimated 34% of vegetated Africa [3], with Mopane woodlands covering

555 000 km2 of southern Africa [4]. Woodlands are dynamic systems, driven by

several environmental and human disturbances, both long standing and novel

[5]. They hold a unique and diverse flora [6], and are also social woodlands,

with millions of rural and urban people relying on them to provide ecosystem ser-

vices (ES) and livelihood benefits [7–12]. Reconciling the needs of the inhabitants

with the need for conservation and the provision of global ES remains a challenge.

Woodlands across Africa are changing due to altered disturbance patterns, driven

by several social and environmental processes [13,14]. The changing woodlands

are likely to affect their ability to provide essential ES, and create trade-offs

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2015.0315&domain=pdf&date_stamp=2016-08-08
http://dx.doi.org/10.1098/rstb/371/1703
http://dx.doi.org/10.1098/rstb/371/1703
mailto:e.woollen@ed.ac.uk
http://dx.doi.org/10.1098/rstb.2015.0315
http://dx.doi.org/10.1098/rstb.2015.0315
http://rstb.royalsocietypublishing.org
http://rstb.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0002-6504-4835
http://orcid.org/0000-0002-1802-0128
http://orcid.org/0000-0002-5369-5905
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150315

2
between different services [12]. African woodlands are multi-

functional, diverse and spatially complex systems [5,10], and

woodland supply of ES and changes to these are likely to be

context-specific, depending on local scale biophysical and

social factors.

One of the drivers of woodland change in southern Africa is

the charcoal industry. Most southern African countries are

engaged in charcoal production, with a value of around 2–3%

of GDP [15]. Charcoal is primarily supplied from rural

areas and provides affordable energy to 70–90% of the urban

population, as well as income-generating opportunities in

rural areas [15]. The process of charcoal production can reduce

standing woody biomass through selective harvesting of trees,

which is the prevalent practice in most African woodlands

[16,17]. Clear-cutting for charcoal can occur, particularly on

the ‘frontier’ of charcoal production around large cities, where

harvesting rates can greatly exceed regrowth [18,19]. Charcoal

production is thus likely to impact the woodland resource

base, and there may be trade-offs between charcoal production

and other ES from woodlands. However, a recent review con-

cluded that few studies have assessed the links between

charcoal production and other ES in African woodlands [16],

and little is known of the impacts of this large-scale industry

on the ability of woodlands to provide other important ES.

To address this need, a large-scale interdisciplinary study,

Abrupt Changes in Ecosystem Services and Wellbeing in

Mozambican woodlands (ACES, www.miomboaces.word-

press.com), was conducted in the Mabalane District of Gaza

Province, southern Mozambique. Mozambique retains large

areas of woodlands, which cover 51% of the total land area

[20], but with rapid changes occurring [21]. Wood fuels account

for 81% of energy consumption in Mozambique [18], with

charcoal the dominant fuel in urban centres [22]. The charcoal

trade provides employment for millions, supporting more than

5% of the country’s population [23]. The full extent of charcoal

production and its impacts on woodland resources and poten-

tial trade-offs remain largely unknown, mainly due to the

sparse data on all aspects of the (largely informal) charcoal

industry. Gaza Province is one of the main current supply

areas of charcoal to Maputo, and Mabalane District currently

has the highest number of licences for charcoal production of

any district in Gaza [24].

The aim of this paper is to identify current and likely future

trade-offs between charcoal production and the supply of other

provisioning ES from woodlands in several villages across the

Mabalane District. This has important implications for both

the management of woodlands for multiple services, and for

livelihoods of local populations. Woodlands provide a multi-

tude of ES [12], and to include them all is beyond the scope

of this study. Therefore, the ES investigated were limited to

provisioning services that were (i) locally relevant, (ii) were

likely to be affected by charcoal production and (iii) could be

linked to woodland structure. The social impacts of charcoal

production, particularly with regard to benefit distribution,

are analysed and debated in a separate publication [25].

Using a combination of biophysical and social datasets,

we are able to (i) define locally relevant provisioning ES,

(ii) determine how changes in woodland structure might

affect services from woodlands and (iii) identify trade-offs of

charcoal production with other provisioning services. This

study is novel in that it presents one of the first assessments

of charcoal trade-offs with other provisioning services from

an African woodland. The study also disaggregates woodlands
into more realistic complex socio-ecological systems that are

not assumed to be uniform in their structure, their use by

people or their ability to provide ES, increasing the resolution

to local scales; it is at local scales that the impacts of charcoal

production are likely to be most important.
2. Material and methods
(a) Methodological approach
Biophysical data were collected to characterize woodland struc-

ture, and land cover maps were produced to scale plot level data

to the village landscape. We used a combination of household

surveys, focus group discussions and key informant interviews

to obtain information on local uses of provisioning ES from wood-

lands and their relative importance, and assess how these services

were related to woodland structure. The biophysical and social

datasets were combined in ecological production functions to

estimate the provision of services from woodlands.

To assess trade-offs of charcoal production, we compare our

results between several villages along a chronosequence of

charcoal production to determine how provisioning services have

changed. The chronosequence includes villages that have already

passed their charcoal production peak and then declined pro-

duction over the last 10 years, to villages that have not yet

engaged in charcoal production. We also use scenarios of charcoal

production to model potential changes to provisioning services

under two different scenarios: one where all previously cut charcoal

trees are modelled as intact, and one where all charcoal trees are

modelled as cut. Both approaches serve to assess charcoal pro-

duction trade-offs with other provisioning services, where one

approach provides an assessment of current trade-offs, and the

scenario approach provides an assessment of likely trade-offs

both in the past and in the future.

(b) Study site
This study took place from May–October 2014 in the Mabalane

District, Gaza Province in southern Mozambique. Mabalane

District lies adjacent to the Limpopo River and Limpopo and

Banhine National Parks (figure 1), approximately 300 km north

of Maputo City. Mabalane District is characterized as an area

of dry tropical woodland, consisting mainly of Mopane wood-

lands interspersed with Combretum and Boscia dominated

woodlands, with a C4 grass layer. Most of the charcoal produced

in Gaza comes from Mopane woodlands, which are dominated

by the tree species Colophospermum mopane, a dense hardwood

species, which produces high-quality, slow-burning charcoal.

Mabalane-sede is the district capital situated to the southeast of

the district, which can be reached from Maputo by the only (par-

tially) tarred road in the district. Several villages are interspersed

throughout the district, with limited access along seasonally

passable dirt roads. Low-intensity subsistence agriculture is

prevalent, with maize being the dominant crop and livestock

rearing under communal grazing systems common. Shangaan

is the main language spoken. The area receives a mean annual

precipitation of 505 mm, with average annual temperatures of

248C, with a marked wet season between October and April

when 92% of annual precipitation falls (WorldClim dataset,

[26]). Soils are classed as loamy sand (82% sand, 13% silt, 5%

clay), with a low carbon and nutrient content (0.4% C, 0.05% N).

(c) Village selection and the charcoal production
chronosequence

Across Mabalane District, seven villages with similar climatic con-

ditions, vegetation types and infrastructure, but different stages of
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Figure 1. Mabalane District, Gaza Province in southern Mozambique. All study villages (A – G) and their 5 km radii (78.5 km2) sample areas are shown. To maintain
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charcoal production, were selected for this study. Different char-

coal production stages were determined according to the method

of Baumert et al. [25], using the classification criteria: (i) current

number of charcoal licence holders in the community land, (ii) pro-

duction quantity of licensed charcoal and (iii) year with highest

charcoal production according to village narratives. For this

study, this translated into a charcoal production chronosequence

of villages with little or no charcoal production (classified as pre-
boom villages), to those experiencing a charcoal production peak

(classified as boom villages) and to villages where the peak had

already passed (classified as post-boom villages) at the time of

this study.

Thereby, the villages were labelled A–G in order of charcoal

production stages (figure 1). Villages A, B and C were classified

as post-boom villages as they had already passed their charcoal pro-

duction peaks in 2006, 2009 and 2013, respectively, after which a

decline in large Mopane trees saw large-scale charcoal production

operators withdrawing to new areas for exploitation. Villages D

and E were classified as boom villages, as in these villages large-

scale charcoal production started in 2011, and was still at high

levels in 2014 at the time of the study. Villages F and G were classi-

fied as pre-boom villages either because large-scale charcoal

production had not yet begun and remained at small-scales

(village F), or charcoal production had not yet begun (village G).
(d) Biophysical data collection
(i) Woodland structure
Woodland structure in each village was assessed using standard

forest inventory methods. Forest inventories were conducted

within a sampling area of 5 km radius (78.5 km2) from the centre

of each village (figure 1). The centre was defined as the point

where the community meeting house was located. A 5 km radius

was chosen as this area was deemed representative of immediate

village landscape resources within a reasonable daily walking dis-

tance from households. Furthermore, a 5 km buffer minimized

outside influences from neighbouring villages, but some overlaps

with neighbouring villages was observed.
Within each village sampling area, 24 circular forest plots

(20 m radius) were measured, selected from several hundred ran-

domly placed plots using a random number generator. The final

selection was based on those plots that were found not to be in per-

manently waterlogged areas, in active agricultural fields, or in built

up areas. Village D was the pilot study site, where the plot design

differed in that plots varied in size and had nested plot designs.

Only 19 plots were measured in village D. The pilot village was

included in this study as the methods and outputs were robust

and comparable with the methods and outputs in the other vil-

lages. From the total forest plot dataset, nine plots were excluded

from analyses due to errors in measurements or missing data

(total plots n ¼ 154).

Within each plot, for each stem more than 5 cm diameter-at-

breast-height (DBH, 1.3 m from ground), local species name,

point of measurement and condition of each tree stem (live or

dead, cut or broken) were recorded, with help from villagers

knowledgeable about the flora. The remnant stumps of all cut

stems regardless of diameter were included in inventories, where

the height of the diameter measurement was recorded as well as

total stump height. To adjust tree stem diameters measured at

less than 1.3 m, a correction function was used to estimate the

DBH at 1.3 m (see electronic supplementary materials). Above-

ground woody biomass (AGB, Mg C ha21) of each plot was esti-

mated using measured or estimated DBH measurements of tree

stems and the allometric equation from Ryan et al. [27], as this

equation showed close agreement with other relevant allometric

equations [28,29] and was deemed the most suitable based on

location and measurement methods. Local tree names were ident-

ified to species where possible using species identification keys

[30,31]. Samples of trees taken in the field were also identified for

cross-validation by botanists at the Universidade Eduardo

Mondlane in Maputo. As species identification was not possible for

all local names, all analyses were conducted using local tree names.

Grass biomass was collected and weighed within 1 m2 quad-

rats placed at 10 m distances from the centre of the plot in each

cardinal direction (n ¼ 4 per plot). Grass sub-samples were taken

and dried in an oven at 708C for 48 h, and dry weight was deter-

mined. The dry weight fraction was used to estimate dry grass
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biomass and mean dry grass biomass determined (Mg ha21).

Recently burnt plots were not included in this analysis. The compo-

sition of grass biomass by species was not possible to determine

due to difficulties of identification during the dry season.

Coarse woody debris was measured using the methods out-

lined by Waddell et al. [32], along four 20 m transects from the

centre to the edge of each plot in each cardinal direction. The

diameter of each woody piece encountered along each transect,

its length, the decay class and the local tree species name was

recorded. Coarse woody debris included all woody pieces with

more than 3 cm diameter at intersection and more than 0.5 m

length. Total biomass of coarse woody debris (Mg C ha21)

within each plot was calculated following Waddell et al. [32].

(ii) Land cover classification and biomass mapping
Supervised land cover mapping was undertaken using a combi-

nation of Landsat 8 and ALOS PALSAR remote sensing

products, and ground control points based on both the plot data

and other observations. The classification legend for woodland

types was developed using a hierarchical clustering of the plot

data (based on the Bray–Curtis dissimilarities and the average

linkage method). All calculations were done using the Vegan

v. 2.0.10 package [33] in R statistical software [34]. Dissimilarities

between plots were calculated based on relative abundance of

AGB of each species. Distinct clusters were identified using the

Calinksi–Harabasz criterion implemented with k-means cluster-

ing in the cascadeKM function in Vegan. Each plot was then

classified into one of the identified clusters (i.e. woodland types).

All other non-woodland land cover classes were lumped together

as ‘other’.

The land cover map was based on the classification of multi

temporal Landsat 8 data (images from May and October 2014)

and ALOS PALSAR 2 HV backscatter (October/November

2014). The classification was created using a Support Vector

Machine classifier implemented in ENVI v. 5.2 (Exelis Visual Infor-

mation Solutions, Boulder, Colorado) using 430 polygons of

ground data based on our observations and forest plot data (col-

lected as described above). Twenty-five per cent of the ground

data was set aside and used for validation purposes. The classifi-

cation had an overall accuracy of 87% (Kappa coefficient 0.8)

and was effective at distinguishing different floristic types of

woodland. Among woodland types, the two dominant classes

(Mopane and Combretum woodlands) were easily distinguished

with a seperability of 1.9–1.99, whereas the less dominant classes

had a seperability of 1.1.

We used a biomass map constructed from the ALOS PALSAR

2 data obtained in November 2014. Images were calibrated, terrain

corrected and de-speckeled using SNAP v. 2.0 and exported at

15 m pixel size. The image was georeferenced to a mosaicked, pan-

sharpened Landsat 8 image (Sept 2014) using ENVI v. 4.8. HV

backscatter was used to estimate above-ground woody biomass

(Mg C ha21) of the Mabalane District at 15 m pixel resolutions

following the regression of Ryan et al. [21].

(e) Social data collection
In each of the seven sampled villages, a household list was com-

piled based on the definition of households as people ‘eating

from the same pot’. Households were then randomly selected for

a socio-economic household survey. Household surveys were

used in this study to identify the key provisioning services from

woodlands that were most commonly used by local people.

Focus group discussions and semi-structured interviews [35]

were conducted with village leaders, community groups, charcoal

producers and traditional healers, to gain information on how the

key provisioning services identified from the household survey

were related to woodland structure and composition. This was

determined by asking what particular woodland tree or grass
species (recorded using local names for plants) and other plant

characteristics were used or preferred by the local population for

each of the provisioning services, determined from discussions

and interviews. Linking provisioning ES to woodland tree or

grass species precludes the assessment of services not provided

by trees or grasses in this study. It was assumed that if a specific

use for a particular species was recorded in one location or by

one individual, it applied to the whole study area. It is recognized

that not all the different species or characteristics of woodland

plants relating to each service were recorded, so we refer to the

recorded uses as ‘known species uses’.

Perceived temporal changes to provisioning ES in each vil-

lage were recorded using a trend analysis (one of a suite of

methods known as participatory rural appraisal [36]). This

involved asking a focus group of key informants in each village

about temporal changes in abundance and access to resources

from woodlands, from the year villagers returned to their

villages after the civil war (1994/1995) until the present day,

indicating a general direction of change over time. Specific provi-

sioning ES were not asked about directly, but the discussion was

guided by asking about changes to any provisioning ES from

woodlands. If a particular ES was not mentioned it was assumed

it was not important or perceived as changing.

( f ) Quantifying ecosystem service provision
and trade-offs

We estimate the available ES provided by woodlands using the

ecological production function approach [37,38]. Production

functions define how changes in an ecosystem’s structure or

function are likely to affect flows of ES from those ecosystems.

The functions combine our biophysical and social datasets to

account for both service supply, and the preferences of people

who use these services. All service provision was determined

as a function of woodland structure (e.g. above-ground biomass,

stem density, stem size distribution and species composition)

assuming that changes to woodland structures affect changes

in service provision. In this study, service provision is expressed

in biophysical terms (e.g. tons of biomass) for each study village

(see the electronic supplementary material for the production

function equations).

Scenarios of charcoal production were used to simulate

changes to woodland structure and subsequent changes in pro-

vision of ES from woodlands. Two scenarios were compared

with the current state of woodlands. In Scenario 1, the ‘no char-

coal’ scenario, we assumed no trees had been used for charcoal in

the past—all the observed cut stems of trees suitable for charcoal

production were modelled as intact. In Scenario 2, ‘total char-

coal’, all trees suitable for charcoal were modelled as cut.

The modelled changes to woodland structure were then used

to calculate ES provision under the different scenarios within

each village using the ecological production functions. Changes

to the estimated provisioning services for each scenario were

then compared with the current estimates to assess likely impacts

of charcoal production in biophysical terms. The ‘no charcoal’

scenario serves as a way of determining what past trade-offs

of charcoal production are likely to have been, and the ‘total

charcoal’ scenario the possible future trade-offs of charcoal pro-

duction. The scenarios model selective logging for charcoal

production, rather than clear felling, as selective logging is the

prevalent form of wood extraction for charcoal production in

Africa [16,17], and is representative of current practices in the

study area.

Standard errors of the mean at the plot level were propagated

to the total estimated provision of ES at the village landscape

scale, both for current and scenario estimates, using standard

error propagation formulae and assuming independence. All

errors on estimates are presented as 95% confidence intervals.
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3. Results and analysis
(a) Ecosystem services and links to woodland structure
The most commonly used provisioning services from wood-

lands were charcoal, firewood, woody construction materials,

thatching grass, food, medicinal plants and livestock forage

(table 1). The household survey sampled more than 80% of

all households in the sample villages. Of the sampled house-

holds, more than 70% produced charcoal within the last

12 months, but with varying prevalence between villages

(table 1). Charcoal was primarily sourced from local wood-

lands, but occasional sources included trees cut when

creating new agricultural fields. Firewood was commonly

used in all villages, with 86–100% of households using fire-

wood as their primary source of fuel in the past 12 months

(table 1). Of these, 71% collected firewood from woodlands

whereas the remaining 29% collected firewood from agricul-

tural fields or fallows. The use of woody construction

materials for building of houses was also commonly reported

(61%), whereas use of grasses, primarily for roof thatch, was

less common (35%, table 1). Collection of food from woodlands

was undertaken by 19% of households, and no village had

more than 28% of households using this service in the past

12 months (table 1). Fruits were the primary food collected

(98%). Medicinal plants were not commonly used over the

past 12 months (15%, table 1) but were mentioned as an impor-

tant alternative when pharmaceutical medicines were not

available or were unaffordable. Livestock rearing was preva-

lent for all villages (more than 60%), and 45% of households

that owned livestock used woodlands for pasture or foraging

for their livestock, at least on occasion over the past year

(table 1). Other provisioning services derived from woodland

plant materials were recorded, such as furniture and tool

making or baskets and mats, but less than 5% of households

reported active engagement in production of these products

in the past 12 months, and these were not considered further.

Therefore, the provisioning services from woodlands

included in this study were grouped as charcoal, firewood,

woody construction materials, food, medicinal plants and

grass. Each service was linked to woodland structural data

by ascertaining which size and species of plants from the

woodland were used for each, informed by the focus group

discussions and key informant interviews. For those services

provided by trees, the service provision was linked to local

names of trees (electronic supplementary material, table S1).

Services from grasses could not be related to specific grass

species or characteristics, as grass species abundance data for

woodlands was not available. Therefore, we use a relationship

between measured grass biomass and stem density (electronic

supplementary material, figure S1) to estimate maximum

potential grass biomass, and use this as a proxy for the

availability of grass-related services.

The number of tree species that provided each service

varied from five to 39 (electronic supplementary material,

table S1). Charcoal and firewood had the least number of tree

species used (six and five species used, respectively), indicating

highly selective species preferences for these services. Species

used for firewood also overlapped with those used for char-

coal, where three out of the five species were shared. There

was a strong preference for C. mopane species for charcoal pro-

duction in the study area, and C. mopane was also the only

species listed that could be used for all five services related to

trees (electronic supplementary material, table S1). From plot
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data, C. mopane had the highest number of recorded cut stems

(electronic supplementary material, table S2), indicating this

species is heavily used and extracted. Woody construction

materials were more diverse, with 10 known tree species

used for this service. Food and medicinal services were the

most diverse and least selective of all the services (21 and

39 tree species used, respectively).
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(b) Land cover classification and woodland structure
Five different vegetation types were identified across the study

area from the hierarchical cluster analysis: Androstachys forest,

Mopane woodland, Combretum woodland, Boscia woodland

and shrub Mopane (table 2). Androstachys forest was character-

ized by the dominance of Androstachys johnsonii, where stem

density and AGB was on average 1764+116 stems ha21

(+s.e.m.) and 31.7+2.5 Mg C ha21 (table 2); there was

almost no grass biomass (0.06+0.02 Mg ha21), hence it was

characterized as a forest rather than a woodland. Androstachys

forest had the greatest mass of coarse woody debris (3.57+
0.63 Mg C ha21), due to many broken or dead stems, and

occurred as patches in the landscape interspersed among

other land cover types. Mopane woodlands had lower

stem density and AGB (means of 769+65 stems ha21 and

11.8+1.6 Mg C ha21), but greater grass biomass (0.66+
0.13 Mg ha21) than Androstachys forest, and were dominated

by C. mopane. Combretum woodlands were similar to

Mopane woodlands in their structure, but had greater grass bio-

mass (1.06+0.13 Mg ha21) and tree species diversity than

Mopane woodlands. Combretum woodlands were the most

diverse of all the woodland types (species richness 7.1+0.5

and evenness of 0.66+0.03), but Combretum spp. dominated.

Boscia woodlands were characterized by the presence and

dominance of Boscia albitrunca. Boscia woodlands had similar

stem densities to Combretum woodlands, but with much less

AGB (5.4+1.38 Mg C ha21) due to smaller stem sizes. The

shrub Mopane woodland was characterized by the presence

of Aloe spp. and small (less than 2 m height) C. mopane trees,

the only two species occurring in this woodland type.

The stem density and AGB were low (103 stems ha21 and

7.31 Mg C ha21) due to the small stature of most of the

Mopane trees (below the 1.3 m measurement height). Grass bio-

mass was also low in this woodland type (0.34 Mg ha21), despite

the relatively open canopy. For a visual comparison between

woodland types see supplementary materials, figure S2.

Land cover composition varied between villages

(figure 2) but woodlands dominated all village landscapes.

Most villages were dominated by Mopane and Combretum

woodlands; only village A had a greater proportion of

Boscia and shrub Mopane woodlands, which were not exten-

sive in other villages. Villages to the south of the study site

(villages B–C) had greater proportions of Mopane wood-

lands, and villages to the north (villages D–G) had greater

proportions of Combretum woodland. Androstachys forest

only occurred in those villages located to the north of the

study site (villages D–G).

Owing to the post hoc classification of forest plots, the dis-

tribution of plots within woodland types was not always

proportionate to the village land cover (table 3). In some vil-

lages, few or no plots fell within certain woodland types

despite having more than 5% of land area of that type

(figure 2). Therefore, plots were amalgamated within chrono-

sequence classes ( post-boom, boom, pre-boom) to increase the
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Figure 2. Land cover (%) for each village landscape within a 5 km radius
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sample size for each woodland type within a class. However,

even when plots were amalgamated only three plots fell

within the shrub Mopane class for the entire dataset, and for

the boom villages (D–E) only two plots fell within Mopane

woodlands. Therefore, some caution is required when upscal-

ing plot data to the landscape level for shrub Mopane

woodlands in all villages, and Mopane woodlands in boom
villages, as error estimation was not possible when n , 4.
(c) Ecosystem services availability at village scales
Total current ES availability for each village was estimated by

applying the production functions to each village landscape

(figure 3). The production function parameters calculated

from plot data were averaged across chronosequence classes

(table 3; electronic supplementary material, table S3). We

applied the averaged parameters to each individual village

within that class. Therefore, differences between villages

within a class are due to land cover differences rather than

woodland structural differences. However, comparisons

between classes still take into account differences in land

cover and woodland structure.

The production functions showed that Mopane and Com-

bretum woodlands together provided the highest diversity

and quantity of provisioning services in all villages, and are

key to the provision of services in the study area (figure 3).

All six of the provisioning services were available in each vil-

lage, but the total provision varied between villages due to a

combination of differences in woodland structure and land

cover. Charcoal availability was the lowest in post-boom villages

A and C, and was higher (no overlap in 95% CIs) for boom and

pre-boom villages (figure 3a). For all villages, charcoal was pro-

vided by Mopane and Combretum woodlands, with small

amounts from the Androstachys forests. Firewood was simi-

larly provided from Mopane and Combretum woodlands,

where villages A and C had the lowest availability of firewood

(figure 3b). Woody construction materials were primarily pro-

vided by Boscia and Mopane woodlands in the post-boom
villages to the south, and by Androstachys, Mopane and Com-

bretum woodlands in boom and pre-boom villages to the north

(figure 3c). Again, post-boom villages A and C were found to
have the lowest availability of woody construction materials.

Village B had higher availability of charcoal, firewood and

woody construction materials in comparison with other

post-boom villages due to the larger Mopane and Combretum

woodland areas (figure 2).

Food availability showed an opposite pattern to charcoal,

firewood and woody construction materials, as food was

higher for post-boom villages (figure 3d). Food was primarily

provided by Mopane woodlands in all villages, but Boscia

woodlands also provided some food services for post-boom
villages in the south, and Combretum woodlands in boom
and pre-boom villages in the north. Medicinal plants were

equally available in villages B–F, but village A had less avail-

ability (figure 3e). Medicinal plants were primarily provided

by Mopane, Combretum and Boscia woodlands in post-boom
villages to the south, and by Combretum, Androstachys and

Mopane woodlands for boom and pre-boom villages to the north.

The maximum potential for grass biomass, estimated as a

function of stem density (electronic supplementary material,

figure S1), showed similar potentials across post-boom and

boom villages, but pre-boom villages had slightly lower potentials

(figure 3f ). Combretum and Mopane woodlands provided the

majority of grass potentials, but in village A, shrub Mopane and

Boscia woodlands had the highest potentials for grass. How-

ever, this was contrary to our observations (table 2), where

shrub Mopane and Boscia woodlands had very low measured

grass biomass. Therefore, the modelled maximum potentials for

grass biomass are likely to be unrealistic and real availability of

grass biomass may be smaller than estimated here.

(d) Charcoal production trade-offs with other
ecosystem services

There was a general decrease in the number of services

perceived as declining along the charcoal production chro-

nosequence from villages A to G in trend analyses (table 4).

Post-boom and boom villages A–D had the greatest number of

services perceived as declining, whereas pre-boom villages F

and G had no perceived declines in any of the services. There

was a perceived historical decline in charcoal resource avail-

ability for all post-boom villages A–C and boom village D in

the trend analyses. In village C, one respondent even men-

tioned that they tried producing charcoal from alternative tree

species (Combretum spp.) but that buyers rejected the charcoal

in favour of charcoal made from C. mopane trees elsewhere,

suggesting a scarcity in suitable Mopane charcoal trees.

Firewood was only mentioned as declining in villages A and

D. Woody construction services were perceived as declining

in all post-boom and boom villages A–E. Food and medicinal

plants from woodlands were not perceived as declining in

any of the villages. Services related to grass, such as roof

thatch and grazing, were not mentioned by any of the villages

in the trend analysis, and therefore we assume these services

were not changing or were less important.

The perceived declines in charcoal resources in post-boom
villages were corroborated by scenario results. Under the

‘no charcoal’ scenario, where all suitable charcoal trees are

modelled as intact (i.e. pre-charcoal extraction), post-boom vil-

lages A–C had the greatest increases in charcoal availability

of 89–99% from current estimates (figure 4a; for absolute

changes in ES availabilities, see electronic supplementary

material, figure S3). Boom village D also perceived a decline

in charcoal resources, but this was not supported by the ‘no
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Figure 3. Current estimated ecosystem service availability of (a) charcoal, (b) firewood, (c) woody construction materials, (d ) wild food, (e) medicinal plants and ( f )
estimated maximum potential for grass, with the proportion provided by each woodland type within the village sample areas shown. Error bars are 95% confidence
intervals.

Table 3. Number of sample plots within each village and woodland type based on post hoc classification from the land cover map.

class village Androstachys Mopane Combretum Boscia shrub Mopane total

post-boom A 0 3 4 13 3 23

B 0 19 4 0 0 23

C 0 11 9 0 0 20

total 0 33 17 13 3

boom D 6 1 12 0 0 19

E 5 1 17 0 0 23

total 11 2 29 0 0

pre-boom F 7 14 2 0 0 23

G 6 2 15 0 0 23

total 13 16 17 0 0

total 24 51 63 13 3 154
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charcoal’ scenario, where boom villages D–E only had small

increases in charcoal availability (less than 10%) when

compared with current levels (figure 4a). This was probably
due to the small number of plots (n ¼ 2, table 3) located in

Mopane woodlands in these villages, increasing uncertainty

on estimates. Villages F and G also had large increases in
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Figure 4. Estimated changes (%) in ecosystem service availability of (a) charcoal, (b) firewood, (c) woody construction materials, (d ) wild food, (e) medicinal plants
and ( f ) estimated maximum potential for grass in relation to current availabilities under different charcoal scenarios. The ‘no charcoal’ scenario estimates past ES
availability by modelling all suitable charcoal trees as intact (i.e. they had never been cut). The ‘total charcoal’ scenario estimates future ES availability by modelling
all suitable charcoal trees as cut. Negative changes are losses and positive changes are gains in ES availability in comparison to current availabilities. Error bars are
95% confidence intervals.

Table 4. Analysis of the temporal trends in provisioning ecosystem services since 1993/1994 as perceived by each village.

class village charcoal firewood woody construction food medicinal plants grass

post-boom A decline decline decline no change no change no change

B decline no change decline no change no change no change

C decline no change decline no change no change no change

boom D decline decline decline no change no change no change

E no change no change decline no change no change no change

pre-boom F no change no change no change no change no change no change

G n.a. no change no change no change no change no change
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charcoal availabilities under the ‘no charcoal’ scenario,

despite their lack of perceived changes in charcoal availabil-

ities in trend analyses and their classification as pre-boom
villages. The ‘no charcoal’ scenario for village F indicated

charcoal availability was 78% larger in the past than current

estimates (figure 4a). Their lack of perceived changes in
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charcoal availability was probably due to the absolute avail-

ability of charcoal being higher than post-boom villages

(figure 3a), and any losses to date may therefore not have

been large enough to decrease charcoal availability to

scarce levels. Village F was classified as a pre-boom village

as it had not reached peak charcoal production at the time

of this study, and charcoal production was restricted to

local small-scale producers. This suggests that even small-

scale production can have a measureable impact on charcoal

resources. The local population of village G did not produce

charcoal, so the loss of charcoal availability between past and

present estimates as modelled in the ‘no charcoal’ scenario

(figure 4a) were probably caused by the effect of amalgamated

plot level data for both pre-boom villages being applied to vil-

lage G (table 3). For all villages, the estimated changes in

charcoal availability in the future under the ‘total charcoal’

scenario showed a 100% loss of current charcoal availability,

as expected, as the ‘total charcoal’ scenario models all suitable

charcoal trees as cut or removed from woodlands.

Firewood was only perceived as declining in villages A

and D. This was surprising as most of the species used for fire-

wood overlapped with those used for charcoal (electronic

supplementary material, table S1), suggesting villages with

longer histories of charcoal production should be more likely

to see a decline in firewood. The ‘no charcoal’ scenario indi-

cated that firewood availability was higher in the past

compared with current estimates for all villages by up to 32%

(figure 4b), although most of their 95% confidence intervals

overlapped with the zero line, suggesting they were not signifi-

cantly higher than current estimates. Charcoal production may

not have impacted on perceived firewood availability to date,

and firewood may still be available despite charcoal pro-

duction if woody residues and smaller charcoal trees that are

not targeted for charcoal can still provide suitable firewood,

or if alternative species not usually preferred for firewood

were used instead. The modelled changes to firewood avail-

ability in the future under the ‘total charcoal’ scenario

showed decreases in firewood availability for all villages

(figure 4b). Further charcoal production is therefore likely to

decrease firewood availability in future for all villages. How-

ever, future losses should not decrease availability by more

than 52% of current estimated values but, at the upper limit

of confidence bounds, could decrease by up to 86% from cur-

rent estimates (figure 4b). Future decreases are likely to be

more severe in villages that have less absolute availability of

firewood, such as villages A and C, where further losses

would mean few firewood resources remaining in absolute

terms (figure 3b).

Woody construction services were perceived as declining

in all post-boom and boom villages, but not in pre-boom villages.

However, the modelled availability of woody construction

materials in the ‘no charcoal’ scenario showed higher esti-

mated availabilities in the past when compared with

current estimates for all villages by up to 43% (figure 4c);

low changes in boom villages D–E are probably due to the

low sample size in Mopane woodlands (table 3). One respon-

dent in pre-boom village F said that they did not see a decline

in construction materials as they also used A. johnsonii for

construction purposes, which is not used for charcoal, so

there was no conflict between uses. This may explain why

post-boom villages reported a decline in construction materials,

whereas pre-boom villages did not, if alternatives to Mopane

trees for construction such as Androstachys trees are not
available. Diversity of woodland types within a village land-

scape may therefore contribute towards reducing impacts of

charcoal production on ES provision. Furthermore, pre-boom
villages may not have perceived a loss in woody construction

materials if absolute availability of woody construction

materials was higher (figure 3c). The modelled changes to

woody construction materials in the future under the ‘total

charcoal’ scenario show that further decreases of woody con-

struction materials in all villages can be expected if charcoal

production continues (figure 4c). However, woody construc-

tion availability should not decrease by more than 40% of

current values but, at the upper limit of confidence bounds,

woody construction availability could decrease by up to 70%

(figure 4c). These modelled decreases are likely to be more

severe in villages that have less current availability of woody

construction materials or less diversity of provisioning wood-

lands (figure 3c), such as villages A and C, where further

losses would mean few resources remaining in absolute terms.

Food and medicinal plant availabilities all showed a slight

increase from current estimates in the ‘no charcoal’ scenarios,

and a slight decrease from current estimates in the ‘total char-

coal’ scenarios, but differences to current estimates were small

(less than 15%) and unlikely (95 CIs overlapped the zero line)

to be different to current estimates (figure 4d,e). Food and med-

icinal plants from woodlands were not perceived as declining

in any of the villages, perhaps due to their infrequent use

(table 1), greater diversity of species used and less overlap

with species used for charcoal (electronic supplementary

material, table S1). Most villages also mentioned that cutting

down of fruit trees was forbidden, so overlaps with other

uses, which are more destructive, are unlikely. Furthermore,

food and medicinal plant availability was measured in terms

of stem density, and impacts of charcoal may therefore be

less severe than if measured in terms of biomass, as selective

charcoal extraction would remove large trees, decreasing bio-

mass more so than stem density. Stem density may even be

increased after charcoal production if coppicing of cut stems

or regeneration occurs.

Services related to grass, such as roof thatch and grazing,

were not mentioned in any of the village trend analyses, and

were therefore assumed not to be changing. The modelled

maximum grass biomass potentials all showed a slight

decrease in ‘no charcoal’ scenarios and a slight increase in

‘total charcoal’ scenarios (figure 4f ). However, the differences

to current values were small (less than 7%) and unlikely to be

different to current estimates (figure 4f ). If charcoal extraction

had a small effect on stem density, maximum potentials for

grass biomass would also show small effects, as it was mod-

elled as a function of stem density (electronic supplementary

material, figure S1).
4. Discussion
(a) Charcoal production trade-offs
Savannahs are important for providing a multitude of

environmental, economic and cultural benefits to millions

of rural and urban people worldwide, but despite this, face

several conservation threats [39]. The savannahs and wood-

lands of Africa are also multifunctional ecosystems, and the

issue of charcoal production trade-offs with other ES is just

a small part of the many management challenges facing

these systems [10]. However, understanding the impact of
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charcoal production and trade-offs with other ES can contrib-

ute towards reconciling the needs of the inhabitants with the

need for conservation and the provision of ES.

In this study, we find that trade-offs of charcoal produc-

tion in our study area are likely to be with firewood and

woody construction material services from Mopane wood-

lands. These trade-offs have already been perceived to occur,

especially in villages with longer histories of charcoal

production, and projected estimates indicate that these trade-

offs are likely to increase in future for all sampled villages if

charcoal production continues. However, the results also

suggest that there is some resilience to the impacts of charcoal

production on other ES in our study area. Trade-offs were

mediated by village landscape configurations, where greater

woodland diversity increased availability of alternatives in

some cases. Also, villages with greater absolute availability of

services were less likely to perceive declines in services despite

large modelled losses. Conversely, villages with landscapes

dominated by low-quality woodlands (shrub Mopane and

Boscia woodlands) had less resource availability, and were

more likely to perceive declines in ES. Impacts of charcoal pro-

duction are therefore not uniform, and some villages may be

more vulnerable to impacts of charcoal production both in

the past and in the future.

In the African context, this study suggests that where char-

coal extraction occurs on a selective basis, the impact on other

provisioning services may be minimal. This is in contrast with

the rhetoric on charcoal of the ‘woodfuel crisis’ in the 1970s

and 1980s, where woodfuel demand was projected to outstrip

supply causing large-scale deforestation. The woodfuel crisis

has not materialized [40,41], but there has been some suggestion

that there might be a return to it [42], largely due to intense

exploitation of woodlands occurring at ‘hot spots’ around

large urban centres. However, the ecological evidence is sparse

to support the view that charcoal production causes widespread

deforestation and severe impacts [16,43,44], and the sustainabil-

ity of charcoal production is highly context-specific. Concerns

over sustainability and impacts of charcoal production at ‘hot

spots’ remain well-founded, and management challenges for

charcoal production are to avoid the creation of over harvesting

in ‘hot spots’, leading to deforestation.
(b) Implications for management
The woodlands of southern Africa, including Mopane wood-

lands, are multifunctional and provide a range of services

[10,45,46]. To manage Mopane woodlands for multiple ES

requires detailed understanding of the processes that

govern their ES provision and use by people. This study

found that a combination of the woodland structure and flor-

istics ultimately determines the ability of woodlands to

provide key services to local populations, and the impacts

that charcoal production had on these services. The disaggre-

gation of woodlands into specific woodland types also

helped to show that not all woodlands were equally good

at providing services, and the quality of the woodland type

was key to determining the provision of services. Therefore,

assuming simple land cover-ES links, as is often the case in

trade-off analyses [47], will not suffice; it was the quality of

the land cover that was linked to the provision of many of

the key ES in these ecosystems, and their interactions which

determined their trade-offs. Thus, gaining a greater under-

standing of the ecology behind the provision of ES in African
woodlands will aid the management of these woodlands for

multiple services.

In our study, it was found that several services could

be provided from the same woodland type, supporting the

view of multifunctional woodlands. However, in order to

assess optimal and sustainable management strategies of

these woodlands for multiple uses, growth and recovery

rates of woodlands from disturbance are needed. Very few

studies have been conducted on the fundamental growth

rates and recovery of C. mopane from disturbances [48–50],

but growth rates in our study area are likely to be slow (less

than 1 mm radial growth per annum) given the low rainfall

and poor soil conditions [51,52]. This has implications for pro-

viding sustainable low-impact charcoal from Mopane

woodlands, and any forest management strategy should con-

sider that C. mopane may take many decades to recover from

charcoal harvesting, increasing the area required for sustain-

able extraction and the timescales over which trade-offs are

likely to affect local people. Forest managers should also con-

sider that villages with landscapes dominated by lower

quality and less diverse woodland types are likely to be more

vulnerable to further charcoal production impacts, and these

villages may need to be prioritized in management efforts.

The trade-offs identified in this study are context-specific,

in that they are only representative of the current situation in

Mabalane District, and may not be representative of future

scenarios where the species or characteristics of trees used

for charcoal production change. For instance Malimbwi

et al. [15] show that charcoal production often moves from

a highly selective phase to a ‘take anything’ phase as the

resource becomes scarce. If this switch did occur it would

have very different impacts on ES than those found here,

most probably exceeding current trade-offs and impacting

several other ES [16]. To maintain ES and avoid further

impacts of charcoal production both now and in future,

increased intensification (i.e. the ‘take anything’ phase) of

charcoal production should be avoided, and the production

frontier should continue to expand into other Mopane wood-

land areas [24]. This strategy would increase the area being

degraded, but evidence from this study suggests that selec-

tive charcoal extraction does not completely eliminate other

provisioning services, and if left to re-grow following char-

coal extraction, the woodlands would be able to recover

more quickly than if intensive extraction had resulted in lar-

gely deforested areas or conversion to other intensive land

uses [48]. There is some evidence that this strategy is already

occurring in neighbouring districts further to the south,

where charcoal extraction is currently banned due to over-

exploitation, encouraging the charcoal frontier to continue

moving to new areas of exploitation [24]. However, avoiding

intensive charcoal extraction is difficult if the demand for

charcoal remains high, driving up prices and incentives to

make charcoal [17]. It will require coordination at the provin-

cial level of the charcoal licencing regime and forestry sectors,

to ensure the frontier keeps moving away from Maputo City,

or risk losing key ES in the long term.
(c) Implications for livelihoods
Charcoal production is an important livelihood activity in

our study area [25], and if charcoal production causes unsus-

tainable loss of Mopane trees, local people could risk losing

this livelihood activity in the long term. However, other
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studies have found a limited contribution of forests to rural

livelihoods if other land uses, such as agriculture, can provide

equal or higher livelihood benefits [53,54]. Agricultural land

plays an important part in providing some natural resources

[55], but this study found that several key provisioning

services were specific to woodlands. A decline in wood-

land-specific services, such as firewood and construction

materials, may cause appreciable welfare losses, especially

for the most vulnerable [41]. Although other land covers

such as agriculture are undoubtedly important for liveli-

hoods, the loss or degradation of woodlands would still

impact on essential services that cannot be provided from

alternative land covers in our study area. In order to gain a

full understanding of ES provision and impacts of changing

woodlands, more studies on ES provision and livelihood

benefits from other land cover types are required.

The primary benefit of charcoal for producers is for cash

income generation, especially given a general lack of alternative

income sources [56]. Charcoal production is one of the only

ways to generate cash income in our study area, as alternatives

such as cash crops are limited due to lack of access to markets

and low productivity. Generally, income from charcoal is not

enough to lift producers out of poverty [54], but it can mitigate

the impacts of poverty in some instances [57,58], and provide an

important safety net during hard times [41,56]. Thus, charcoal

production may be beneficial to local populations if the costs

of charcoal production impacts on natural resources do not out-

weigh the cash benefits to livelihoods. However, other studies

conducted as part of the ACES project in our study area have

found that the majority of the charcoal production income did

not remain with local communities, and was largely exported

by external large-scale producers, due to lack of support for

community producers and poor governance in the forestry

sector [25]. This pattern of benefit distribution disfavour-

ing local village producers is common [59–61]. Therefore,

evidence suggests that local people stand to lose their natural

resources but do not gain the majority of the profits as a

result of charcoal production in our study area [25]. Alternative

livelihoods, improving governance in the forestry sector and

supporting locally accountable management initiatives are

key to maintaining important ES and improving benefits

received from charcoal production for local populations, and

are a key challenge in southern Mozambique.
5. Conclusion
This study finds that charcoal production is most likely to trade-

off with firewood and woody construction materials in the

Mopane woodlands of southern Mozambique, and declines

in these services have already been occurring in villages with

longer histories of charcoal production. However, even under

very intense selective charcoal production scenarios in future,

services were unlikely to disappear altogether. Some villages

with lower-quality woodlands may be more vulnerable
to further impacts of charcoal production, and should be

prioritized in any management efforts.

This study contributes towards a better understanding of

the ecological processes that govern ES provision and trade-

offs in African woodlands, which can contribute towards

managing woodlands for multiple ES. However, further

work is required on Mopane re-growth rates in the context

of sustainable charcoal production if suitable management

options are to be recommended.

To minimize further trade-offs of charcoal production in the

study area, charcoal production needs to remain highly selective

in the species and size of trees extracted for charcoal and avoid

further intensification of charcoal production. A switch to a

‘take anything’ harvesting regime risks losing key ES provision

in the long term. To avoid increased intensification, the charcoal

frontier must continue to expand to new areas of exploitation

and allow for regeneration of woodlands to occur. To avoid

further intensification of charcoal production and increase the

cash benefits received by charcoal producers, improved

governance in the forestry sector, coordination at the provincial

level of the charcoal licencing regime, and support for local

management initiatives are key challenges to overcome.
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