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Lung adenocarcinoma (LUAD) is a commonly occurring histological subtype of lung cancer. Glutathione peroxidase 4 (GPX4) is
an important regulatory factor of ferroptosis and is involved in the development of many cancers, but its prognostic significance
has not been systematically described in LUAD. In this study, we focused on developing a robust GPX4-related prognostic
signature (GPS) for LUAD. Data for the training cohort was extracted from The Cancer Genome Atlas, and that for the
validation cohort was sourced from the GSE72094 dataset including 863 LUAD patients. GPX4-related genes were screened
out by weighted gene coexpression network analysis and Spearman’s correlation analysis. Then, Cox regression and least
absolute shrinkage and selection operator regression analyses were employed to construct a GPS. The ESTIMATE algorithm,
single-sample gene set enrichment analysis (ssGSEA), and GSEA were utilized to evaluate the relationship between GPS and
the tumor microenvironment (TME). We constructed and validated a GPS premised on four GPX4-related genes (KIF14,
LATS2, PRKCE, and TM6SF1), which could classify LUAD patients into low- and high-score cohorts. The high-risk cohort
presented noticeably poorer overall survival (OS) as opposed to the low-risk cohort, meaning that the GPS may be utilized as
an independent predictor of the OS of LUAD. The GPS was also adversely correlated with multiple tumor-infiltrating immune
cells and immune-related processes and pathways in TME. Furthermore, greater sensitivity to erlotinib and lapatinib were
identified in the low-risk cohort based on the GDSC database. Our findings suggest that the GPS can effectively forecast the
prognosis of LUAD patients and may possibly regulate the TME of LUAD.

1. Introduction

Lung cancer is the main contributor to deaths from cancer
and is the most commonly diagnosed malignancy around
the globe [1]. Among its subtypes, lung adenocarcinoma
(LUAD) has emerged as the most common subtype over
the last 15 years [2]. Recent advances including the use of
targeted therapy and immunotherapy, as well as the identi-
fication of oncogenes, have transformed the management
of LUAD. However, LUAD is still associated with a low
survival rate [3]. The outcome of LUAD is variable and

difficult to forecast. While innovative strategies for detect-
ing LUAD and stratifying its prognosis are being devel-
oped, the novel biomarkers and risk evaluation models
still lack prognostic capability, thereby curtailing the scope
for individualized treatment.

Ferroptosis is dissimilar from other kinds of cell death
in genetic, biochemical, and morphological terms. It plays
a unique role in several cancer biological processes, includ-
ing autophagy, metabolism, and immune functions in can-
cer cells [4, 5]. As a selenoenzyme, glutathione peroxidase
4 (GPX4) reduces membrane phospholipid hydroperoxides
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in order to sustain cellular redox homeostasis, with its
cofactor being glutathione [6]. GPX4 is an important reg-
ulator of ferroptosis and functions as a carcinogen by
impeding ferroptosis in tumor cells [7, 8]. GPX4 was
found to be upregulated in several tumor tissues and
inversely associated with patient survival based on pan-
cancer analysis using The Cancer Genome Atlas (TCGA)
[9, 10]. The triggering of ferroptosis by the inhibition of
GPX4 has been recognized as a treatment approach to ini-
tiate cancer cell death [11]. Recently, GPX4 was discovered
to be associated with resistance to anticancer drugs such as
cisplatin, as well as “EGFR tyrosine kinase inhibitors
(EGFR-TKIs), in non-small-cell lung cancer (NSCLC)”
[9, 12, 13]. More critically, increasing evidence has illus-
trated that GPX4 is associated with the regulation of
tumor immune responses [5]. As a metabolic checkpoint,
GPX4 in cancers was found to protect activated CD8+ T
cells and Treg cells from uncontrolled ferroptosis without
compromising their function [14, 15]. Besides, GPX4
influences the innate immune system by regulating natural
killer and dendritic cells in p53-mutant NSCLC [16].

However, very few studies have systematically evaluated
GPX4-related ferroptosis models to forecast the overall
survival (OS) in patients with LUAD.

In the present study, we began by identifying the differ-
ential GPX4-related genes by weighted gene coexpression
network analysis (WGCNA) and Spearman’s correlation,
using TCGA data on the mRNA expression of LUAD. We
then developed and validated a GPX4-related prognostic sig-
nature (GPS) for patients with LUAD, based on the TCGA
and GSE72094 datasets. Additionally, we assessed the corre-
lation between the GPS and immune infiltrating cells in the
tumor microenvironment (TME) of LUAD. Finally, the
function of GPS in the response of LUAD to targeted ther-
apy was also evaluated.

2. Methods and Materials

The workflow of this study is shown in Figure 1.

2.1. Datasets from TCGA and Gene Expression Omnibus.
Profiles on the LUAD gene expression were extracted from

RNA-seq data and clinical information of LUDA from TCGA

DEGs in TCGA-LUAD

Selection of the highest GPX4-
correlated DEGs using WGCNA

198 GPX4-related DEGs (GDEGs)

Analysis of survival-associated DEGs by
kaplan meier and univariate cox regression

7 survival-associated GDEGs

LASSO, and multiple cox
regression analysis

GSE72094
validation

4 GPX4-related genes risk signature

Prognostic analysis

Cox, ROC and
nomogram

ESTIMATES,
ssGSEA and ssGSEA

DGSC

TME analysis �erapeutic response

Selection of GPX4 related
DEGs using spearman

Figure 1: Study design and workflow.
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the TCGA and Gene Expression Omnibus (GEO) databases.
All LUAD data including the associated clinical data were
downloaded freely from the TCGA. Out of a total of 594
LUAD samples, 535 were those of LUAD, and 59 were those
of normal tissue. For each lung cancer case, transcriptome
profiling (RNA-Seq, HTSeq-FPKM) files were downloaded
from TCGA. Additionally, the GSE72094 normalized
expression profiles, another LUAD gene expression profile,
was extricated from GEO [17]. The GSE72094 dataset con-
sisted of 442 patients with LUAD and included their clinical
information, EGFR Sanger sequencing data, and detailed
mRNA expression data, which were studied on the
GPL15048 platform. LUAD patients with complete survival
data and a survival time of over 30 days were included in
the subsequent analyses. The clinical features of patients
with LUAD in the TCGA and GSE72094 datasets examined
in this study are summarized in Table S1.

2.2. Identification of Differentially Expressed Genes (DEGs)
between LUAD Tissues and Normal Tissues. To identify the
DEGs between LUAD and normal tissues, the Wilcoxon test
method using R package “limma” (version: 3.6.3, The R
Foundation for Statistical Computing, Vienna, Austria) was
employed to screen out DEGs in the TCGA-LUAD database.
The established thresholds were jlog 2‐fold change ðFCÞj >
1:0 and false discovery rate ðFDRÞ < 0:05. The DEGs of the

TCGA-LUAD dataset were visually represented as heat
map and volcano plots using the R package “ggplot2.”

2.3. WGCNA. WGCNA was employed to examine the gene
composition of GPX4-related modules in the samples. Mod-
ules with an elevated correlation coefficient were regarded as
candidate modules related to GPX4 and were chosen for the
ensuing analysis. The “WGCNA” package in R was utilized
to construct TCGA-LUAD gene expression profiles to gene
coexpression networks [18]. A comprehensive explanation
of the WGCNA method has been provided in past reports
[19, 20].

2.4. Constructing and Validating a GPX4-Related Risk
Signature. We began by performing Kaplan-Meier (K–M)
and univariate Cox regression analyses for estimation of sur-
vival related to GPX4-related DEGs (GDEGs), with P < 0:05
in the two algorithms considered to be candidate genes for
building the model [21, 22]. Subsequently, least absolute
shrinkage and selection operator (LASSO) regression was
performed to ulteriorly reduce the number of gene candi-
dates. Ultimately, we developed a GPX4-related risk scoring
system and multiplied the normalized level of expression
demonstrated by each highly GDEG, with the regression
coefficients obtained from the multivariate Cox analysis.
The high-risk and low-risk cohorts were classified using
the TCGA-LUAD median risk score. K–M survival analysis,
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Figure 2: Identification of GPX4-related differentially expressed genes (DEGs) in The Cancer Genome Atlas dataset of lung
adenocarcinoma. (a) DEG volcano map. (b) The cluster dendrogram for coexpression network modules. (c) Module-trait relationships.
(d) The Venn diagram among DEG lists, coexpressed blue module, and GPX4-related genes.

4 Journal of Oncology



100

80

60

40

20

0
0 2 4 6 8 10 12 14 16 18 20

Time in years
O

ve
ra

ll 
su

rv
iv

al
 (%

)

Stage I-IV P<0.0001

Low risk (n = 233)
High risk (n = 236)

(a)

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Risk score (AUC = 0.759)
Age (AUC = 0.504)

Gender (AUC = 0.434)

Stage (AUC = 0.676)

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Risk score (AUC = 0.682)
Age (AUC = 0.513)

Gender (AUC = 0.523)
Stage (AUC = 0.630)

T (AUC = 0.572)

N (AUC = 0.661)

M (AUC = 0.526)

T (AUC = 0.588)

N (AUC = 0.653)

M (AUC = 0.505)

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0.0

0.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Risk score (AUC = 0.608)
Age (AUC = 0.495)

Gender (AUC = 0.555)
Stage (AUC = 0.588)

T (AUC = 0.522)

N (AUC = 0.621)

M (AUC = 0.530)

(b)
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along with the time-related receiver operating characteristic
(ROC) curve analysis, was employed to assess the prognostic
ability of the model. Multivariate and univariate Cox regres-
sions were executed to ascertain if the risk score could fore-
cast the prognosis independently. A nomogram was
developed and validated for precise forecasting of OS using
“survival” and “regplot” packages in R. The TCGA-LUAD
dataset was used as the training cohort, whereas the
GSE72094 was utilized as the validation cohort.

2.5. Estimation of the Stromal, Immune, and ESTIMATE
Scores. Immune score (the proportion of immune compo-
nents), stromal score (the proportion of stromal components),
and ESTIMATE score (the aggregate of the above scores) were
computed for the specific LUAD sample utilizing the “ESTI-
MATE” package in R [23]. A higher score illustrates the sub-
stantial quantity of the corresponding component (stromal,
immune, or tumor purity) in the TME [24].

2.6. Single-Sample Gene Set Enrichment Analysis. Based on
single-sample gene set enrichment analysis (ssGSEA) in
the TCGA-LUAD cohort, the infiltration scores of 16
immune cells and 13 immune-related pathways were esti-
mated using the software packages “GSVA,” “limma,” and
“GSEABase” in R [25, 26].

2.7. Gene Set Enrichment Analysis (GSEA). In order to ascer-
tain the immunological pathways that are considerably
altered in LUAD, we undertook GSEA between the high-
and low-risk cohorts utilizing GSEA (version 4.1.0). The
(c2.cp.kegg.v7.4.symbols.gmt) file was chosen to act as the
reference gene file. FDR < 0:05 was chosen to be the mini-
mum limit criterion [27].

2.8. Prediction of Targeted Therapy Response. The LUAD
patients’ response to targeted drugs was forecast using the
commonly used Genomics of Drug Sensitivity in Cancer
(GDSC) pharmacogenomics database. The half-maximal
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Figure 3: Construction of the GPX4-related prognostic signature based on the TCGA-LUAD dataset. (a) The analysis of patients’ overall
survival (OS). (b) The time-dependent receiver operating characteristic analysis of the risk score. (c, d) The distribution of risk score and
the survival status of patients. (e, f) Forest plot for univariate and multivariate Cox analyses of OS in lung adenocarcinoma.
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inhibitory concentration (IC50) was approximated using the
R package “pRRophetic” [28].

2.9. Statistical Analysis. Spearman’s correlation was used for
correlation tests, with Spearman’s correlation coefficient ≥
0:2 and P < 0:0001 being regarded as significant. KM
method and log-rank test in the GraphPad Prism 8.0 soft-
ware were employed for the survival analysis. R package
“survivalROC” was employed to chart ROC curves. The Wil-
coxon signed-rank test was used to assess the relationship
between classified variables and the risk score, and box plots
were generated on the GraphPad software.

3. Results

3.1. Identification of Highly GPX4-Related DEGs. A total of
6,775 DEGs in the TCGA database (Figure S1, Figure 2(a))
were revealed as being dysregulated in LUAD tissues than
in normal tissues. In order to identify the highly GDEGs in
patients with LUAD, WGCNA and Spearman’s correlation
analyses were performed based on the TCGA-LUAD. Each
of the modules was allocated a color and an aggregate of 13
modules in the TCGA-LUAD (Figure 2(b)) was discovered
in this study. Subsequently, a module-trait relationship heat
map was plotted to investigate the correlation between each
module and GPX4 expression (either low or high). The
outcomes of this module-trait relationship are displayed in
Figure 2(c), depicting that the blue module (870 DEGs) in
the TCGA-LUAD dataset had the highest association with
GPX4 expression (blue module: r = 0:18, P < 0:0001). In
addition, based on Spearman’s correlation analysis, a total of
1,240 GPX4-associated DEGs were screened out in the
TCGA dataset (Table S2, P < 0:001). In total, 198
overlapping genes were extricated as highly GDEGs for
subsequent prognostic analysis, presented as a Venn diagram
in Figure 2(d).

3.2. Construction of GPS in TCGA-LUAD Dataset. Using
univariate Cox regression and K–M survival analysis, we
recognized seven GDEGs linked to OS of LUAD in the
TCGA dataset (Table S3). Also, we employed multi-Cox
regression and LASSO regression to reduce model genes’
scope and optimize the model (Figure S2). Lastly, a GPS
comprising of four highly GDEGs was constructed
(Table S4). The risk score was calculated as follows:

Risk score = ð0:1038 × expressionKIF14Þ + ð0:0577 ×
expressionLATS2Þ – ð0:2683 × expression PRKCEÞ – ð0:2043 ×
expressionTM6SF1Þ:

The median risk score of the TCGA-LUAD training
cohort was used as the integrated cut-off for separating the
low-risk cohort from the high-risk cohort. The high-risk
cohort exhibited a considerably worse OS compared with
the low-risk cohort (Figure 3(a)), and the area under the
curve (AUC) of the GPS at, 1, 3, and 5 years was 0.759,
0.682, and 0.608, respectively (Figure 3(b)). The mortality
risk in LUAD patients exhibited a rise with the increase in
the risk model score (Figures 3(c) and 3(d)). The results of
the univariate and multivariate Cox analyses illustrated that

the GPS could independently forecast the OS in the TCGA-
LUAD dataset (Figures 3(e) and 3(f)).

3.3. Validation of GPS in the GSE72094 Dataset. For verify-
ing the robustness of our GPS, we performed external vali-
dation on a large independent cohort of patients with
LUAD in the GSE72094 dataset (n = 386). In line with the
outcomes of TCGA, patients with high-risk scores dis-
played considerably poorer OS compared to those with
low-risk scores (Figures 4(a), 4(c), and 4(d)). In the
GSE72094 dataset, the AUC at 1, 3, and 5 years was
0.639, 0.683, and 0.765, respectively (Figure 4(b)). The mul-
tivariate and univariate Cox regression analyses demon-
strated that the GPS risk score could independently
predict the OS in the GSE72094 dataset (Figures 4(e) and
4(f)). These results further suggest that the GPS we devel-
oped was capable of general application.

3.4. Association between GPS and Clinicopathological
Features. This study assessed the relationship between GPS
and the prognostic factors using the clinical data of two sep-
arate datasets. In the TCGA-LUAD dataset, elevated risk
scores were significantly correlated with age, sex, advanced
TNM stage, N stage, and M stage (tumor metastasis)
(Figure 5(a)). Similarly, in the GSE72094 dataset, the two
groups were considerably distinct with respect to the age
and TNM stage based on Figure 5(b). The above results indi-
cated that age and TNM stage can effectually forecast sur-
vival in patients with LUAD. Therefore, to study the GPS
prognostic value stratified by age and TNM stage in these
patients, subgroup analysis was performed. As illustrated
by the K–M curves, GPS remained a stable prognostic factor
in patients with LUAD who were graded by age (Figures 6(a)
and 6(b)) and TNM stage (Figures 6(c) and 6(d)), though
larger groups are required for further validation.

3.5. Establishment and Validation of a Nomogram. In order
to come up with a quantitative method that could forecast
the OS of LUAD patients, two nomograms, including a
number of clinicopathological features (age, sex, risk score,
and pathological stage) were built based on the TCGA-
LUAD dataset (Figure 7(a)) and GSE72094 dataset
(Figure S3A). We also assessed the predictive performance
of GPS with the above clinical features using time-
dependent ROC curves (Figures 3(b) and 4(b)) and a
calibration plot (Figure 7(b) and Figure S3B). The results
of the ROC and calibration plots showed that GPS had
better predictive power and accuracy compared with other
clinical attributes such as sex, age, TNM stage, and grade.

3.6. Relationship between GPS and Tumor-Infiltrating
Immune Cells in TME. To determine if the GPS could aid
in characterizing the TME in LUAD, we employed the ESTI-
MATE algorithm to compare the characteristics of gene
expression of immune cells and stromal cells between the
high-risk and low-risk cohorts. Contrasted with the high-
risk cohort, the low-risk cohort exhibited a significantly
higher immune score, stromal score, and ESTIMATE score
(Figure 8, all P < 0:001). We further assessed the relationship
between the GPS and immune cell infiltration using ssGSEA

8 Journal of Oncology
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Figure 4: Validation of the GPX4-related prognostic signature in the GSE72094 dataset. (a) The Kaplan-Meier curve of overall survival in
the GSE72094 dataset. (b) Time-dependent receiver operating characteristic analysis for risk score in the GSE72094 dataset. (c, d) Risk score
distribution and patient survival status in the GSE72094 dataset. (e, f) Forest plot of the multivariate and univariate Cox analyses of overall
survival in lung adenocarcinoma in the GSE72094 dataset.
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Figure 5: The relation between GPX4-related prognostic signature and clinical features in lung adenocarcinoma. (a) Sex, age, M stage, N
stage, T stage, and American Joint Committee on Cancer (AJCC) stage in the TCGA-LUAD dataset. (b) Age, sex, smoking status, and
AJCC stage in the GSE72094 dataset.

11Journal of Oncology



1210 14 16 18 200
0

20

40

60

80

100

2 4 6 8

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P = 0.1353Age ≤ 66

Low risk (n = 120)
High risk (n = 140)

1210 14 16 18 200
0

20

40

60

80

100

2 4 6 8

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P < 0.001

Low risk (n = 137)
High risk (n = 98)

Age > 66

(a)

4 60
0

20

40

60

80

100

2

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P = 0.002Age ≤ 66

Low risk (n = 55)
High risk (n = 78)

4 60
0

20

40

60

80

100

2

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P = 0.0089Age > 66

Low risk (n = 138)
High risk (n = 115)

(b)

1210 14 16 18 200
0

20

40

60

80

100

2 4 6 8

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P = 0.0058StageI-II

Low risk (n = 191)
High risk (n = 175)

StageIII-IV

4 60
0

20

40

60

80

100

2

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P < 0.0001

Low risk (n = 42)
High risk (n = 61)

(c)

Figure 6: Continued.

12 Journal of Oncology



StageI-II

4 60
0

20

40

60

80

100

2

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P < 0.0001

Low risk (n = 162)
High risk (n = 142)

StageIII-IV

4 60
0

20

40

60

80

100

2

Time in years

O
ve

ra
ll 

su
rv

iv
al

 (%
)

P < 0.1364

Low risk (n = 29)
High risk (n = 41)

(d)

Figure 6: K–M survival subgroup analysis of all patients with lung adenocarcinoma based on the GPX4-related prognostic signature
stratified by TNM stage. (a) Age in the TCGA-LUAD dataset. (b) Age in the GSE72094 dataset. (c) Stage in the TCGA-LUAD dataset.
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in the TCGA-LUAD dataset. Then, a total of 11 types of
immune cells including TIL (tumor-infiltrating lympho-
cyte), T helper cells, Treg, B cells, aDCs, DCs, pDCs, iDCs,
neutrophils, mast cells, and macrophages were identified as
having a significantly negative association with the risk score
from the difference and correlation analyses (Figures 9(a)–9
(c), all P < 0:05). As for the numerous enriched immune-
related activities, we assessed the link between immune-
related processes and the risk score based on ssGSEA. We
found ten kinds of immune-related processes that had a sig-
nificant negative correlation with the risk score. They
included T cell costimulation, T cell coinhibition, chemo-
kines and chemokine receptors (CCR), antigen-presenting
cells (APC) costimulation, APC coinhibition, type II inter-
feron response, human leukocyte antigen, checkpoint, and
parainflammation (Figure 9(d)–9(f), all P < 0:05). Based on
the outcomes, we could ascertain that our GPS was consider-
ably correlated with the immune cell infiltration in TME.

3.7. Relationship between GPS and Immune-Related
Pathways. Afterward, GSEA was executed in the high-risk
and low-risk cohorts, sequentially, and showed that the gene
sets dramatically enriched in the low-risk score cohort were
primarily linked to immune-related pathways in LUAD. These
included “T cell receptor signaling pathway,” “B cell receptor
signaling pathway,” “Natural killer cell-mediated cytotoxic-
ity,” “JAK-STAT signaling pathway,” “Cytokine-cytokine
receptor interaction,” and “Chemokine signaling pathway”
(FDR < 0:05, Figure 10(a), Table S5). In comparison, none of
the gene sets linked to immune pathways was considerably
enhanced in the high-risk LUAD cohort. The high-risk
cohort was mainly considerably enriched in processes related
to tumor repair-associated proliferation in LUAD, including
“cell cycle,” “RNA degradation,” “DNA replication,” “base
excision repair,” “pentose phosphate pathway,” and
“mismatch repair” (FDR < 0:05, Figure 10, Table S6). These
findings indicate that the four genes of GPS may be
implicated in regulating tumor initiation and progression, as
well as immune activity in LUAD.

3.8. Relationship between GPS and Targeted Therapy
Response. Considering that targeted therapy is an efficacious
adjuvant therapy for LUAD, we evaluated the GDSC data-
base to approximate the response of low- and high-risk
LUAD patients to molecular-targeted therapy. We found
that two commonly used molecularly targeted drugs (erloti-
nib and lapatinib) had considerable distinctions in the
approximated IC50 between cohorts with high risk and low
risk. Specifically, patients in the high-risk cohort displayed
higher IC50 values for erlotinib, a commonly used EGFR-
TKI in LUAD (Figure 11(a), P < 0:05). It is known that EGFR
mutations in LUAD are related to the efficacy of EGFR-TKIs
[29], so we utilized the chi-square test in comparing the
mutation frequency of EGFR between the low-risk and
high-risk cohorts. As illustrated by the TCGA-LUAD data-
set, the mutation frequency of EGFR in low-risk patients
was elevated compared to that in the high-risk patients
(Figure 11(b), P < 0:01). In the GSE72094 dataset, the muta-

tion frequency of EGFR in the low-risk patients was also
higher (Figure 11(c), P < 0:05).

4. Discussion

In the past, studies have used ferroptosis-related risk signa-
tures to classify patients with LUAD into various prognostic
subgroups [30–33]. The inventory of ferroptosis-related
genes for construction of a prognostic model was usually
obtained via differential analyses or from public databases.
In contrast, we employed a unique selection approach com-
bining coexpression networks with correlation analysis,
which may identify ferroptosis-related genes that had not
been previously documented.

As genomics technologies continue to develop, bioinfor-
matics is becoming increasingly popular for studying the
molecular processes of disease and for identifying accurate
disease biomarkers by analyzing gene expression profiles
[34]. A valuable approach for comprehending gene associa-
tion and gene function from genome-wide expression is
WGCNA [18]. WGCNA may be utilized to identify coex-
pression modules that determine related genes, thus allow-
ing us to forecast the functions of coexpressed genes and
identify the genes performing vital functions in cancers
[35]. Moreover, Spearman’s rank correlation analysis is
another influential analysis within transcriptomics that tests
the association between two ranked genes in their expression
levels [36, 37]. Thus, the results from WGCNA and Spear-
man’s correlation analysis were integrated to improve the
recognition of highly correlated genes to GPX4 that are valu-
able as candidate markers of ferroptosis. Overall, we identi-
fied 198 GDEGs for subsequent prognostic analysis.

Then, we employed survival analysis, LASSO regression,
and multi-Cox analysis to evaluate GDEGs stepwise and
eventually built a GPS with four GPX4-related genes
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(including KIF14, LATS2, PRKCE, and TM6SF1) based on
the TCGA dataset. The GPS’ risk score and the risk catego-
rization threshold were considered for categorizing all
enrolled patients into high- and low-risk cohorts. Further,
K–M survival analysis demonstrated noticeably different
prognoses between LUAD patients in the low- and high-
risk categories. When patients were graded based on the
TNM stage, the GPS still maintained its robustness as a
prognostic tool for OS, especially in patients in the early
stage. Then, we performed external validation of the GPS
by utilizing one independent dataset, GSE72094. Congruent
with the TCGA-LUAD outcomes, the OS of the high-risk
group was significantly worse than that of the low-risk
group. Notably, high risk scores may indicate clinical attri-
butes predictive of lower survival, i.e., advanced distant
metastasis, higher TNM stage, and lymph node metastasis,
thus providing a rationale for the poor prognosis in patients
at high risk. GPS based on multivariate and univariate Cox
regression analyses was able to independently predict OS

in LUAD in two independent datasets. Following the inte-
gration of clinicopathological risk factors and risk cohorts,
nomogram was developed and validated for accurate fore-
casting of OS. The AUC and calibration plot illustrated that
our nomogram performed better than TNM staging. These
results endorse the general applicability of our GPX4-
related prognostic model, thereby verifying its capability in
assisting TNM staging for more accurate predictions.

The TME mainly comprises tumor cells and tumor-
infiltrating immune cells (TICs) mixed with stromal com-
ponents. It is turning out to be an imperative part of cancer
tumorigenesis and progression and has emerged as a
research focus in recent years [24]. Stromal and immune
component assessment using ESTIMATE helps predict the
clinical outcomes of patients with LUAD, and patients with
high immune scores have shown better OS when contrasted
with patients with low scores [38]. Interestingly, the ESTI-
MATE analysis done in our study revealed that GPX4-
related risk was negatively correlated with the ESTIMATE
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Figure 10: Analysis of gene set enrichment in the low-risk and high-risk cohorts. (a) Gene set enrichment analysis (GSEA) in the group with
a low-risk score. (b) GSEA in the group with a high-risk score.
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score, matrix score, and immune score, suggesting that
patients with a low-risk score had abundant immune cell
infiltration. TICs have been identified as an important
component of TME and have critical consequences for
oncogenesis, clinical outcome, and treatment, especially
immunotherapy [3, 39, 40]. Moreover, GPX4 has an impor-
tant function in regulating immune cells in lung cancer and
other cancer types [14–16]. Therefore, the immune-related
biological characteristics of our GPX4-related risk model
were further analyzed using ssGSEA and GSEA. As
expected, the risk scores were negatively correlated with
the degree of infiltration of 11 types of immune cells (TILs,
T helper cells, Treg, B cells, aDCs, DCs, pDCs, iDCs, neu-
trophils, mast cells, and macrophages) based on ssGSEA.
These immunes cells are known to be plentiful in LUAD
tissues, where they regulate tumor development, promote
the proliferation and invasion of tumor cells, induce metas-

tasis, and also regulate immunotherapy [41–44]. Various
immune-related processes have also been found to be more
abundant in patients with low-risk scores as per ssGSEA.
We deduce that the immunosuppressive TME might be a
key factor that contributes to poor prognosis in LUAD
patients with high-risk scores. Subsequently, we carried
out GSEA to assess the fundamental mechanism of the
four-gene GPS in LUAD. GSEA illustrated that the genes
of the low-risk group exhibited a high concentration of
immune-related biological pathways and processes, as well
as tumor repair activities. Collectively, these findings dem-
onstrate that the GPS may be crucial for creation of the
immune microenvironment in LUAD.

By analyzing the GDSC database, we discovered that
patients with high-risk LUAD showed resistance to erlotinib
and lapatinib. Patients diagnosed with EGFR-mutant LUAD
are known to exhibit a better initial clinical response to
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Figure 11: Forecasted responses to EGFR tyrosine kinase inhibitors among different risk cohorts. (a) Comparison of the estimated IC50
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EGFR-TKIs [29]. In addition, we observed that low risk was
associated with EGFR mutations in the two independent
LUAD datasets. Together, these results show that GPS might
be involved in the inefficacy of EGFR-TKIs in LUAD. Inter-
estingly and notably, the results were consistent with those
of two recent studies. One study demonstrated that NRF2-
GPX4/SOD2 axis conveys resistance to erlotinib in NSCLC
cells [12]. Another study confirmed that restrain of GPX4
or mTOR results in loss of lapatinib resistance in NSCLC
cells by promoting ferroptosis [13]. All the findings need
to be further validated in a laboratory to explore the use of
our prognostic model as a predictive marker for the efficacy
of EGFR-TKIs treatment in LUAD.

As shown in Table S7, among the four GPX4-related
prognostic genes, KIF14 was upregulated, while LATS2,
PRKCE, and TM6SF1 were downregulated in the LUAD
tissues than in the normal lung tissues. Besides, all of the four
genes were adversely associated with GPX4 (Figure S4). The
four genes of our signature can act as independent targets,
and when combined, may offer improved performance, which
is contingent on their prognostic roles and tumor-related
characteristics. Among the four genes of the GPS, KIF14,
LATS2, and PRKCE have been widely studied in previous
studies. For example, kinesin family member 14 (KIF14), a
microtubule-dependent cytoskeletal motor protein, is involved
in cytokinesis [45]. KIF14 overexpression is linked to several
cancers, and KIF14 causes resistance to sorafenib and
chemotherapy through the AKT signaling pathway in cancers
[46, 47]. KIF14 has been shown to be oncogenic in several
studies and has been reported as a prognostic biomarker for
several cancers, but its relative importance as a driver gene in
lung cancer pathogenesis is yet to be clarified [46–49]. Corson
et al. discovered that KIF14 expression was an independent
prognostic factor for disease-free survival in NSCLC and
knockdown of KIF14 in vitro reduced tumorigenicity [48].
However, in another study, Hung et al. found an opposite
result, in that the overexpression of KIF14 impeded cell
development and metastasis of NSCLC in vitro and vivo [49].
More research examining the cell biology of KIF14 in LUAD
is clearly warranted. Large tumor suppressor kinase 2
(LATS2) promotes cell proliferation in NSCLC [50, 51].
Comparable findings were reported in other research that
illustrated that as an independent prognostic biomarker of
LATS2 in NSCLC, survival was significantly improved in the
high expression cohort [52]. In addition, LATS2 interacted
with YAP1 and restricted nuclear translocation of YAP1,
which enhances transcription activity of PD-L1 and leads to
immune escape in ovarian cancer [53]. Protein kinase C
(PRKCE) has been found to be involved in metastasis and
malignant transformation and is upregulated in several
cancers, such as lung, breast, and gall bladder cancers [54–56].
PRKCE was also found to be associated with radiation
sensitivity in LUAD [57]. However, limited research has been
carried out regarding the role of TM6SF1 in tumorigenesis
and cancer progression, and comprehensive examinations of
its biological functions in lung cancer are necessary.

Although the above studies indicate that our GPS can
be a valuable prognostic predictor for LUAD, the study
encountered some limitations. While data accumulated

from high-throughput analyses with a large sample size
was applied optimally, confirmation via prospective studies
is warranted. Additionally, the interactions between the
four genes and GPX4, as well as the precise biological
functions of these genes in ferroptosis should be explored
experimentally.

5. Conclusions

In conclusion, a robust GPS was developed and validated in
two independent datasets. Also, we built a prognostic nomo-
gram by integrating the GPS and TNM stage, and it exhib-
ited exceptional performance in forecasting the survival in
patients with LUAD. The GPS was significantly related to
multiple TICs and immune-related processes and pathways
in the TME of LUAD. These four GPX4-related genes could
become a guaranteed prognostic biomarker and a possible
therapeutic target for LUAD in the future.
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