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Abstract: Numerous biologic approaches are being investigated as anti-cancer therapies in 

an attempt to induce tumor regression while circumventing the toxic side effects associated 

with standard chemo- or radiotherapies. Among these, tumor necrosis factor-related 

apoptosis-inducing ligand (TRAIL) has shown particular promise in pre-clinical and early 

clinical trials, due to its preferential ability to induce apoptotic cell death in cancer cells 

and its minimal toxicity. One limitation of TRAIL use is the fact that many tumor types 

display an inherent resistance to TRAIL-induced apoptosis. To circumvent this problem, 

researchers have explored a number of strategies to optimize TRAIL delivery and to 

improve its efficacy via co-administration with other anti-cancer agents. In this review, we 

will focus on TRAIL-based gene therapy approaches for the treatment of malignancies. We 

will discuss the main viral vectors that are being used for TRAIL gene therapy and the 

strategies that are currently being attempted to improve the efficacy of TRAIL as an  

anti-cancer therapeutic. 
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1. Introduction: TRAIL as an Anti-cancer Biologic Agent 

Vast amounts of time and money have been spent developing new, more efficacious treatment 

options for cancer patients. Despite the many significant medical breakthroughs that have been made 

in recent years, advanced cancers remain difficult to treat, and standard therapies such as 

chemotherapy and radiotherapy are often associated with substantial toxicities that can limit their use 

in the clinic. For these reasons, biologic therapies have been increasingly explored as alternative 

approaches due to their potential to specifically target tumor cells for eradication, while leaving 

untransformed cells intact. By restricting cell death to only malignant cells, many of the side effects 

associated with standard therapies can be potentially avoided.  

TNF-related apoptosis-inducing ligand (TRAIL) is a biologic therapy that has shown great promise 

in pre-clinical studies, due to its ability to preferentially induce apoptotic cell death in transformed 

cells. Apoptosis is a tightly regulated cellular process, and differs from necrosis in that it does not 

trigger inflammatory host responses. Apoptosis proceeds by two main pathways, referred to as 

intrinsic, which is controlled by interactions of pro-apoptotic and anti-apoptotic members of the B-cell 

leukemia/lymphoma 2 (Bcl-2) protein family
 
[1], and extrinsic, which is induced via ligation of 

apoptosis-inducing ―death receptors‖ on the cell surface [2]. Malignant cells often carry mutations in 

the proteins that control intrinsic and extrinsic apoptotic signaling pathways, resulting in a decreased 

susceptibility to cell death. Consequently, many tumor types have shown a resistance to TRAIL-

induced cell death, thereby reducing its efficacy as a single agent [2-4]. To circumvent this deficiency, 

many groups have explored the use of TRAIL-based combinatorial approaches to cancer treatment, 

with the goal of overriding specific checkpoints that limit the clinical application of TRAIL ―stand-

alone‖ therapies. 

Therapeutic TRAIL use has been investigated in many different formats. Initial approaches 

employed systemic or local administration of recombinant TRAIL protein to ligate the TRAIL 

receptors on cancer cells and activate the extrinsic cell death machinery [5]. As the cell surface 

receptors for TRAIL were identified, antibody-based therapies were used to specifically bind the 

death-inducing TRAIL receptors on cancer cells and trigger apoptosis [5-7]. A number of recent 

reviews have covered these approaches [4,8], so we will instead focus on gene therapy-based 

methodologies that stimulate the TRAIL/TRAIL receptor cell death pathway in tumor cells. Within 

this context, we will summarize the TRAIL receptor family, the intracellular pathways that culminate 

in apoptosis following ligation of those receptors, the approaches that have been undertaken to 

enhance tumor cell susceptibility to TRAIL-mediated cell death, and the viral vectors that are being 

used to induce TRAIL gene expression.  

2. Structure and Function of TRAIL 

Prior to the discovery of TRAIL, two other members of the TNF family—the prototypic TNF and 

the closely related Fas Ligand (FasL)—had been identified as potent inducers of tumor cell death. 

Unfortunately, significant toxicity (i.e., induction of normal cell/tissue death) was observed after 

systemic administration of TNF and FasL (or anti-Fas mAb), which put the utility of these molecules 

as anti-cancer therapeutics into question. In 1995, Wiley et al. reported the cloning of the full length 

TRAIL cDNA [9]. A few months later, Pitti et al. published a report describing the same protein, which 
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they called Apo-2 ligand [10]. These two reports defined TRAIL as a Type II transmembrane protein 

that can be released as a soluble form following cleavage of the C-terminal extracellular domain. 

Evaluation of the extracellular domain of TRAIL revealed a moderate degree of homology with other 

TNF family members, including FasL (28% amino acid identity), TNF (23%), lymphotoxin- (23%), 

and lymphotoxin- (22%). Although the amino acid homology between TRAIL and these proteins was 

modest, the three-dimensional crystal structure of TRAIL was found to be quite similar to that of TNF 

and CD40 ligand [11]. TRAIL monomers are made up of two anti-parallel -pleated sheets that form a 

 sandwich core; the monomers then interact in a head-to-tail fashion to form a bell-shaped trimer [11]. 

This is an important hallmark of numerous TNF family members, in that trimerization leads to much 

greater biologic activity than is observed for either the monomeric or dimeric forms [9]. In humans, 

TRAIL mRNA is present in a variety of tissues including the spleen, thymus, prostate, ovary, small 

intestine, colon and placenta [9]. Within the hematopoietic compartment, TRAIL is expressed on 

activated T lymphocytes, B cells, NK cells, monocytes, dendritic cells, and neutrophils [3,12-16]. 

Early in vitro studies on TRAIL function revealed that it preferentially induced apoptosis in 

transformed cells, while leaving normal cells and tissues intact [9], and multiple in vivo studies have 

confirmed that the primary targets of TRAIL-induced apoptosis are malignant cells [17-21]. Further 

investigation into TRAIL function in tumor-free model systems has demonstrated that it can, in fact, 

induce apoptosis in specific populations of untransformed cells such as activated lymphocytes and 

influenza-infected epithelial cells of the lung [22-24]. So, depending on the pathophysiological 

condition, the apoptosis-inducing ability of TRAIL may not be as selective for transformed cells as 

was originally believed. Despite the fact that noncancerous cells can also be killed by TRAIL under 

certain circumstances, the development of TRAIL as an anti-cancer agent has continued and the vast 

majority of work with TRAIL has focused on its tumoricidal activity. 

3. The TRAIL Receptor Family 

TRAIL (either soluble or membrane-bound) can bind to one of several receptors. In humans,  

four membrane-bound TRAIL receptors have been identified: TRAIL receptor-1 [Death Receptor 4 

(DR4)] [25], TRAIL receptor-2 [Death Receptor 5 (DR5)] [26,27], TRAIL receptor-3
 
[Decoy Receptor 1 

(DcR1)/TRAIL receptor without an intracellular domain (TRID)] [26,28,29], and TRAIL receptor-4 

[Decoy Receptor 2 (DcR2)/TRAIL receptor with a truncated death domain (TRUNDD)]
 
[29-32]. The 

cytoplasmic tails of TRAIL-R1 and -R2 contain functional death domains that transduce apoptotic 

signals after receptor trimerization [32]. In contrast, neither TRAIL-R3 nor -R4 possess a functional 

intracellular death domain, and consequently have been referred to as ―decoy receptors‖ because they 

bind TRAIL with similar affinity as TRAIL-R1 and -R2 but cannot initiate apoptotic signaling. 

TRAIL-R3 and -R4 can therefore be considered natural competitive inhibitors that, when expressed at 

the right ratio with TRAIL-R1 and/or -R2, diminish the net apoptotic activity of TRAIL protein [28]. 

TRAIL can also bind to the soluble TNF receptor superfamily member osteoprotegerin [33], which 

functions primarily as a decoy receptor for Receptor Activator of NF-κB Ligand (RANKL) [34]. In 

mice, TRAIL is thought to bind to three receptors: TRAIL-R/DR5, mDcTRAIL-R1, and mDcTRAIL-R2. 

Of these murine TRAIL receptors, only DR5 has been characterized at the functional level [35,36]. 
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Figure 1. Therapeutic intervention points in the signaling pathways that mediate  

TRAIL-induced apoptosis. Intracellular pathways that culminate in apoptosis following 

TRAIL-R1 and -R2 ligation are illustrated. Blue arrows indicate apoptotic signaling 

pathways. Brown arrows indicate molecular intervention points for therapies that augment 

TRAIL-induced apoptosis. Red arrows indicate up- or down-regulation of specific 

molecular targets. 

 

4. Signaling Cascades that Regulate TRAIL-Induced Apoptosis 

Upon ligation of TRAIL trimers to TRAIL-R1 or -R2 in humans, the extrinsic apoptotic pathway is 

activated via a series of intracellular changes that culminate in the apoptotic death of the TRAIL 

receptor-bearing cell (Figure 1). One of the most proximal events of the TRAIL-induced signaling 

cascade is formation of a multimeric protein structure called the death-inducing signaling complex 

(DISC). The functional DISC is comprised of several proteins, including the ligated death receptors, 

Fas-associated death domain protein (FADD), and procaspases 8 and 10 [37,38]. Following DISC 

formation, the downstream signaling cascade is initiated via autocatalytic cleavage of procaspase 8 

into its active form [38]. Active caspase 8 then amplifies the apoptotic signal by cleaving and 

activating the effector caspases 3, 6, and 7. Caspases 3, 6, and 7 actively promote cell death by 

cleaving multiple protein targets that are responsible for maintaining cellular integrity, resulting in the 

cellular hallmarks of apoptosis: plasma membrane blebbing, inter-nucleosomal DNA cleavage, and 

nuclear shrinking. Active caspase 8 can also cleave the pro-apoptotic Bcl-2 protein Bid, thereby 

simultaneously triggering the intrinsic apoptotic pathway [39,40]. Transduction of pro-apoptotic 
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signaling from the DISC is tightly regulated, and cellular FADD-like IL-1-converting enzyme 

inhibitory protein (cFLIP) is a critical inhibitor at this proximal point in the apoptosis signal 

transduction pathway [41]. 

Cells expressing functional TRAIL receptors can be classified as either Type I or Type II, 

depending on their differential requirements for involvement of the intrinsic pathway in triggering 

apoptosis. Type I cells undergo apoptosis in response to extrinsic signals that lead to caspase 8 

cleavage. Type II cells do not undergo apoptosis upon activation of the extrinsic pathway alone; they 

also require activation of the intrinsic apoptotic pathway and inactivation of intracellular proteins that 

inhibit caspase signaling cascades, such as X-linked Inhibitor of Apoptosis Protein (XIAP) [42]. 

Initiation of the intrinsic apoptotic pathway leads to a loss of mitochondrial membrane potential. This 

allows cytochrome c to escape from the mitochondria into the cytosol, and also releases Second 

Mitochondria-derived Activator of Caspases/Direct Inhibitor of Apoptosis Protein Binding Protein 

with Low Isoelectric Point (Smac/DIABLO), which blocks the function of caspase inhibitors such as 

XIAP (Figure 1) [43,44]. Cytosolic cytochrome c promotes apoptosis by contributing to the formation 

of the apoptosome, which also includes ATP and Apoptotic Peptidase-Activating Factor 1 (APAF-1), 

and results in activation of caspase 9 [45,46]. Thus, co-induction of the intrinsic apoptotic pathway 

results in greater overall caspase activity, and a stronger pro-apoptotic signal that robustly promotes 

cell death. 

5. Overcoming Tumor Cell Resistance to TRAIL-Induced Apoptosis 

The focus on TRAIL as an anti-cancer agent originated from early studies that showed its ability to 

induce apoptosis was largely restricted to malignant cells [9]. In one report, 32 of 39 human tumor cell 

lines were sensitive to TRAIL-induced apoptosis in vitro, whereas untransformed cells were 

resistant [19]. This same study demonstrated that repeated intravenous injections of human TRAIL 

caused no observable toxicity in non-human primates [19]. Since that time, numerous reports have 

demonstrated the preferential ability of TRAIL to induce apoptosis in tumor cells, both in vitro and in 

vivo, while producing minimal toxic side effects in hosts [9,19-21,47-49]. Despite these encouraging 

results, other reports have shown that many tumor types are resistant to TRAIL (reviewed in [2,4,5]). 

To circumvent this limitation, a wide array of combinatorial therapies based on TRAIL administration 

has been examined, and several of these are outlined below. 

5.1. Chemotherapy and Radiotherapy 

Because chemo- and radiotherapy are the standard of care for many malignancies, their ability to 

synergize with TRAIL administration has been investigated. These therapeutic approaches tend to 

induce the tumor suppressor p53, which normally accumulates in cells following DNA damage [50]. 

Increased p53 expression can lead to increased TRAIL-R1 and –R2 expression [51,52], providing a 

mechanism for heightened TRAIL sensitivity
 
(Figure 1) [53,54]. Therefore, combining TRAIL 

administration with standard chemo- or radiotherapy may prove more efficacious than administering 

TRAIL alone, as suggested by promising results in pre-clinical models of glioma, renal cell carcinoma, 

breast, prostate, and bladder cancer [55-59]. 
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5.2. Proteasome Inhibitors 

A variety of drugs can increase tumor cell sensitivity to TRAIL-mediated apoptosis, usually by 

bypassing the intracellular checkpoints that render cells resistant to TRAIL. For example, the 

proteasome inhibitor bortezomib, approved for the treatment of multiple myeloma, promotes apoptosis 

by preventing ubiquitin-mediated degradation of pro-apoptotic proteins, increasing p53 and TRAIL-R2 

expression, and decreasing cFLIP expression (Figure 1) [60-62]. A recent report examining the 

combined effects of bortezomib and TRAIL on 15 different squamous cell carcinoma lines found that 

bortezomib also enhanced TRAIL efficacy through increased recruitment of caspase 8 and FADD into 

the DISC, and augmentation of the intrinsic apoptotic pathway [63]. For these reasons, the 

combination of TRAIL and bortezomib has shown promise as a therapeutic for TRAIL-resistant breast, 

colon and kidney tumors [64]. 

5.3. Sorafenib 

Sorafenib is a protein tyrosine kinase inhibitor approved for use in the treatment of renal cell 

carcinoma, and it has also received attention for its ability to sensitize tumor cells to TRAIL-mediated 

apoptosis by shifting the intracellular ratio of pro-apoptotic and anti-apoptotic molecules [65]. This 

can occur through several mechanisms, including sorafenib-triggered proteolytic degradation of cFLIP 

(Figure 1) [66] and decreased expression of the anti-apoptotic Bcl-2 family member Mcl-1 [67]. 

5.4. Histone Deacetylase Inhibitors 

Histone deacetylase inhibitors (HDACi) are a new class of antitumor drugs that epigenetically alter 

gene expression through increased histone acetylation [68], which in turn leads to the transcription of 

genes, such as tumor suppressors, that are normally repressed during tumor outgrowth. HDACi are 

being investigated as stand-alone agents for a variety of cancers, but they are also being explored for 

their ability to sensitize tumor cells to TRAIL-mediated killing. HDACi upregulate TRAIL-R2 

expression on tumor cells, thereby leading to a greater susceptibility to TRAIL-induced apoptosis 

(Figure 1) [69-73]. In addition, HDAC inhibition can modulate TRAIL-induced apoptosis in tumor 

cells by other molecular mechanisms, including increased caspase activation and decreased expression 

of anti-apoptotic molecules such as Bcl-2 [71,74,75]. 

6. Viral Vector-Mediated Gene Therapy 

Depending on the disease, gene therapy has become a viable therapeutic alternative for patients 

over the last decade because this technology can be used to restore proper gene expression in host 

cells, to express proteins with the intent of stimulating immunity (i.e. immunization), and/or to 

introduce genes that encode cytotoxic proteins. There has also been a great deal of work performed in 

the gene therapy arena focused on improving the delivery of therapeutic genes by modifying viral 

vectors to increase their tropism for target cells, or by restricting transgene expression via 

incorporation of cell/tissue-specific promoters. Regardless of its intended use, one of the most 

important aspects of viral vector-based gene therapy is that this type of treatment should be capable of 

treating the disease in question while remaining benign to the host. 
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Viruses act as natural vehicles for delivering genes as they readily transfer their genetic material to 

infected host cells [76,77]. For use as therapeutic agents, viral vectors are frequently genetically 

modified to circumvent productive infection and toxicity, while still allowing for expression of virally-

derived proteins in host cells. A number of viral vectors have been described, from both RNA and 

DNA genome origins, and each has unique advantages in terms of the types of cells that can be 

infected and the ability to express transgenes either transiently or permanently. Among the most 

frequently studied viral vectors are adenovirus (Ad) and adeno-associated virus (AAV) [76-78].  

Ad- and AAV-based vectors have been used in a number of pre-clinical studies examining the 

potential of viral vector-mediated TRAIL administration via gene therapy. Here we will discuss the 

properties that make both Ad and AAV desirable candidates for TRAIL-based gene therapy. 

6.1. Adenovirus 

Discovered in 1953, Ad is a non-enveloped virus with a double stranded 26–45 kb DNA genome [79]. 

There are 51 identified human Ad serotypes, with types 2 (Ad2) and 5 (Ad5) being the best 

characterized [76,77]. Ad2 and Ad5 have high tropism for numerous cell types, do not cause extensive 

disease in humans, and were the first established vectors for gene therapy [80,81]. Because Ad do not 

integrate into the host genome, the transgenes are transiently expressed [76]. The transient gene 

expression exhibited with Ad vectors favors gene therapy situations where permanent transgene 

expression is not required. 

Ad vectors can be engineered to remain replication-sufficient, conditionally replication-sufficient, 

or replication-deficient in the host. First-generation Ad vectors contained a deletion of the early gene 1 

(E1A), which is activated upon entry into the host cell and vital for transcription and function of the 

other early genes [82]. Deletion of E1A also renders Ad replication-deficient and allows space within 

the genome for transgene insertion. E3 deletion has no apparent effect on viral infectivity [83], and in 

most first-generation Ad5 vectors, both E1A and E3 were deleted to create a replication-deficient 

vector that could accommodate larger transgene insertions [83]. Many second-generation Ad5 vectors 

have also had the E2 region deleted to alleviate host inflammatory responses and potential toxicity [84]. 

For entry into a cell by receptor-mediated endocytosis, Group C adenoviruses (e.g. Ad2 and Ad5) 

require interaction between the viral fiber capsid protein with the coxsackievirus and adenovirus 

receptor (CAR), and the viral penton base binding to v integrins [85-87]. Thus, the success of these 

Ad-based therapies is primarily dictated by CAR recognition [88]. CAR is ubiquitously expressed in 

most benign epithelial tissues, yet marked variations in CAR levels have been demonstrated using 

different cancer cell lines of the same tissue origin [89]. Cellular resistance to Ad infection can, 

therefore, further complicate (and potentially limit) the utility of Ad-mediated gene delivery.  

Modifications to the Ad vector can aid in overcoming cellular resistance. A modification to the viral 

fiber, via insertion of an Arg-Gly-Asp (RGD) integrin-binding motif, allows for CAR-independent 

binding interactions [86,89]. Fiber-modified Ad vectors encoding TRAIL have been used to induce 

apoptosis of human pancreatic cancer in vitro and in vivo [90] and colon cancer in vitro [91]. 

Importantly, the modified Ad-TRAIL-RGD vector also elicited cytotoxic effects in adenovirus-

resistant tumors and cancer cells with low to negative CAR expression [92]. Similarly, Ad5 vectors 

that co-express Group B-derived Ad35 capsid fibers can recognize CD46 instead of CAR, which 
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increases the tropism of the vector for tumor cells [93,94]. An Ad5/35 vector encoding TRAIL 

exhibited enhanced tumor cell killing in a model of human glioblastoma in vitro and in vivo [94]. 

Alternatively, tumor cell treatment with HDACi can result in increased CAR and v integrin 

expression, which enhances adenoviral infection and transgene expression [72].  

Site-specific cell targeting for directed transgene expression is another modification that can be 

made in Ad vectors. For example, targeting Ad-mediated transgene delivery to tumor cells has been 

achieved through expression of the transgene under the human telomerase reverse transcriptase 

(hTERT) promoter [95]. Telomerase activity can be used as a marker for tumor cell activity, so 

expression of TRAIL under the hTERT promoter allows for site-specific expression of TRAIL [95]. 

Tissue specificity can also be achieved using tissue specific promoters, such as prostate-specific 

enhancing sequences (PSES). The addition of this promoter was found to limit TRAIL expression to 

prostate-specific antigen (PSA)- and prostate-specific membrane antigen (PSMA)-expressing cells [96]. 

Thus, the refinement of Ad vectors for TRAIL-based gene therapy continues, with the goal of 

increasing TRAIL transgene expression specifically in transformed tumor cells, thereby increasing the 

potential therapeutic benefits of this approach while simultaneously minimizing toxicity. 

We were the first to describe the in vitro and in vivo tumoricidal activity of Ad-TRAIL [97,98]. 

These initial studies were designed to only examine Ad-TRAIL-induced tumor cell death, and a 

number of other investigators have evaluated similar TRAIL-encoding Ad vectors in a variety of tumor 

models [21,91,99]. Our more recent studies have examined the impact of Ad-TRAIL-induced tumor 

cell death on the subsequent induction of systemic anti-tumor immunity. Using a murine model of 

RCC, we demonstrated that combinatorial therapy with Ad-TRAIL and CpG-containing oligonucleotides 

increased tumor regression and prolonged animal survival [100]. Data from this report also showed 

that Ad-TRAIL/CpG therapy led to the generation of immunological memory, since mice that went on 

to clear the primary tumor after treatment were also able to resist a second tumor challenge. These 

preclinical results suggesting the therapeutic potential of Ad-TRAIL gave us the necessary ―proof-of-

concept‖ data to justify initiation of a phase I clinical trial in men with prostate cancer. Our 

preliminary results from that trial showed that intra-prostatic injection of Ad-TRAIL was well-

tolerated in patients, and produced no adverse side effects [5]. In addition, there was evidence of 

apoptotic death (DNA fragmentation via TUNEL staining), which suggested that TRAIL expressed 

from the transferred transgene was functional. Unfortunately, this phase I trial was not designed to test 

therapeutic efficacy. Thus, it will be interesting to continue our evaluation of Ad-TRAIL clinically. 

6.2. Adeno-Associated Virus 

In addition to Ad vectors for gene therapy, AAV vectors have also been engineered and tested as 

gene transfer vectors. AAV is a small, nonenveloped, single stranded DNA virus [101]. Unlike Ad, 

only six AAV serotypes have been identified in primates, with AAV-2 being the most extensively 

studied and used in gene therapy. AAV has not been conclusively shown to cause human disease, and 

elicit minimal cellular immune responses in the host, with little inflammation and cellular activation. 

AAV infection is essentially non-productive without the presence of a helper virus, usually Ad. 

Consequently, the generation of AAV vectors is more difficult than other recombinant viral vectors 
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because AAV vectors require co-transfection with helper protein plasmids, and low viral titers are 

frequently obtained [78,102].  

However, AAV vectors are desirable for, and have been successfully used for, gene therapy due to 

their other unique features. For example, AAV has high tropism for many proliferating and quiescent 

cell types, and in human cells AAV is able to site-specifically integrate into chromosome 19. Despite 

chromosome integration, AAV transgene expression is not life-long in the host; however, expression 

does have the potential to persist for several years in vivo [78,101,102]. AAV can also be found 

extrachromosomally as an episomal AAV genome, which decreases the risk of random integration 

(another feature that makes it desirable as a gene therapy vector). Due to the small size of AAV, only 

transgene inserts smaller than 5 kb can be inserted. Interestingly, AAV has the ability to 

heterodimerize, which allows genes to be ―split‖ between two vectors, resulting in expression of an 

intact transgene only after post-transcriptional modifications occur [78]. Modifications can be made to 

the AAV vector to increase tropism, enhance transduction and to evade the immune response [103]. 

Also, mosaic vectors consisting of components from multiple AAV can be used to allow for tissue-

specific targeting and to broaden cell/tissue tropism. Together, these unique features of AAV have 

made it a successful vector in pre-clinical research for gene therapy. 

The positive features of AAV have made it a popular vector option for TRAIL gene administration. 

In a model of colorectal cancer, AAV-encoded expression of TRAIL resulted in rapid transgene 

expression, followed by apoptosis of several tumor cell lines and either complete eradication of tumors 

or blunted progression of existing tumors [104]. Similar results were seen for an AAV vector encoding 

soluble TRAIL, using A549 established tumors in nude mice [105]. Mosaic AAV vectors contain a 

mixture of capsid proteins from multiple AAV capable of binding different cellular receptors allowing 

for a broader cellular tropism [106]. Mosaic vector, AAV2/5, consists of both serotypes 2, which binds 

hepran sulfate proteoglycans, and 5, which binds sialic acid. Shi et al. utilized AAV2/5 encoding 

TRAIL and showed increased tropism for the A549 cell line in vitro and in vivo, while histology and 

primary cell culture showed no detectable toxicity to normal tissues [107]. Similar to Ad, tissue- and 

tumor-specific targeting of the AAV vector can be established with insertion of target sequences [95,108]. 

Tumor cell-specific AAV vectors have been engineered with TRAIL expression under the control of 

the telomerase reverse transcriptase (hTERT) promoter [95]. Treatment of human hepatocellular 

carcinoma cells with AAV-hTERT-TRAIL demonstrated cancer-specific cytoxicity [109,110].  

In vivo experiments exhibited hepatocellular specific tumor cell death and tumor regression when 

treated with AAV-hTERT-TRAIL [109-111]. Tissue-targeting AAV vectors have also been engineered 

for site-specific TRAIL expression. Ma et al. achieved hepatocellular-specific TRAIL expression by 

fusing the human insulin signal peptide to TRAIL (AAV-ISN-T) within the vector [112]. Oral 

administration of AAV-ISN-T to mice bearing subcutaneous SMMC-7721 (human liver cancer) 

tumors produced long-lasting expression of soluble TRAIL in the liver, which resulted in tumor 

regression [112]. 

6.3. Other Vector Options 

With low cytoxicity in normal tissues and site-specific therapeutic effects, treatment with Ad- or 

AAV-vector encoded TRAIL in pre-clinical studies has provided strong evidence for future gene 
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therapy of cancer patients. While TRAIL-encoding Ad and AAV have been the most popular vectors 

so far, other TRAIL-encoding vectors have been investigated. Lentiviral-mediated TRAIL expression 

was shown to be successful for specific induction of apoptosis in human lung cancer cells in vitro, but 

was not as efficacious in vivo [113]. A genetically engineered synthetic biomimetic vector has also 

been used to co-administer plasmid DNA specific for TRAIL. Transfection of ZR-75-1 breast cancer 

cells with the biomimetic TRAIL vector demonstrated increased tumor cell killing [114], indicating 

that this approach warrants additional investigation. 

7. Conclusions 

In summary, the use of TRAIL-based gene therapy for cancer patients holds a great deal of promise. 

Known limitations of TRAIL, such as resistance to TRAIL-mediated killing, and cancer cell resistance 

to viral vector infection are being overcome in a variety of ways. Pre-clinical studies in mice have 

demonstrated the safety and efficacy of viral-based gene therapy using TRAIL, and phase I clinical 

trial results have demonstrated the safety of this approach. These advances pave the way for future 

clinical applications of TRAIL gene therapy as a treatment option for a variety of malignancies.  
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