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Abstract We analyzed the relation of several synchrony

markers in the electroencephalogram (EEG) and Alzhei-

mer’s disease (AD) severity as measured by Mini-Mental

State Examination (MMSE) scores. The study sample

consisted of 79 subjects diagnosed with probable AD. All

subjects were participants in the PRODEM-Austria study.

Following a homogeneous protocol, the EEG was recorded

both in resting state and during a cognitive task. We

employed quadratic least squares regression to describe the

relation between MMSE and the EEG markers. Factor

analysis was used for estimating a potentially lower num-

ber of unobserved synchrony factors. These common fac-

tors were then related to MMSE scores as well. Most

markers displayed an initial increase of EEG synchrony

with MMSE scores from 26 to 21 or 20, and a decrease

below. This effect was most prominent during the cognitive

task and may be owed to cerebral compensatory mecha-

nisms. Factor analysis provided interesting insights in the

synchrony structures and the first common factors were

related to MMSE scores with coefficients of determination

up to 0.433. We conclude that several of the proposed EEG

markers are related to AD severity for the overall sample

with a wide dispersion for individual subjects. Part of these

fluctuations may be owed to fluctuations and day-to-day

variability associated with MMSE measurements. Our

study provides a systematic analysis of EEG synchrony

based on a large and homogeneous sample. The results

indicate that the individual markers capture different

aspects of EEG synchrony and may reflect cerebral com-

pensatory mechanisms in the early stages of AD.

Keywords EEG synchrony markers � Alzheimer’s

disease � Compensatory mechanism � Coherence � Granger

causality � Canonical correlation

Introduction

Alzheimer’s disease

Dementia is a disorder of cognitive abilities that has

increasing prevalence with age. Alzheimer’s disease (AD)

is estimated to account for 60–80 % of dementia cases;

hybrid forms with other dementia types occur frequently

(Schmidt et al. 2010; Jellinger 2007). AD is a progressive

brain disorder that is associated with neuronal cell loss and

the development of neurofibrillary tangles and cortical

amyloid plaques, e.g., in the hippocampus (Braak et al.

2006). Additionally, alterations in transmitter-specific
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markers including forebrain cholinergic systems are

prevalent in AD (McKhann et al. 2011). Cognitive deficits

include impairment of learning and memory, semantic

difficulties, deficits in judgement, abstract or logical rea-

soning, planning and organizing, and, in the late stage of

AD, impaired motor functions including chewing and

swallowing. As from AD diagnosis, the average survival

time ranges from 5 to 8 years (Jeong 2004; Bracco et al.

1994). Figure 1 illustrates the structural cerebral changes

that occur in advanced AD.

In Europe, approximately 10.93 million individuals

suffered from any form of dementia in 2013. This incidence

rate was estimated to increase to 20.75 million by 2050

(Alzheimer’s Disease International 2013). On a global

scale, the organization Alzheimer’s Disease International

projected the number of dementia cases to increase from

44.35 million in 2013 to 135.46 million by 2050 (Alzhei-

mer’s Disease International 2013). Assuming a prevalence

rate of 70 % of AD-caused dementia, the incidence rate of

AD would hereby increase from approximately 31 million

in 2013 to approximately 95 million by 2050.

Cognitive decline caused by AD entails both severe

social and economic consequences (Alzheimer’s Disease

International 2010; World Health Organization and Alz-

heimer’s Disease International 2012). An early diagnosis of

the disease is the basis for medical treatment, caregiving,

and consultation (Schmidt et al. 2010; Alzheimer’s Disease

International 2011). Up to this moment, there is no definite

in vivo diagnosis of AD; the disease is classified either as

possible or probable AD according to well-defined criteria

(McKhann et al. 2011). In clinical practice, obligatory

screening for AD includes the assessment of the neuro-

logical, internistic, and psychiatric status, neuropsycho-

logical tests, a complete blood count, and cerebral

magnetic resonance imaging (MRI). Additionally, clinical

studies suggest genotyping, liquor analysis, serology,

imaging procedures such as positron emission tomography

(PET) and functional MRI, as well as the electroen-

cephalogram (EEG) as diagnostic supplements (Schmidt

et al. 2010; Laske et al. 2015).

EEG synchrony in AD patients

One of the major EEG changes that have been reported in

AD are perturbations of EEG synchrony (cf. Jeong 2004;

Dauwels et al. 2010a for recent reviews). Several studies

have analyzed group differences of resting-state EEG

synchrony between AD patients, subjects with mild cog-

nitive impairment (MCI), and normal elderly controls:

Pearson correlation coefficients were analyzed in Dauwels

et al. (2010a), coherences in Locatelli et al. (1998), Wada

et al. (1998), Anghinah et al. (2000), Stevens et al. (2001),

Adler et al. (2003)1, van der Hiele et al. (2007), Jelles

et al. (2008), Akrofi et al. (2009), and Dauwels et al.

(2010a), partial coherences in Dauwels et al. (2010a),

Granger causalities and directed transfer functions in

Dauwels et al. (2010a) and Babiloni et al. (2009), infor-

mation-theoretic measures such as mutual information in

Jeong et al. (2001), Wan et al. (2008), and Dauwels et al.

(2010a), phase synchrony measures in Stam et al. (2003),

Pijnenburg et al. (2004), Stam et al. (2005), Kramer et al.

(2007), Stam et al. (2007), Park et al. (2008), Pijnenburg

et al. (2008), and Dauwels et al. (2010a), and stochastic

event synchrony in Dauwels et al. (2007) and Dauwels

et al. (2010a). Most of these studies have suggested a

decrease of resting-state EEG synchrony for AD patients as

compared to the controls. Additionally, some studies have

investigated group differences of EEG synchrony during

cognitive tasks (coherences in Hogan et al. 2003; Jiang

2005b; Jiang and Zheng 2006; Hidasi et al. 2007; van der

Hiele et al. 2007; Güntekin et al. 2009, and synchroniza-

tion likelihood in Pijnenburg et al. 2004) or during photic

stimulation (coherences in Wada et al. (1998), Kikuchi

et al. (2002) and Jiang (2005a)). Especially during working

memory tasks, increased EEG synchronies have been

reported for MCI subjects (and in a few cases also for AD

patients) as compared to the controls (cf. Jiang 2005b;

Jiang and Zheng 2006). This phenomenon has been

attributed to compensatory mechanisms of the brain

(Dauwels et al. 2010b; Smith et al. 2007).Fig. 1 Cerebral slice of a healthy brain and a brain in advanced AD:

in AD, shrinkage is especially severe in the hippocampus and

ventricles (fluid-filled spaces within the brain) grow larger. Image

credit: 2014 Alzheimer’s Association. http://www.alz.org. All rights

reserved. Illustrations by Stacy Jannis

1 Here, the control group consisted of patients suffering from

depression.
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However, there have been only few studies that correlate

EEG synchrony measures with AD severity as measured by

neuropsychological tests. Studies investigating coherences

have reported no significant correlations with the neu-

ropsychological test results, neither in resting state (Adler

et al. 2003; Kikuchi et al. 2002) nor during a working

memory task (Kikuchi et al. 2002). There have been sev-

eral studies finding significant correlations between neu-

ropsychological test results and synchronization likelihood

(Stam et al. 2003; Pijnenburg et al. 2004; Babiloni et al.

2006), as well as between test results and global field

synchronization (Park et al. 2008).

About this study

The purpose of this study was to derive markers for EEG

synchrony from the (multivariate) spectral density and

information theory. We investigated whether these markers

correlated with AD severity as measured by a neuropsy-

chological test score. Hereby, quadratic synchrony courses

were analyzed in order to take compensatory cerebral

mechanisms into account. In contrast to most studies, we

investigated synchrony not between single EEG channels

but between channel groups to gain more robust EEG

markers. The study was conducted within a project (No.

827462) funded by a Grant from the Austrian Research

Promotion Agency FFG. It has been approved by the ethics

committees of the Medical Universities of Graz, Innsbruck

and Vienna, and by the ethics committee of Upper Austria.

This paper has been organized in the following way:

Sect. 2 is concerned with the materials and methods

applied in this study. We describe the sample data, the EEG

preprocessing procedure, the markers for EEG synchrony,

the estimation of common factors for synchrony, and the

methods for analyzing their changes with progressing AD.

Section 3 provides the study results. Finally, Sect. 4 dis-

cusses the findings and provides concluding remarks.

Materials and methods

Study subjects

The study sample consisted of 79 subjects (50 female, 29

male) diagnosed with probable AD according to NINCDS-

ADRDA criteria (McKhann et al. 2011). All subjects were

participants in the multi-centric cohort study Prospective

Dementia Registry Austria (PRODEM-Austria) of the

Austrian Alzheimer Society. Enrollment criteria included

the availability of a caregiver, written informed consent of

each participant and caregiver, as well as the absence of co-

morbidities affecting the conduction of the study. Clinical

assessments—including EEG recordings—were conducted

at the Medical Universities of Graz, Innsbruck, Vienna, and

the General Hospital Linz, each of them complying with a

homogeneous study protocol. The subjects were aged

between 52 and 88 years (mean = 73.57, standard deviation

= 9.22) with a duration of probable AD ranging from 2 to

120 months (mean = 25.54, standard deviation = 22.08).

Additionally, each subject’s highest completed level of

education was classified on a scale of 1 (primary school) to

6 (tertiary institution). Cognitive deficits were evaluated by

Mini-Mental State Examination (MMSE) on a scale of

0–30 with lower scores indicating more severe cognitive

impairment (Folstein et al. 1975). The study subjects

reached MMSE scores between 15 and 26 (mean = 22,

standard deviation = 3.16).

EEG recordings

EEG data were recorded from 19 gold cup electrodes

placed according to the International 10–20 system (Jasper

1958). Figure 2 illustrates the electrode placement on the

scalp. Connected mastoids were used as reference and the

ground electrode was located between channels FZ and CZ.

Additionally, both horizontal and vertical electrooculogram

(EOG) channels were recorded by electrodes placed

above/below the left eye and at the outer corners of both

eyes. A wrist clip electrode acquired an electrocardiogram

(ECG) channel. The signals were amplified, band-pass

(0.3–70 Hz), and notch (50 Hz) filtered by an AlphaEEG

amplifier (alpha trace medical systems) and digitized at 256

Hz with a resolution of 16 bits. Impedances were kept

below 10 kX. All four recording sites used identical

equipment and software settings for the EEG recordings.

All EEG recording were conducted in accordance with a

clinically predefined paradigm consisting of two parts:

initially, the subjects were positioned upright in armchairs

with integrated neck support in a resting but awake con-

dition with closed eyes (180 s). This was followed by a

cognitive task with open eyes where subjects were asked to

FP1 FP2

F7 F3 FZ F4 F8

T7 C3 CZ C4 T8

P7 P3 PZ P4 P8

O1 O2

Fig. 2 Electrode placement on the scalp as seen from above (Int.

10–20 system)
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memorize and recall faces and corresponding names shown

on a screen (130 s). This visual-verbal memory test was

designed by neurologists especially for dementia patients,

as episodic memory and processing of complex stimuli are

among the earliest and most frequently impaired cognitive

functions in AD. Throughout this work, the recording

stages are referred to as resting phase and active phase.

EEG preprocessing

EEG recordings can be corrupted by electrical signals of

non-neuronal origin. These so-called artifacts have either

physiological or technical sources. Physiological sources

include eye movements and blinking, muscular tension,

movement, transpiration, cardiac activity, and talking.

Technical artifacts are caused by spurious noise from

electronic devices, induction from the mains supply (at 50

or 60 Hz), or poor electrode contacts. EEG preprocessing

aims at removing these artifacts and obtaining ‘‘pure’’

neuronal signals. In this study, we applied the following

preprocessing steps:

Pre-selection At first, EEG segments corrupted by non-

removable artifacts, e.g., from poor electrode contacts,

were visually identified and excluded from further analy-

ses. On average, 10 % of the resting phase and 35 % of the

active phase were excluded, thus leaving an average of

162 s of the resting phase and 84 s of the active phase for

our analyses.

High-pass filtering The remaining EEG, EOG, and ECG

signals were then digitally high-pass filtered using a stable,

direct-form finite impulse response (FIR) filter with linear

phase, order 3402 and a border frequency of 2 Hz. Here any

non-neuronal trends and low-frequency artifacts—e.g.,

from transpiration—were removed from the signals.

Removing cardiac artifacts Next, artifacts originating

from cardiac activity were approached. These artifacts

appear—mostly in multiple EEG channels—as near-peri-

odic spikes, affecting the EEG signals in a broad frequency

range due to their non-sinusoidal waveform and the

resulting harmonics. The cardiac artifacts were removed by

applying the so-called modified Pan-Tompkins algorithm

that makes use of the ECG signal for detecting the loca-

tions of the cardiac spikes (Waser and Garn 2013).

Removing ocular artifacts Eye-induced artifacts from

blinking and ocular movements affect the EEG mostly in

the frequency range below 10 Hz. These artifacts occur

most prominently in the frontal and fronto-temporal EEG

channels, and in several cases also in central and even

parietal EEG channels. The eye-induced artifacts were

removed by utilizing the EOG channels that captured

blinking and ocular movements. However, the EOG

channels recorded high-frequency neuronal activities as

well; hence, the EOG signals were subject to prior low-pass

filtering using a stable, direct-form FIR filter with linear

phase, order 340 and a border frequency of 12 Hz. Since

no dynamic dependences between EOG and EEG were

observed, eye-induced artifacts could be removed by

applying static linear regression of each EEG signal on the

EOG signals.

Low-pass filtering Finally, the EEG signals were digi-

tally low-pass filtered using a stable, direct-form FIR filter

with linear phase, order 340 and border frequency 15 Hz.

In this way, high-frequency artifacts, e.g., from muscle

tension, were removed from the EEG. The border fre-

quency of 15 Hz was determined due to the observation

that muscular induced artifacts altered the EEG signals

from 15 Hz upwards. This is demonstrated in Fig. 3 that

shows typical EEG segments of an artifact-corrupted

channel T7 (red) and an artifact-free channel CZ (blue)

both in time and frequency domain. The artifacts in T7

alter the spectral density in a broad frequency range, here

illustrated by the red area. For the benefit of minimizing the

presence of artifacts in the preprocessed EEG, the com-

parably low border frequency of 15 Hz was thus accepted.

Segmentation In general, brain dynamics and, conse-

quently, EEG signals are non-stationary (Kaplan et al.

2005). However, since this study’s methods rely on (wide-

sense) stationarity of the signals, i.e., a certain invariance

of the first and second moments with respect to time, the

0 0.5 1 1.5 2 2.5 3 3.5 4

CZ

T7

Time [s]

0 5 10 15 20 25 30
0

0.5

1

1.5

Frequency [Hz]
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en
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ty CZ (no artefact)

T7 (muscle artefact)

Fig. 3 Comparison of an artifact-corrupted channel T7 (red) and an

artifact-free channel CZ (blue) both in time and frequency domain.

Muscular induced artifacts altered T7 in a broad frequency range,

here illustrated by the red area

2 The applied FIR filter design method was based on ideal filter

approximation using a window function, where the approximation

error decreased with increasing filter order. We used zero-phase

forward and reverse digital filtering, where the filter order is limited to

a third of the sampling points by the length of edge transients. Since

the minimum length of EEG segments was 1024 sampling points (i.e.,

4 s), the maximum filter order was 1024
3
� 341. The software

implementation required an even filter order, thus leading to an order

of 340.
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EEG was divided in ‘‘quasi-stationary’’ 4-s segments with a

2-s overlap. The length of 4 s was the maximum length

where EEG segments were still stationary as verified by an

augmented Dickey–Fuller test (Dickey and Fuller 1979).

All further analyses were carried out on each of these

artifact-corrected and band-pass filtered (2–15 Hz) 4-s EEG

segments.

EEG in a stochastic framework

Each EEG segment was interpreted as part of a trajectory

of a real-valued stationary stochastic process xðtÞð Þ with

time index t 2 Z. Here, xðtÞð Þ is multivariate, i.e., it con-

sists of subprocesses xiðtÞð Þ where the index i ¼ 1; . . .; n

corresponds to the number of EEG channels. We consid-

ered stochastic processes with an infinite auto-regressive

(AR(1)) representation (see Hannan and Deistler 1988):

X1

s¼0

AðsÞxðt � sÞ ¼ �ðtÞ ; ð1Þ

where AðsÞ 2 Rn�n satisfies
P1

s¼0 kAðsÞk\1 and �ðtÞ is

white noise that is orthogonal to xðt � sÞ for s[ 0. The

covariance function of xðtÞð Þ is defined as cðsÞ ¼ Exðt þ
sÞxðtÞ0 with time lag s 2 Z. The elements cij describe the

linear dependence between xi and xj. The (multivariate)

spectral density of xðtÞð Þ at frequencies k 2 �p; p½ � is

defined as follows:

f ðkÞ ¼ 1

2p

X1

s¼�1
e�ikscðsÞ ; ð2Þ

where the diagonal elements fii are the auto-spectra of xi
and the off-diagonal elements fij are the cross-spectra of xi
and xj. We assumed throughout that f ðkÞ has full rank for

all k. The spectral density f ðkÞ, the covariance function

cðsÞ ,and the AR-coefficients A(s) are closely related to

each other. Based on these functions, the following con-

cepts of synchrony for the computation of our EEG

markers were employed:

Coherence The coherence between xi and xj can directly

be derived from the cross-spectrum fij and the respective

auto-spectra fii and fjj. It is defined as

CijðkÞ ¼
jfijðkÞj2

fiiðkÞfjjðkÞ
ð3Þ

with k 2 �p; p½ �. Cij takes values between 0 and 1 with

values close to 1 indicating a strong linear dependence

between xi and xj (Brillinger 1981). Due to the symmetry

Cij ¼ Cji, coherence provides no information on the

direction of influence. Furthermore, it cannot distinguish

direct from indirect dependencies for n[ 2.

Partial coherence The idea of partial coherence is to

gain information on the direct dependencies between xi and

xj. It is defined as the coherence between the residuals of

the orthogonal projections of xi and xj on the space that is

spanned by the xk with k ¼ 1; . . .; nf g n i; jf g (Brillinger

1981). The partial coherence can be derived directly from

the inverse of the spectral density g ¼ f�1 as

pCijðkÞ ¼
jgijðkÞj2

giiðkÞgjjðkÞ
ð4Þ

with k 2 �p; p½ � (Dahlhaus 2000). pCij takes values

between 0 and 1 with higher values indicating stronger

direct linear dependence between xi and xj. The partial

coherence is again symmetric and, thus, provides no

information on the direction of influence either.

Phase shift The cross-spectral density fij between xi and

xj is a complex valued function. In polar coordinates, it can

be rewritten as

fijðkÞ ¼ jfijðkÞjeiUijðkÞ: ð5Þ

Here, UijðkÞ measures the expected phase shift between xi
and xj at frequency k. The normalized phase nUij ¼ jUijj=p
can be used as a symmetric measure for synchrony that

takes values between 0 and 1.

Granger causality Granger introduced the concept of

Granger causality for investigating not only the depen-

dencies between xi and xj, but also the direction of these

dependencies (Granger 1969). The idea is that if knowl-

edge of xiðt � sÞ with s[ 0 improves the prediction of

xjðtÞ, then xi is said to be Granger causal for xj. Considering

the bivariate AR(1) representation

X1

s¼0

AðsÞ
xiðt � sÞ
xjðt � sÞ

� �
¼ �ðtÞ ð6Þ

with AðsÞ 2 R2�2, Granger non-causality of xi for xj is

equivalent to (cf. Eichler 2006)

AjiðsÞ ¼ 0 8s ¼ 1; . . .;1: ð7Þ

Although Granger causality provides information on the

direction of dependence, it does not take any other sub-

processes but xi and xj into account.

Conditional Granger causality The concept of condi-

tional Granger causality is a generalization of the original

bivariate version. The idea is that if knowledge of the past

xi improves the prediction of xj given xk with

k ¼ 1; . . .; nf g n i; jf g, then xi is said to be conditionally

Granger causal for xj (Flamm et al. 2012). Conditional

Granger non-causality is equivalent to (cf. Eichler 2006)

AjiðsÞ ¼ 0 8s ¼ 1; . . .;1; ð8Þ
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where the AðsÞ 2 Rn�n are the coefficients of the AR(1)-

representation (1).

Canonical correlation All presented concepts aim at

quantifying the dependence between two univariate pro-

cesses xiðtÞ and xjðtÞ. Hotelling introduced the concept of

canonical correlation analysis in order to analyze the

dependence between multivariate xIðtÞ 2 Rp and xJðtÞ 2
Rq with disjoint index sets I; J � 1; . . .; nf g (Hotelling

1936). The idea is to determine, in a first step, those linear

transformations a1 2 Rp and b1 2 Rq that maximize

q1 ¼ corr a01xIðtÞ; b01xJðtÞ
� �

. Next, the a2 2 Rp and b2 2 Rq

maximizing q2 ¼ corr a02xIðtÞ; b02xJðtÞ
� �

with side condi-

tions a02xIðtÞ?a01xIðtÞ and b02xJðtÞ?b01xJðtÞ are determined.

Repeating this procedure r ¼ min p; qð Þ times defines the

canonical correlation coefficients q1. . .qr. They are the

eigenvalues of

c
�1

2

II cIJc
�1
JJ cJIc

�1
2

II ; ð9Þ

where cII and cJJ are the auto-covariances and cIJ ¼ c0JI are

the cross-covariances of xIðtÞ and xJðtÞ. The canonical

correlation coefficients provide information on the sym-

metric, i.e., non-directional, linear dependence between

xIðtÞ and xJðtÞ. They are, however, designed to capture

time-static dependencies only.

Dynamic canonical correlation Brillinger introduced

dynamic canonical correlation analysis as a generalization

of the original time-static version in Brillinger (1981). The

dynamic canonical correlation coefficients q1ðkÞ. . .qrðkÞ
are defined as maximum correlation betweenP

s aiðt � sÞ0xIðtÞ and
P

s biðt � sÞ0xJðtÞ with ai 2 Rp and

bi 2 Rq. They are the eigenvalues of

f
�1

2

II ðkÞfIJðkÞf�1
JJ ðkÞfJIðkÞf

�1
2

II ðkÞ ð10Þ

at frequencies k, where fII and fJJ are the auto-spectra and

fIJ ¼ f 0JI are the cross-spectra of xIðtÞ and xJðtÞ. Thus, the

dynamic canonical correlation coefficients provide infor-

mation on the symmetric dynamic linear dependence

between xI and xJ .

Cross-mutual information The previous concepts aim

at measuring linear dependences only. However, the

complexity of neuronal processes may suggest the

implementation of markers for non-linear synchrony.

Shannon and Weaver introduced the concept of cross-

mutual information for measuring the information content

transmitted between two systems in Shannon and Weaver

(1949). The cross-mutual information between two dis-

crete random variables X and Y measures the amount of

information that can be obtained about one random

variable by observing the other random variable. It is

defined as

cMIðX; YÞ ¼
X

x;y

pXYðx; yÞ log2

pXYðx; yÞ
pXðxÞpYðyÞ

; ð11Þ

where x and y are the observations of X and Y with joint

probability distribution pXY and marginal probability dis-

tributions pX and pY , respectively. The cross-mutual

information is symmetric and provides information on non-

linear couplings.

Computation of EEG synchrony markers

The presented concepts were employed for the computation

of EEG synchrony markers. Since single EEG channels

are—despite EEG preprocessing—prone to disturbances, we

arranged the EEG channels into clusters and analyzed the

synchrony between these clusters in order to obtain more

robust results. The following five clusters were defined (cf.

Dauwels et al. 2010b; Waser et al. 2014): Anterior (FP1, FP2,

F3, F4), Temporal/Left (F7, T7, P7), Central (FZ, C3, CZ,

C4, PZ), Temporal/Right (F8, T8, P8), and Posterior (P3, P4,

O1, O2). Figure 4 shows the distribution of these clusters on

the scalp. In our 19-channel recording framework, this

clustering reflects roughly the position of the big cerebral

lobes. For each cluster, we conducted principal component

analysis (PCA) and investigated the synchrony between the

principal components (PC) of two clusters under consider-

ation. To be more precise, we investigated synchrony

between the first two PCs of one cluster and the first two PCs

of another cluster, since the first two PCs together accounted

for over 90 % of the variability in the respective channel

data. We then used the PC combination where the synchrony

marker related the most (in terms of coefficient of determi-

nation R2) with MMSE scores. This was done for all ten

cluster combinations (cf. Fig. 4). Figure 5 illustrates the

described approach by taking the example of synchrony

between the Anterior (yellow) and Posterior (cyan) clusters.

FP1 FP2

F7 F3 FZ F4 F8

T7 C3 CZ C4 T8

P7 P3 PZ P4 P8

O1 O2

Fig. 4 Distribution of EEG clusters (cf. Dauwels et al. 2010b):

Anterior (yellow), temporal/left (green), Central (red), temporal/right

(blue), and Posterior (cyan)
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The red arrows indicate the measurement of synchrony. The

idea of using the first two PCs was to use only the ‘‘main’’

information common to all channels of a cluster in order to be

robust against irregularities in single EEG channels. This

method has already been demonstrated in Garn et al. (2015,

2014); Waser et al. 2013). Static and dynamic canonical

correlations were calculated directly between the clusters

without previous PCA (Waser et al. 2014). A more common

approach than our PCA method is the computation of marker

averages between each channel of one cluster and each

channel of another cluster (c.f. Dauwels et al. 2010b), which

is best suited for high-density EEG recordings. For EEG

recordings with a low number of channels and, hence, only

few marker values, averaging could be misleading if there

were irregularities in one or more EEG channels. However,

we also computed averages in order to compare the perfor-

mance of our PCA approach with this more commonly used

technique.

We estimated the spectral density by using an indirect

estimation procedure. The sample covariance bc was

tapered—i.e., component-wise multiplied—with a lag-

window w(s) that attenuated bc for higher lags. The tapering

was employed to reduce the leakage effect and to construct

a consistent spectral estimate (Tukey 1967). We used a

Parzen window in order to ensure a positive semi-definite

estimate of the spectral density (Parzen 1962). The tapered

sample covariances were then Fourier transformed,

resulting in the estimate

bf ðkÞ ¼ 1

2p

Xc

s¼�c
wðsÞbcðsÞ e�iks; ð12Þ

where c was the truncation point that determined the

number of covariance lags included in bf . We identified an

optimal truncation point of c ¼ 255 visually by window

closing (Tukey 1967), aiming at a smooth spectral esti-

mator that still displayed characteristic spectral peaks such

as the individual alpha frequency during resting phases.

The estimates bc and bf were then used to compute the

EEG synchrony markers. Coherences and partial coher-

ences were derived directly from bf by using the definitions

(3) and (4). In order to study ordinary and conditional

Granger causality, estimates bAðsÞ for the AR-coefficients

were obtained by solving the Yule–Walker equations (Yule

1927; Walker 1931). The model order was decided by the

Akaike information criterion (Akaike 1974). The ‘‘degree’’

of (conditional) Granger causality between cluster i and j

was then determined by using the Euclidean norm of all

bAjiðsÞ for fixed i and j, s ¼ 1; . . .. The respective static and

dynamic canonical correlation coefficients were derived

from bc and bf by using (9) and (10), respectively. We

employed the Euclidean norm of these canonical correla-

tion coefficients as synchrony marker. For the cross-mutual

information, joint and marginal probability distribution

functions were estimated from the joint data histogram

with a 10� 10 grid of bins. We used the normalized ver-

sion of the cross-mutual information that was introduced in

Maes et al. (1997).

Markers for Granger causality, conditional Granger

causality, canonical correlation, and cross-mutual infor-

mation were computed in time domain, whereas markers

for coherence, partial coherence, phase shift, and dynamic

canonical correlation were computed in frequency domain

at each frequency and averaged over the frequencies within

four bands: d from 2 to 4 Hz, h from 4 to 8 Hz, a from 8 to

13 Hz, and b0 from 13 to 15 Hz. Since different EEG

frequencies correspond to different cognitive states,

dividing them in bands is a well-established procedure in

EEG analysis (cf. Jeong 2004). Table 1 summarizes the

EEG synchrony markers (with a shorter notation) that were

applied in this study, and the type of synchrony they

describe.

EEG synchrony versus AD severity

We analyzed the change of the EEG synchrony markers in

the course of AD with quadratic ordinary least squares

regression models. In these models, the MMSE score—as a

measure for AD severity—was employed as independent

variable and each EEG marker as respective dependent

variable. Quadratic model functions were used since non-

monotonic changes of EEG synchrony due to compen-

satory neuronal mechanisms have been reported (cf. Park

et al. 2008; Smith et al. 2007). The subjects’ age, sex, AD

duration, and highest level of completed education were

introduced as co-variables. Hereby, age and AD duration

were introduced via both linear and quadratic terms. The

significance of the regression models was evaluated by

Fisher’s F-test (p\0:05). The goodness of fit was quanti-

fied by the coefficient of determination R2. Since several

Fig. 5 Diagram of synchrony analysis between Anterior (yellow) and

Posterior (cyan) clusters: Step 1: PCA is performed for each cluster;

Step 2: Each synchrony marker (indicated by red arrows) is

calculated between the first two PCs of the Anterior cluster and the

first two PCs of the Posterior cluster; Step 3: Maximize correlation

between synchrony marker and MMSE in terms of coefficient of

determination R2
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hypotheses were tested on the same sample data, we

employed Bonferroni post-correction to control the fami-

lywise error rate (cf. Hsu 1996). Thereby, since we com-

puted 8 different EEG markers, the significance level was

adjusted from p ¼ 0:05 to p ¼ 0:05
8
¼ 0:00625. This rather

strict correction method was used in order to rule out any

spurious testing effects.

Common factors for EEG synchrony

Since several of the presented EEG synchrony markers are

closely related to each other, they could be reflecting the

behavior of a small number of unobserved synchrony

factors. We used a maximum likelihood approach for

estimating these common factors as proposed by Lawley

(1940). In order to interpret the factor model, we rotated

the factors based on the oblimin criterion, which is a

standard method for optimizing the rotation that allows the

factors to be oblique (i.e., correlated) (Carroll 1953). In the

same way as described in Sect. 2.6, quadratic regression

with factor scores as dependent variable, MMSE as inde-

pendent variable and age, sex, AD duration, and highest

level of completed education as co-variables was applied

for estimating the relation between the synchrony factors

and AD severity.

Results

In recapitulation, the following 8 EEG markers were ana-

lyzed in a resting and a cognitively active phase: coherence

C, partial coherence pC, phase shift nU, Granger causality

G, conditional Granger causality cG, canonical correlation

qc, dynamic canonical correlation dqc ,and cross-mutual

information cMI. Each marker was computed between each

of the EEG clusters (cf. Fig. 4): Anterior-Central (A-C),

Anterior-Posterior (A-P), Anterior-Temporal/Left (A-TL),

Anterior-Temporal/Right (A-TR), Central-Posterior (C-P),

Central-Temporal/Left (C-TL), Central-Temporal/Right

(C-TR), Posterior-Temporal/Left (P-TL), Posterior-Tem-

poral/Right (P-TR), and Temporal/Left-Temporal/Right

(TL-TR). The direction of the asymmetric Granger

causality measures G and cG will be indicated by arrows

‘‘!’’ and ‘‘ ’’. C, pC, nU ,and dqc were studied frequency

bandwise in d, h, a and b0. We employed quadratic

regression models to analyze changes of the EEG syn-

chrony markers with progressing AD as quantified by

MMSE scores. As a result, p-values of Fisher’s F-tests—

the significance levels were Bonferroni corrected from 0.05

to 0:05
8
¼ 0:00625—and coefficients of determination R2

were determined. Additionally, common factor analysis

was applied in order to determine the behavior of unob-

served underlying synchrony changes.

Resting phase

EEG markers versus MMSE scores In the resting phase,

coherences were significantly related with MMSE scores

for several cluster pairs, most prominently between A-TL

(R2 ¼ 0:314 in d), P-TL (R2 ¼ 0:277 in d and R2 ¼ 0:286

in h), and P-TR (R2 ¼ 0:344 in d, R2 ¼ 0:321 in h and

R2 ¼ 0:257 in a). The partial coherences markers reached

R2 values greater than 0.3 between A-P (R2 ¼ 0:311 in h),

A-TL (R2 ¼ 0:326 in b0), P-TL (R2 ¼ 0:318 in a), and TL-

TR (R2 ¼ 0:302 in d). The phase shift related significantly

with MMSE scores only between A-TL with R2 ¼ 0:350 in

a and A-TR. The Granger causality marker was most sig-

nificant between A-TL, reaching R2 ¼ 0:374 for A!TL.

Conditional Granger causalities showed significant rela-

tions with MMSE scores in both direction of A-P, P-TL,

and P-TR, and a maximum of R2 ¼ 0:327 between A-C.

No significant changes of the canonical correlation marker

with increasing AD severity were observed. The dynamic

canonical correlation marker related only between C-TR

(R2 ¼ 0:316 in d) significantly with the MMSE. The cross-

mutual information reached R2 values greater than 0.3

between A-C (R2 ¼ 0:303), A-TL (R2 ¼ 0:351), C-P

(R2 ¼ 0:360), P-TL (R2 ¼ 0:306), P-TR (R2 ¼ 0:386), and

TL-TR (R2 ¼ 0:345). Figure 6 shows the R2 values of the

synchrony markers in the resting phase for all cluster

combinations as gray color image. Each image pixel

Table 1 EEG markers and their

synchrony characteristics
EEG markers Synchrony characteristics

Coherence C Linear, symmetric, direct and indirect, bivariate

Partial coherence pC Linear, symmetric, direct, bivariate

Phase shift nU Linear, symmetric, direct and indirect, bivariate

Granger causality G Linear, asymmetric, direct and indirect, bivariate

Conditional granger causality cG Linear, asymmetric, direct, bivariate

Canonical correlation qc Linear, symmetric, direct and indirect, multivariate

Dynamic canonical correlation dqc Linear, symmetric, direct and indirect, multivariate

Cross-mutual information cMI Non-linear, symmetric, direct and indirect, bivariate
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corresponds to a synchrony measure (abscissa) at a certain

cluster pair (ordinate). Significant R2 values are gray-coded

and non-significant values are indicated by black fields.

The exact R2 values are provided in Table 2.

We observed several significant relations of EEG

markers with MMSE scores. For diagnostic purposes, steep

monotonic relations with high R2 values would be desir-

able. However, the relations we found were, in most cases,

of non-monotonic nature. The left plot in Fig. 7 shows a

scatter plot of the conditional Granger causality between

A!C. Each blue dot represents the marker value for one

patient on the ordinate at the corresponding MMSE score

on the abscissa. Since the abscissa is reversed, points fur-

ther to the right correspond to more severe cognitive def-

icits. The red line illustrates the quadratic regression

function that was fitted to the data (R2 ¼ 0:327, p\0:001).

Here the regression model function describes an initial

increase of the synchrony marker for MMSE scores from

26 to 22, and a decrease from 22 downwards. For the right

plot of Fig. 7, we distinguished two regimes of MMSE, i.e.,

above (n ¼ 55) and below MMSE scores of 21 (n ¼ 24).

The null hypothesis that the two groups came from the

same population (i.e., they have equal medians) was then

tested by a Mann–Whitney U test (Mann and Whitney

1947). This hypothesis was accepted with p ¼ 0:561.

Common factors for EEG synchrony Several of the

presented EEG synchrony markers are based on similar

concepts. We analyzed whether this conceptual similarity

was reflected by the results or, in other words, how the

EEG markers correlated with each other. Figure 8 shows

the Pearson correlation coefficients of the synchrony

markers with each other between A-TL in the resting phase

as gray color image. Each image pixel corresponds to a pair

of synchrony measures. Bright gray pixels correspond to a

positive correlation close to 1 and dark gray pixels corre-

spond to a negative correlation close to �1. In this

example, interesting correlation patterns were observed.

Non-surprisingly, coherences and partial coherences were

positively correlated to each other. In addition, positive

relation of these measures with Granger causalities was

observed. The marker for phase shift, however, was neg-

atively correlated with the coherence measures. Canonical

correlations, dynamic canonical correlations, and the cross-

mutual information marker were only weakly correlated

with each other and the other measures.

These correlation patterns could be reflecting the

behavior of a low number of unobserved synchrony factors.

We estimated these common factors by a maximum like-

lihood approach and rotated them by using an oblique

promax rotation based on the oblimin criterion. Figure 9

shows a biplot of the first two common factors for syn-

chrony between A-TL in the resting phase. The abscissa

corresponds to the first factor and the ordinate to the second

factor. Although the coordinate axes are shown as

orthogonal lines, the factors are correlated with each other

(Pearson correlation coefficient of 0.312). The lines rep-

resent the observed synchrony markers and their magnitude
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Fig. 6 EEG synchrony versus AD severity in the resting phase:

coefficients of determination R2 for the quadratic regression models

on all cluster pairs. Significant values are gray-value coded and non-

significant values are indicated by black fields
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represents the marker value for

one patient and the red line

illustrates the quadratic

regression function with R2 ¼
0:327 and p\0:001
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and sign illustrate how each marker is represented in terms

of the common factors. Here the coherences C, partial

coherences pC, Granger causalities G, conditional Granger

causalities cG (in direction!), and the phase shift nU in d
contribute positively to the first factor, whereas the phase

shift in the remaining frequency bands contributes in a

negative way. The second factor represents the canonical

correlation qc, the dynamic canonical correlation dqc in all

frequency bands and, although more weakly, the cross-

mutual information cMI. Interestingly, the conditional

Granger causality cG (in direction  ) cannot be conclu-

sively assigned to one of the factors.

In the context of this study, the next logical step was to

investigate how these common factors were related to AD

severity. Therefore, we applied the same quadratic

regression procedure as for the synchrony markers to each

common factor. In the resting phase, the first factors dis-

played the strongest relation (measured in R2) with MMSE

scores, most significantly between A-TL (R2 ¼ 0:353), C-

TL (R2 ¼ 0:332), and P-TL (R2 ¼ 0:271). Figure 10 shows

a scatter plot of the first common factor between A-TL. As

before, each blue dot represents the factor value for one

patient on the ordinate at the corresponding MMSE score

on the abscissa. Points further to the right correspond to

more severe cognitive deficits. The red line illustrates the

quadratic regression function that was fitted to the data

(R2 ¼ 0:353, p\0:001). As for the individual synchrony

markers, the first common factor scores follow an

ambiguous trend with an increase for MMSE scores from

26 to 20 and a decrease below that. Again, the slopes of the

regression function are rather flat. As before, we distin-

guished the two regimes of MMSE above (n ¼ 55) and

below 21 (n ¼ 24) and tested the null hypothesis that the

two groups came from the same population by using the

Mann–Whitney U test. Again, no significant difference was

found between the two groups (p ¼ 0:721).

Active phase

EEG markers versus MMSE scores In the active phase,

coherences were strongly related to MMSE scores between

C-TL with R2 ¼ 0:399 in d, R2 ¼ 0:366 in h , and R2 ¼
0:393 in a. Partial coherences showed the most significant

results of all synchrony markers between A-C with R2 ¼
0:344 in d, R2 ¼ 0:420 in h, R2 ¼ 0:462 in a , and R2 ¼
0:350 in b0. The phase shift, on the other hand, related most

significantly with AD severity between A-TL (R2 ¼ 0:310

in d) and, especially, C-P in all frequency bands. Both the

Granger and the conditional Granger causality markers

reached R2 values greater than 0.3: Granger causalities

between A-C (R2 ¼ 0:354), C-P (R2 ¼ 0:329), C-TL

(R2 ¼ 0:307), and, most prominently, between P-TL with

R2 ¼ 0:377; conditional Granger causalities between C-P

(R2 ¼ 0:316), P-TL (R2 ¼ 0:321), and TL-TR

(R2 ¼ 0:304). Highly significant results between C-TL were

observed for the canonical correlation marker with

R2 ¼ 0:402, and for the dynamic canonical correlations in h
with R2 ¼ 0:366. Cross-mutual information related strongly

with MMSE scores for eight out of ten cluster pairs, most

prominently between C-P (R2 ¼ 0:386) and C-TL

(R2 ¼ 0:373). Figure 11 shows the R2 values of the
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synchrony markers in the active phase for all cluster com-

binations as gray color image. As before, significant values

are gray-value coded and non-significant values are indi-

cated by black fields. The exact R2 values are provided in

Table 3.

In the active phase, R2 values up to 0.462 were

observed. However, the regression function fitted to the

data were even more ambiguous than in the resting phase.

Figure 12 shows a scatter plot of the coherence in d
between C-TL. Each blue dot represents the marker value

for one patient on the ordinate at the corresponding MMSE

score on the abscissa. Again, points further to the right

correspond to more severe cognitive deficits. The red line

illustrates the quadratic regression function that was fitted

to the data (R2 ¼ 0:399, p\0:001). The model function

describes an initial increase of the synchrony marker for

MMSE scores from 26 to 21, and a decrease from 20

downwards. The slopes are steeper than in the resting

phase. For the right plot of Fig. 12, the null hypothesis of

equal medians of the two groups could clearly not be

rejected with p ¼ 0:969.

Common factors for EEG synchrony Next, we analyzed

how these EEG markers were related to each other with the

objective of identifying synchrony patterns. Figure 13

shows the Pearson correlation coefficients of the markers

with each other between C-TL in the active phase as gray

color image. Each image pixel corresponds to a pair of

synchrony measures. Bright gray pixels correspond to a

positive correlation close to 1 and dark gray pixels corre-

spond to a negative correlation close to �1. Here coher-

ences, Granger causalities, conditional Granger causalities
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(in direction!), canonical correlations, dynamic canonical

correlations, and cross-mutual information formed a group

of positively correlated markers. Partial coherences and the

phase shift showed little correlation with the other measures,

whereas conditional Granger causalities in direction were

negatively related with the members of the former group.

These synchrony patterns in the active phase are rep-

resented in Fig. 14 as well, where a biplot of the first two

common factors between C-TL is shown. The abscissa

corresponds to the first factor and the ordinate to the second

factor. The factors are weakly correlated with each other

(Pearson correlation coefficient of 0.077). The lines rep-

resent the observed synchrony markers and their magnitude

and sign illustrate how each marker is represented in terms

of the common factors. Here the coherences C, Granger

causalities G, conditional Granger causalities cG (in

direction!), canonical correlations qc, dynamic canonical

correlations dqc , and the cross-mutual information cMI

contribute positively to the first factor, whereas the con-

ditional Granger causality cG (in direction  ) contributes

in a negative way. The second factor is determined most

positively by the phase shift nU, and most negatively by

the partial coherences pC in d and b0.

The first common factor showed the most significant

relations with MMSE scores in the active phase as well. The

highest coefficients of determination were observed

between C-TL (R2 ¼ 0:433) and C-TR (R2 ¼ 0:302). On the

left side, Fig. 15 shows a scatter plot of the first common

factor between C-TL. As before, each blue dot represents the

factor value for one patient on the ordinate at the corre-

sponding MMSE score on the abscissa. Points further to the

right correspond to more severe cognitive deficits. The red

line illustrates the quadratic regression function that was

fitted to the data (R2 ¼ 0:433, p\0:001). Here the first

common factor scores followed an ambiguous trend with an

increase for MMSE scores from 26 to 21 and a decrease

from 20 downwards. Here the reversed U-shape of the

regression curve was much more distinct than in the resting

phase. The two groups in the right plot of Fig. 15 above

(n ¼ 55) and below MMSE scores of 21 (n ¼ 24) could not

be statistically distinguished by Mann-Whitney U test; the

hypothesis of equal medians was accepted with p ¼ 0:672.

Comparison: PCA approach versus averaging

We computed synchrony between the electrode clusters by

computing it between their first and second PCs. A more

common approach is the computation of marker averages

between each channel of one cluster and each channel of

another cluster. We therefore computed averages as well in

order to compare the performance of our PCA approach

with this more commonly used technique. In the resting

phase, a similar performance of the two methods was

observed. The averaging technique reached several R2

values greater than 0.3 and up to 0.372 (cross-mutual

information between A-TL). Although significant results

were found for mostly the same cluster combinations, R2

values of our PCA approach were on average greater by

0.06. In the active phase, the same cluster combinations

were most significant: C-TL (coherences, canonical cor-

relation), A-C (partial coherences), C-P (phase shift), and

several combinations for the cross-mutual information. R2

values greater than 0.4 and up to 0.451 were observed.
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Again, the PCA approach performed on average better in

its R2 values by 0.08. In both resting and active phases, the

regression models for both methods displayed the same

ambiguous trends.

Discussion and conclusion

Summary

We analyzed and compared different EEG synchrony

markers in AD patients both in a resting and a cognitively

active state and how these markers changed with AD

severity as measured by MMSE scores. During the resting

phase, synchrony between Anterior-Temporal/Left, Poste-

rior-Temporal/Left and Posterior-Temporal/Right EEG

channel groups was most significantly related with AD

severity. Here coherences, partial coherences, phase shift,

Granger causalities, conditional Granger causalities, and

the cross-mutual information reached R2 values greater

than 0.3 and up to 0.386. None or only weak relations with

MMSE scores were observed for static and dynamic

canonical correlations, respectively. The relations between

the EEG markers and AD severity were, in most cases, of

non-monotonic nature with a slight increase for MMSE

scores from 26 to 21, and a decrease below. During the

cognitively active phase, the different synchrony markers

corresponded better to the spacial cluster distribution:

coherences and canonical correlations related significantly

with MMSE scores between Central-Temporal/Left, partial

coherences between Anterior-Central, the phase shift

between Central-Posterior, and Granger causalities, con-

ditional Granger causalities, and the cross-mutual infor-

mation between several channel groups. The relations were

stronger than in the resting phase, reaching R2 values up to

0.462. Here too, ambiguous synchrony courses were

observed with slopes that were generally steeper than

during the resting phase. During both phases, our approach

of synchrony calculation performed slightly better in terms

of R2 values than the averaging method by 0.06 and 0.08,

respectively.

The analysis of the dependencies between the EEG

synchrony markers revealed correlation patterns that were

further investigated by common factor analysis. Factors

were estimated by a maximum likelihood approach and

oblique promax rotation. During the resting phase, coher-

ences, partial coherences, ordinary and conditional (in

direction !) Granger causalities, and the phase shift in d
contributed positively to the first factor, whereas the phase

shift in the remaining frequency bands contributed in a

negative way. The second factor represented static and

dynamic canonical correlations and, more weakly, the

cross-mutual information. The first factor was most sig-

nificantly related with MMSE scores between Anterior-

Temporal/Left (R2 ¼ 0:353), Central-Temporal/Left

(R2 ¼ 0:332), and Posterior-Temporal/Left (R2 ¼ 0:271).

As for the individual synchrony markers, the first common

factor scores followed an ambiguous trend with an increase

for MMSE scores from 26 to 20 and a decrease below.

During the active phase, coherences, ordinary and condi-

tional (in direction !) Granger causalities, static and

dynamic canonical correlations, and the cross-mutual

information contributed positively to the first factor,

whereas the conditional Granger causality (in direction )

contributed in a negative way. The second factor is mostly

determined by the phase shift in a positive and by the

partial coherences in a negative way. The first common

factor showed highly significant relations with MMSE

scores between Central-Temporal/Left (R2 ¼ 0:433) and

Central-Temporal/Right (R2 ¼ 0:302). The reversed

U-shape of the regression curve was much more distinct

than during the resting phase.
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Fig. 15 The first common

factor between C-TL in the

active phase: the blue dots

represent the marker values for

each patient and the red line

illustrates the quadratic

regression function with R2 ¼
0:433 and p\0:001
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Comparison to state-of-the-art

The concepts of this work are, on first sight, similar to

those of Dauwels et al. (2010b), Garn et al. (2015) and

Garn et al. (2014). In Dauwels et al. (2010b), various EEG

synchrony markers were used to distinguish patients suf-

fering from mild cognitive impairment from age-matched

control subjects. We used a different set of connectivity

measures including conditional Granger causalities, static

and dynamic canonical correlations. Whereas in (Dauwels

et al. 2010b), the synchrony markers were used for

assigning subjects to one of two groups, we addressed

synchrony trends with cognitive decline as measured by

neuropsychological test scores. In Dauwels et al. (2010b), 9

families of measures were observed by calculating the

correlation coefficient between all pairs of spatially aver-

aged synchrony measures. In this study, 3 families of

resting phase measures [(1) (partial) coherences, Granger

causalities; (2) phase shift, conditional Granger causalities;

(3) (dynamic) canonical correlations, cross-mutual infor-

mation] and 3 families of active phase measures [(1)

coherences, Granger causalities, (dynamic) canonical cor-

relations, cross-mutual information; (2) partial coherences,

phase shift; (3) conditional Granger causalities) were

identified. These findings differ from the measures of the

families described in Dauwels et al. (2010b). However, in

order to directly compare these findings, the same set of

measures would have to be computed for the same elec-

trodes. The cognitive task during EEG recording is another

aspect that separates this study from Dauwels et al.

(2010b), where the analysis of resting-state EEG was

addressed. Finally, the estimation of common synchrony

factors and relating them with AD severity separates the

study approaches. Thus, on closer consideration, the per-

spectives of both studies differ in several aspects. In Garn

et al. (2015), different EEG markers were used to describe

major changes in the EEG of AD patients: relative spectral

power in different frequency bands as markers for slowing,

auto-mutual information and entropy as measures for

reduced signal complexity, and, finally, coherences,

Granger causalities, and canonical correlations as connec-

tivity measures. In Garn et al. (2014), relative band powers,

coherences, and auto-mutual information were applied to

investigate whether memory paradigms during EEG

recordings could improve the accuracy of diagnosing

cognitive deficits. As compared to Garn et al. (2015) and

Garn et al. (2014), this work provides a structured analysis

of markers for EEG synchrony and the correlation patterns

that they describe. A larger set of connectivity measures

was applied including partial coherences, the phase shift,

dynamic canonical correlations, and cross-mutual

information. The focus on the comparison and combination

of these measures introduced a novel perspective and new

insights into the relation of EEG synchrony and AD

severity. The analysis of oblique common synchrony fac-

tors that correspond to certain connectivity measures

offered an alternative approach for studying connectivity in

the EEG.

Other than that, there is only a small number of studies

that are directly comparable to this work since most studies

compare groups (e.g., healthy controls versus AD patients)

instead of correlating EEG synchrony markers with AD

severity. However, a major share of these group compar-

isons suggested a decrease of EEG synchrony in resting

state (e.g., Dauwels et al. 2010a; Locatelli et al. 1998;

Wada et al. 1998; Anghinah et al. 2000; Adler et al. 2003;

Jelles et al. 2008; Babiloni et al. 2009; Wan et al. 2008;

Stam et al. 2003; Pijnenburg et al. 2004; Kramer et al.

2007), and an increase during cognitive tasks for MCI and

in few cases also for AD patients as compared to controls

(e.g., Jiang 2005b; Jiang and Zheng 2006). This increase

was attributed to compensatory mechanisms in the brain

(cf. Dauwels et al. (2010b); Smith et al. 2007)). These

synchrony changes were mostly reported for the left

hemisphere, often between temporal and parietal, or tem-

poral and central EEG sites. The mainly applied synchrony

measures were coherences and, in more recent studies,

non-linear measures originating from information theory.

Studies that are directly comparable to this work reported

no significant correlations between the degree of AD and

coherences, neither in resting state (Adler et al. 2003;

Kikuchi et al. 2002) nor during a working memory task

(Kikuchi et al. (2002)). However, significant correlations

were observed between the degree of AD and synchro-

nization likelihood (Stam et al. 2003; Pijnenburg et al.

2004; Babiloni et al. 2006), and global field synchroniza-

tion (Park et al. 2008), respectively.

We observed a synchrony increase in initial stages and a

decrease in later stages of AD for most EEG markers and

for the first common factors. This initial increase may be

attributed to the same compensatory mechanisms in the

brain that have been reported in Dauwels et al. (2010b),

Park et al. (2008) and Smith et al. (2007). This phe-

nomenon was most prominent during the cognitively active

phase. In contrast to Adler et al. (2003) and Kikuchi et al.

(2002), we observed significant changes of coherences

during the active phase. This may be due to the applied

quadratic regression that allowed to model ambiguous

trends as well. The most significant changes of coherences

were observed between Central-Temporal/Left; these

findings correspond to the majority of group studies

mentioned.
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Apart from EEG synchrony markers, there is a large

number of studies using markers for EEG slowing and

reduced EEG complexity (c.f. Jeong 2004; Dauwels et al.

2010a; Garn et al. 2015). Especially the relative spectral

power in the d-, h-, a-, and b-frequency bands has been

studied extensively in the context of AD. The aim of this

work was to provide a detailed overview of EEG syn-

chrony changes in AD; including additional slowing mea-

sures would have gone beyond the scope of this study.

However, they have been reported for the same 79 AD

subjects in Garn et al. (2015). A highly significant slowing

of the EEG was observed especially in the h-band with R2

values up to 0.51 in the left-hemispheric channels. More

importantly, the changes in the d-, h-, and b-bands were of

monotonic nature, whereas changes in the a-band were

non-monotonic as well, maybe due to same compensatory

mechanisms as observed in this study.

Strengths and limitations

The following paragraphs will discuss the strengths and

limitations of this study. The EEG samples from the

PRODEM-Austria database were all conducted in a uni-

form setting and according to a clinically predefined

paradigm including both resting state and a cognitive task.

The sample consisting of 79 EEG datasets from probable

AD patients is, compared to the data in scientific literature,

among the largest; a comparable or higher number has been

reported in Wan et al. (2008) (103 AD, 124 controls),

Babiloni et al. (2009) (73 AD, 69 subjects with MCI, 64

controls) and Babiloni et al. (2006) (109 AD, 88 subjects

with MCI, 69 controls).

In this study, MMSE scores were used to quantify AD

severity. Other comparable studies—e.g., Adler et al.

(2003) and Stam et al. (2003)—have applied MMSE scores

as well. However, MMSE and EEG do not necessarily

measure the same cognitive processes. A variety of alter-

native neuropsychological assessments of cognitive

impairment has been designed including the Clinical

Dementia Rating Scale (CDR) Hughes et al. (1982), Dis-

ability Assessment for Dementia (DAD) Gélinas et al.

(1999), Neuropsychiatric Inventory (NPI) Cummings et al.

(1994), Geriatric Depression Scale (GDS) Yesavage et al.

(1982–1983), and a neuropsychological test battery by the

Consortium to Establish a Registry for AD (CERAD)

Morris et al. (1989); Mirra et al. 1991). Investigating the

relationship between the presented EEG synchrony mark-

ers and alternative neuropsychological instruments could

provide additional insights into the neuronal and cognitive

changes associated with AD severity.

We employed the demographic variables sex, age, level

of education, and AD duration as co-variables. Age and

level of education displayed a significant influence and

explained approximately 22 % of the MMSE score varia-

tions. From the directly comparable studies listed above,

Adler et al. (2003) and Pijnenburg et al. (2004) included

the subjects’ age in the analysis. Park et al. (2008)

accounted for age and level of education but detected no

significant influences.

A crucial step in EEG analysis is the preprocessing pro-

cedure. Eliminating low-frequency artifacts by high-pass

filtering is common practice in EEG analysis. The border

frequency of 2 Hz was empirically determined. Algorithms

for the detection and elimination of cardiac artifacts (cf.

Waser and Garn (2013)) were applied and verified by visual

examination. There is a broad range of alternative algorithms

for the removal of cardiac artifacts, both relying solely on the

EEG (e.g., Jiang et al. 2007; Jung et al. 2000) and relying on a

simultaneously recorded ECG channel (e.g., Nakamura and

Shibasaki 1987; Park et al. 1998). For the removal of eye

artifacts, the EOG channels were utilized. Other procedures

(often in the absence of EOG channels) such as blind source

separation have been applied in several studies, e.g., in Jung

et al. 2000. In the final preprocessing step, the EEG data were

low-pass filtered. The border frequency of 15 Hz was

determined by comparing the spectra of channels with and

without muscular artifacts. The EEG recordings were

equally divided into segments of 4 seconds with an overlap

of 2 seconds. Adaptive segmentation procedures have been

described as alternative approach in e.g., Bodenstein and

Praetorius (1977) and Deistler et al. (1986). However, these

procedures require structural breaks in the data, e.g., when

the patient opens their eyes. Within the EEG phases, no

severe structural breaks were observed and, thus, the uni-

form length segments applied. The stationarity of the

4-second segments was verified by an augmented Dickey–

Fuller test Dickey and Fuller (1979).

Dividing the frequency domain in frequency bands is

common practice in EEG analysis; however, frequency

borders vary in literature and the transition frequencies

between the four frequency bands may differ from the

transition frequencies used here by �1 Hz. The lower

frequency border of the d-band is often defined as 0 or 0.5

Hz. The upper b-border is usually defined in a range of 20

to 30 Hz. We are aware that the low border of 15 Hz

introduces neurophysiological limitations since the fre-

quency range above 15 Hz is associated with a variety of

cognitive functions including concentration and stimuli of

the motor cortex. However, these limitations were accepted

in order to make sure that no artifacts deteriorate the
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analyses. An alternative to fixed frequency bands would be

an individualization by means of the position of spectral

peaks such as the individual alpha frequency, as well as the

transition frequencies between these peaks. As these peaks

and the transition between them vary widely amongst dif-

ferent subjects, electrode channels, and cognitive phases,

an individualization of frequency bands is a non-trivial task

that would have complicated the analyses.

All but one synchrony marker were derived from the

spectral density and are, in a certain sense, of linear nature.

Due to the complexity of neuronal processes, recent studies

have considered non-linear measures including mutual

information Jeong et al. (2001), synchronization likelihood

Stam et al. 2003; Pijnenburg et al. 2004; Babiloni et al. 2006,

global field synchronization Park et al. (2008), and global

synchronization index Li et al. 2007; Lee et al. 2010. We

observed highly significant relations between cross-mutual

information and AD severity as well. These results suggest

that non-linear markers may be able to contribute valuable

information to any synchrony analysis. Combining linear and

non-linear synchrony markers could considerably improve the

understanding of EEG synchrony changes in AD.

With the aim of gaining robustness, we estimated the

synchrony markers between clusters of EEG channels

instead of between single electrode sites. This approach

seems reasonable since changes in the EEG reflect func-

tional changes in the cortical areas beneath the electrodes

Jeong (2004). By arranging the electrodes in clusters cor-

responding to the cerebral lobe structure, we tried to

describe the patterns of these functional changes more

accurately. For each cluster, we conducted PCA and

investigated the maximum synchrony between the PCs of

two clusters under consideration. Only the first two PCs of

one cluster and the first two PCs of another cluster were

hereby used, since they already accounted for over 90 % of

the variability in the respective channel data. This insight

suggested a two-dimensional static structure which was

indicative for a high degree of homogeneity within a

cluster. This method has already been demonstrated in

Garn et al. (2015), Garn et al. (2014) and (Waser et al. ,

2013). However, PCs accounting for low portions of vari-

ability may still have a substantial functional significance

and should be further investigated. The authors did not

intend to attribute physical meaning to the individual PCs.

Alternative approaches besides PCA include the compu-

tation of EEG markers between EEG channel pairs and

averaging over all these pairs (c.f. Dauwels et al. 2010b). In

this study, our PCA approach performed on average better

in terms of R2 values than the averaging method, thus

indicating slightly more robustness. This may be due to the

19-channel framework with its rough spatial resolution.

High-density EEG recordings with a higher number of

channels would allow for even more homogeneous clusters

that correspond better to the cerebral lobe structure.

For diagnostic purposes, a steep monotonic synchrony

trend with decreasing MMSE would be preferable. Our

synchrony markers, however, displayed non-monotonic

courses with decreasing MMSE scores. The employment of

quadratic regression models for the description of syn-

chrony changes allowed us to capture these non-monotonic

trends that could be reflecting compensatory brain mech-

anisms (Park et al. 2008; Dauwels et al. 2010b; Smith et al.

2007). The reversed U-shaped trends bring diagnostic

ambiguity with them. None of the individual EEG markers

were capable of distinguishing patients above and below

MMSE scores of 21, and a classification based on a com-

bination of all markers did not yield satisfying results in

terms of sensitivity and specificity. However, especially

during the cognitive task, rather steep slopes both for high

and low MMSE scores were observed. Thus, these syn-

chrony markers could provide information for character-

izing AD severity in subgroups of patients where the

approximate stage of cognitive decline is known a priori.

However, all these relations were obtained for the overall

patient group; they were not strong enough to be suited as

stand-alone criterion for individual diagnosis. A combi-

nation of the presented synchrony markers with markers

for slowing or reduced EEG complexity with potentially

more monotonic changes could help in refining this

criterion.

Conclusion

In conclusion, this study indicates that several of the pre-

sented synchrony markers relate to AD severity as mea-

sured by MMSE scores. The accumulation of channels

allowed a robust analysis of synchrony. The most promi-

nent significant results were observed between anterior-

temporal and posterior-temporal electrode sites during the

resting phase, and between anterior-central, central-poste-

rior, and central-temporal sites during the cognitively

active phase. The different markers—although closely

related to each other—captured different aspects of EEG

synchrony. Estimating common factors and relating these

factors with AD severity was demonstrated to be an

alternative approach to using individual markers only.

Using demographic co-variables led to an improvement of

the analysis. Another key aspect was the use of quadratic

regression instead of commonly used linear regression

models. This approach allowed to capture ambiguous

trends as well. Most markers displayed an initial increase

of EEG synchrony (MMSE [ 20) and a decrease in later
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stages. This effect was most prominent in the cognitive

phase and may be owed to compensatory brain mecha-

nisms. Although this phenomenon causes diagnostic

ambiguity, its analysis may provide supplementary infor-

mation for understanding the neuronal changes in AD.

Especially during the cognitively active phase, the slope of

the estimated synchrony course was steep both at high and

low MMSE scores and could help in the diagnostics of

patients where the approximate stage of cognitive decline

is already known. However, we should also remark that all

these relations were obtained for the overall patient group

and that they were not strong enough to be suited as stand-

alone criterion for individual diagnosis. Part of the varia-

tions in the scatter diagrams may be caused by fluctuations

associated with MMSE measurements.

Future studies should both relate the presented EEG

synchrony markers with alternative neuropsychological

assessments of AD severity and combine them with other

EEG markers that capture changes in signal complexity

and frequency content as well. Longitudinal studies need to

determine as to whether the EEG markers can help in

describing AD progression. The combination of EEG

markers with other potential structural and functional AD

markers could then aid in the diagnostics of AD.
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Appendix: Result tables

See Appendix Table 2 and 3.

Table 2 Coefficients of

determination R2 for all EEG

synchrony markers and all

cluster pairs in the resting

phase. Significant results after

Bonferroni correction are

represented in a bold font

EEG marker A-C A-P A-TL A-TR C-P C-TL C-TR P-TL P-TR TL-TR

C

d 0.121 0.139 0.314 0.201 0.203 0.264 0.271 0.277 0.344 0.108

h 0.143 0.119 0.248 0.219 0.165 0.242 0.233 0.286 0.321 0.158

a 0.128 0.168 0.210 0.191 0.139 0.251 0.238 0.237 0.257 0.126

b0 0.100 0.251 0.239 0.190 0.160 0.214 0.166 0.189 0.209 0.147

pC

d 0.214 0.290 0.191 0.260 0.149 0.136 0.169 0.223 0.202 0.302

h 0.187 0.311 0.284 0.280 0.188 0.193 0.190 0.291 0.252 0.258

a 0.172 0.204 0.175 0.127 0.188 0.163 0.226 0.318 0.250 0.286

b0 0.228 0.147 0.326 0.176 0.199 0.093 0.158 0.256 0.211 0.176

nU

d 0.153 0.205 0.246 0.241 0.217 0.179 0.148 0.127 0.176 0.188

h 0.149 0.222 0.242 0.239 0.248 0.183 0.165 0.162 0.196 0.214

a 0.143 0.250 0.350 0.295 0.242 0.212 0.194 0.147 0.199 0.165

b0 0.131 0.165 0.257 0.261 0.158 0.183 0.156 0.133 0.210 0.171

G

! 0.176 0.235 0.374 0.275 0.208 0.291 0.188 0.181 0.247 0.195

 0.191 0.174 0.272 0.144 0.221 0.158 0.214 0.254 0.260 0.135

cG

! 0.327 0.275 0.281 0.230 0.193 0.194 0.166 0.269 0.313 0.147

 0.199 0.301 0.189 0.221 0.256 0.217 0.239 0.257 0.272 0.152

qc 0.113 0.065 0.104 0.087 0.071 0.108 0.135 0.092 0.066 0.088

dqc

d

h

0.125 0.109 0.162 0.169 0.120 0.222 0.316 0.155 0.198 0.168

0.102 0.162 0.080 0.149 0.109 0.064 0.140 0.154 0.207 0.120

a 0.132 0.080 0.023 0.097 0.119 0.042 0.211 0.076 0.053 0.084

b0 0.146 0.140 0.149 0.127 0.212 0.035 0.148 0.148 0.080 0.107

cMI 0.303 0.237 0.351 0.231 0.360 0.249 0.257 0.306 0.386 0.345
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