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Abstract
Arsenic toxicity is a global concern to human health causing increased incidences of cancer, bronchopulmonary, and cardio-
vascular diseases. In human and mouse, inorganic arsenic (iAs) is metabolized in a series of methylation steps catalyzed by 
arsenic (3) methyltransferase (AS3MT), forming methylated arsenite (MAsIII), dimethylarsenite (DMAIII) and the volatile 
trimethylarsine (TMA). The methylation of arsenic is coordinated by four conserved cysteines proposed to participate in 
catalysis, namely C33, C62, C157, and C207 in mouse AS3MT. The current model consists of AS3MT methylating iAs 
in the presence of the cofactor S-adenosyl-L-methionine (SAM), and the formation of intramolecular disulfide bonds fol-
lowing the reduction of MAsV to MAsIII. In the presence of endogenous reductants, these disulfide bonds are reduced, the 
enzyme re-generates, and the second round of methylation ensues. Using in vitro methylation assays, we find that AS3MT 
undergoes an initial automethylation step in the absence of iAs. This automethylation is enhanced by glutathione (GSH) and 
dithiothreitol (DTT), suggesting that reduced cysteines accept methyl groups from SAM to form S-methylcysteines. Follow-
ing the addition of iAs, automethylation of AS3MT is decreased. Furthermore, using a Flag-AS3MT immunoprecipitation 
coupled to MS/MS, we identify both C33 and C62 as acceptors of the methyl group in vivo. Site-directed mutagenesis (C to 
A) revealed that three of the previously described cysteines were required for AS3MT automethylation. In vitro experiments 
show that automethylated AS3MT can methylate iAs in the presence of SAM. Thus, we propose that automethylated may 
represent an active conformation of AS3MT.
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Introduction

Arsenic is an important environmental contaminant to which 
millions of people are exposed worldwide. Inorganic arsenic 
(iAs) is biotransformed (metabolized) through a series of 

methylation reactions catalyzed mainly by arsenic (3) meth-
yltransferase (AS3MT), an enzyme conserved from bacteria 
to man (Kubota et al. 2002). The only known function of 
AS3MT is to methylate arsenic.  AS3MT−/− mice are viable 
with no overt phenotype, but are severely impaired in their 
ability to methylate arsenic (Drobna et al. 2009). The most 
recently proposed pathway of arsenic methylation converts 
iAs III to methylated arsenite (MAs III), and dimethyl-
arsenite (DMA III), and in some species, to trimethylarsine 
(TMA) (Fig. 1A), with oxidation reactions generating meth-
ylated arsenate (MAs V) and dimethylarsenate (DMA V) 
(Styblo et al. 2021). S-adenosyl-L-methionine (SAM) acts as 
the methyl donor and at least in vitro, other cofactors, such 
as glutathione (GSH), thioredoxin (TRX), and thioredoxin 
reductase (TRR), act to support the methylation reaction 
(Dheeman et al. 2014; Thomas et al. 2004).

Importantly, single nucleotide polymorphisms 
(SNPs) in the AS3MT gene have been shown to affect its 
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methyltransferase activity (Drobna et al. 2009; Li et al. 
2017). The importance of these SNPs, and iAs methylation 
in general, to toxic outcomes is poorly understood. It was 
suggested, however, that certain SNPs are associated with 
a higher risk of disease including skin lesions (Wu et al. 
2014), atherosclerosis, diabetes (Wu et al. 2014), and can-
cer (Beebe-Dimmer et al. 2012; Engstrom et al. 2015). His-
torically, biotransformation of arsenic was thought to be a 
“detoxification” process leading to a more readily excretable 
compound. However, some methylated intermediates, par-
ticularly MAs III, can be more cytotoxic than iAs (Petrick 
et al. 2000; Styblo et al. 2000; Sumi and Himeno 2012; 
Yoshinaga-Sakurai et al. 2020). Mice deficient in AS3MT 
are protected against arsenic-induced atherosclerosis, sug-
gesting arsenic methylation may contribute to some of these 

outcomes (Negro Silva et al. 2017). Thus, factors that modu-
late AS3MT enzymatic efficiency may be important vari-
ables in arsenic-associated toxicities.

AS3MT is linked to pathological changes in the absence 
of arsenic. Genome-wide association studies link genetic 
variation in AS3MT (chromosome 10q24) with schizophre-
nia (Duarte et al. 2016) and ischemic heart disease (Wins-
vold et al. 2017). AS3MT null mice are associated with sex-
specific metabolomic changes (Huang et al. 2017, 2016). 
AS3MT−/− mice have a greater body mass with a higher per-
centage of adipose tissue (Douillet et al. 2017). Although 
the relevance of this is unclear, many of the consequences of 
iAs exposure are linked to an imbalance in iAs metabolism, 
such as diabetes and cardiovascular diseases (Drobna et al. 
2009; Moon et al. 2018).

AS3MT belongs to the superfamily of seven-β-strand 
methyltransferases (MTases) formed by six parallel β-strands, 
with the seventh anti-parallel inserted between the fifth and 
sixth β-strands. MTases methylate a wide range of substrates, 
such as lipids, proteins, nucleic acids, and small molecules 
(Kagan and Clarke 1994). AS3MT was first purified from 
rat liver, which permitted cloning of the corresponding gene 
(Lin et al. 2002; Walton et al. 2003). Various orthologous 
genes were then identified coding for proteins ranging from 
348 to 382 residues with three conserved sequence motifs 
(Thomas et al. 2007). Interactions between SAM and these 
conserved amino acid motifs are critical for methyl group 
transfer to arsenic (Kagan and Clarke 1994; Kozbial and 
Mushegian 2005). SAM has an activated methyl group that 
is transferred by AS3MT to acceptor groups involving a 
nucleophile attack on the methyl group of the SAM and con-
comitant release of the reduced S-adenosyl-homocysteine 

Fig. 1  Automethylation of AS3MT requires the SAM-binding 
pocket. A Schematic of arsenic methylation. Inorganic arsenic (iAs) 
is methylated to methylarsenic (MAs) and subsequently to dimethy-
larsenic (DMAs) via AS3MT. B Representative blot of the in  vitro 
methylation assay (left panel), Coomassie Blue (middle panel) and 
corresponding quantification signal (arbitrary unit) obtained by 
fluorograph (right panel) of GST or GST-AS3MT, in the presence of 
indicated factors (0.4 μM SAM and cofactors: 0.2 μM TRR, 10 μM 
TRX, 300 μM NADPH, 1 mM GSH) after a 16 h incubation at 37 °C. 
C Multiple-sequence alignment of hPRMT1 and AS3MT mouse 
and human showing conservative region (open box) of the SAM 
pocket. Three conserved residues (DLG) were mutated to (HLA) in 
the mutant AS3MT-HLA. D Representative in  vitro methylation 
assay (left panel), Coomassie Blue (middle panel) and corresponding 
quantification signal (arbitrary unit) obtained by fluorograph (right 
panel) of the AS3MT and the AS3MT methyltransferase-dead mutant 
(AS3MT-HLA). Cof represents cofactors. Error bars represents 
standard error of the mean (SEM) from three independent experi-
ments (n = 3). *** indicates P < 0.001, and **** P < 0.0001

◂

Table 1  List of primers used for the cloning of mAS3MT into p3xFlag-CMV-14, for the cloning of mAS3MT in pGEX-6P-1 and for the genera-
tion of the different mutants.

Cloning Forward primer Reverse primer

mAS3MT in p3xFlag-CMV-14 GGC CGC GGC CGC GAC GTG GAG ATC GTG AGT 
CAT GGC TG

GGC CTC TAG AGC AGT TTT TCC TCT TGC CAC AGC 
AGC C

mAS3MT in pGEX-6P-1 GCG CCG GCG TCG ACT GGC TGC TTC CCG AGA 
CGC TGA TG

GCC GCG GCG CGG CCG CCT AGC AGT TTT TCC TCT 
TGC CAC AGC AGCC 

Mutation Forward primer Reverse primer
 DLG to HLA GGA AAA CTG CCG AAT TTT GCA TCT GGC TAG 

TGG GAG TG
GCA ATC CCT GCC ACT CCC ACT AGC CAG ATG CAA 

AAT TCG 
 C33A GAC CTC CAG ACT AAT GCT GCT GTC ACG CCG GCT TGG CTC GCG TGA GCC AAG CAT 
 C62A GTT CGA GGT ATT ATG GCG CTG GTC TGA CTG GGA ACA GTC AGA CCA GCG CCA TAA TA
 C157A GCT ATG ATA TTG TCA TAT CCA ACG CTG TTA TCA 

ACC TTG 
GTT TAT CAG GAA CAA GGT TGA TAA CAG CGT TGG 

ATA TG
 C157S GCT ATG ATA TTG TCA TAT CCA ACA GTG TTA TCA 

ACC TTG 
GTT TAT CAG GAA CAA GGT TGA TAA CAC TGT TGG 

ATA TG
 C207A GCA CAA AGT TTT ATG GGG GGA AGC CCT GGG 

AGG CGC 
GAT CCT TCC AGT ACA GAG CGC CTC CCA GGG CTT 

CCC 
 C207S GCA CAA AGT TTT ATG GGG GGA AAG CCT GGG 

AGG CGC 
GAT CCT TCC AGT ACA GAG CGC CTC CCA GGC TTT 

CCC 
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(SAH). AS3MT also contains multiple cysteine residues, 
of which five are fully conserved and essential for arsenic 
methylation (Thomas et al. 2007). Based on the 375 residues 
sequence of human AS3MT, these cysteines are in positions 
C32, C61, C85, C156, and C206, corresponding to the posi-
tions C33, C62, C86, C157, and C207 of the mouse AS3MT 
protein, which contains 376 amino acids. (Thomas et al. 
2007). Although many MTases have been described to be 
active in the dimeric form, AS3MT is a monomer in solution 
(Packianathan et al. 2018). Several models have been pro-
posed for iAs methylation (Dheeman et al. 2014; Hayakawa 
et al. 2005). The SAM-methyl group is transferred directly 
to arsenic clamped by cysteines in four steps (Dheeman et al. 
2014; Marapakala et al. 2012; Packianathan et al. 2018). The 
trivalent iAs III binds initially to the three conserved cysteine 
residues C62, C157 and C207. In the meantime, the methyl 
group of the SAM is transferred to trivalent As (III) oxidiz-
ing it to positively charged pentavalent MAs (V) species that 
remains bound to C33, C157 and C207. A disulfide bond 
forms between C33 and C62 after electrons from C62 reduce 
MAsV to MAsIII. The disulfide bond is reduced by thiore-
doxin, regenerating the active form of the enzyme, which 
can then methylate MAsIII to form DMAsIII (Packianathan 
et al. 2018).

Herein, we identify AS3MT to contain S-methylcysteines 
at C33 and C62 in the presence of its cofactors. We used 
in vitro methylation assays and immunoprecipitation-coupled 
mass spectrometry analyses and identified mouse and human 
AS3MT to be both stably automethylated on cysteine residues.

Materials and methods

Reagents

Arsenicals, iAs (Sigma S7400,  NaAsO2, purity equal or 
more than 90%) prepared as a 10 mM stock in  ddH2O was 

further diluted in  H2O to the desired concentrations. Methyl 
arsonous acid (MAs III; 0.37 mg/L) synthesis was per-
formed as previously described (Negro Silva et al. 2021) 
and its stock concentration was 25  mM. DMA (Sigma 
C4945, Sodium cacodylate trihydrate,  (CH3)2AsO2Na  3H2O) 
stock was 10 mM in  ddH2O. Rat liver cofactors thioredoxin 
(TRX, Sigma T0910) and thioredoxin reductase were 
purchased from Sigma (TRR, Sigma T9698), and L-glu-
tathione reduced (GSH, Sigma G6529), NADPH (Sigma 
10107824001), DTT, Adenosyl-L-Methionine (SAM), and 
S-[methyl-3H] (SAM  [3H], PerkinElmer). Human recombi-
nant histones H2A, H2B, H3, and H4 were purchased from 
New England Biolabs.

Flag constructs

The original plasmid with the mouse AS3MT cDNA was 
purchased from Harvard Medical School Plasmid (clone: 
MmCD003315546). mAS3MT was amplified by PCR 
using the primers in Table 1. PCR product was digested 
with NotI and XbaI and subcloned in the same restriction 
sites in p3xFlag-CMV-14 (Sigma) plasmid. Mutagenesis 
was performed using Phusion Hot Start II DNA Polymer-
ase (Thermo Fisher) with 2 h DpnI (New England Biolabs) 
digestion step after PCR. All the mutants were created using 
primers in Table 1. E. coli DH5α strain (Civic Bioscience) 
was used. DNA sequencing was performed at every step of 
cloning to ensure accuracy of plasmids.

GST‑mAS3MT and MBP‑hAS3MT constructs

DNA fragments of mAS3MT were amplified from p3Xflag-
CMV-14-mAS3MT (previously engineered construct) using 
primers in Table 1. The PCR product was digested with SalI 
and NotI (New England Biolabs), then inserted in pGEX-
6P-1 (Sigma) vector. Mutants were created with the same 
primers as Flag constructs (see Table 1). Protein produc-
tion and purification was performed with Pierce Glutathione 
Agarose (Thermo Fisher) according to the manufacturer’s 
instructions. Briefly, 250 mL of culture was grown to O.D. 
of 0.6, then 0.1 mM IPTG (Sigma) induction was performed 
at 16 °C for 15 h. Cells were lysed, on ice for 30 min, with 
10 mL of buffer (20 mM Tris pH 8.0, 150 mM NaCl, 1 mM 
EDTA) with protease inhibitor cocktail (cOmplete Mini, 
Sigma) and 1 mg/mL lysozyme (Bio Basic). Five rounds 
of sonication at 45% amplitude followed by incubation of 
30 min on ice with the addition of Triton-X-100 (1% final 
concentration, Sigma) and DNase I (10 μg/mL, Bio Basic). 
Supernatant was cleared with a 30 min centrifugation at 
20, 000 rpm. 150 μL of slurry beads was used per pull-
down. Purity and relative concentration of proteins were 
confirmed by gel electrophoresis followed by Coomassie 
Blue staining.

Fig. 2  Arsenic substrates compete with the automethylation. A Rep-
resentative in  vitro methylation assay during 16  h in the presence 
of various arsenicals (iAS, MAs or DMA) with increasing amount 
(0.1  µM, 1  µM and 10  µM) as indicated in top left panel. The bot-
tom left panel is the same with lower exposure to confirm lack of 
overexposure. Top right panel is the Coomassie Blue for loading 
control, and bottom right panel corresponding to the quantifica-
tion signal (arbitrary unit) obtained by fluorograph of AS3MT auto-
methylation. Error bars represents standard error of the mean (SEM) 
from three independent experiments (n = 3). ** indicates P < 0.01, 
*** P < 0.001, and **** P < 0.0001. When indicated between () 
is compare to lane 3. B Elution profile of arsenicals obtained from 
HPLC/ ICP-MS corresponding to the in  vitro methylation assay 
from panel A as indicated. Amount of arsenicals (iAs, MAs and 
DMA) are expressed in ppm. Error bars represents standard error 
of the mean (SEM) from two independent experiments (n = 2). 
*** indicates P < 0.001 when compared to the control condition 
(AS3MT + iAs + SAM)

◂



1376 Archives of Toxicology (2022) 96:1371–1386

1 3

A

B

C

AS3MT+SAM
Cofactors

1

(KDa)

2 3(lanes) 4

75

250
210

50

100

37

20
25

15

Fluorograph

AS3MT

10

Low exposure
5 6 7 8 9 10

AS3MT+SAM
Cofactors

1 2 3(lanes) 4

75

250
210

50

100

37

20
25

15
10

5 6 7 8 9 10

0 2 4 8 16 0 2 4 168

75

250
210

50

100

37

20
25

15
10

1 2 3 4 5 6

Fluorograph Coomassie blue

AS3MT

AS3MT

TRX

AS3MT+SAM + iAs
- + + - - -
- + - + - -
- + - - + -
- + - - - +

TRR
TRX

NADPH
GSH

Cof

(KDa)

75

250
210

50

100

37

20
25

15
10

1 2 3 4 5 6

- + + - - -
- + - + - -
- + - - + -
- + - - - +

TRR
TRX

NADPH
GSH

Cof

A
rb

it
ra

ry
 u

ni
ts

 (
1
0
3
)

1 2 3 4 5 6

Automethylation
quantification

AS3MT+SAM + iAs

0 2 4 8 16 0 2 4 168 (hours)

A
rb

it
ra

ry
 u

ni
ts

 (
1
0
3
)

10

20

30

40

50

Automethylation 
quantification

0

(*)

(*) (**)

(**) (**)(***)

*

***

*** n.s

0 2 4 8 16 0 2 4 168 (hours)

1 2 3 4 5 6 7 8 9 10

0 2 4 8 16 0 2 4 168 (KDa)

0

20

40

60

80

AS3MT+SAM+iAs

-
-
-
-

+
+
+
+

+
-
-
-

-
+
-
-

-
-
+
-

-
-
-
+

TRR
TRX

GSH C
of

ac
to

rs

NADPHAS
3M

T iAs

AS
3M

T+
iAs

Controls

C
on

ce
nt

ra
tio

n 
(p

pm
)

iAs
DMAs

0
20
40
60
80

Coomassie blue

(KDa)

(**)(**)

**
***



1377Archives of Toxicology (2022) 96:1371–1386 

1 3

The plasmids expressing MBP-hAS3MT were provided 
by Barry Rosen Lab (Dheeman et al. 2014). Briefly, the 
cultures were grown to reach O.D. of 0.6, induced for 4 h 
with 0.3 mM IPTG, then cells were pelleted and frozen 
at − 80 °C. The next day, cells were lysed with the buffer 
(50 mM MOPS pH 7.4, 10% glycerol, 0.3 M NaCl) contain-
ing protease inhibitor cocktail and lysozyme (see concentra-
tion above). Sonication and DNase I steps are the same as 
previously described. Purification was conducted according 
to the manufacturer’s protocol (Amylose Magnetic Beads, 
New England Biolabs). Elution was achieved with buffer 
50 mM MOPS pH 7.4, 10% glycerol, 0.3 M NaCl containing 
fresh 10 mM maltose.

In vitro methylation assay

In vitro methylation assay was performed as described pre-
viously (Mersaoui et al. 2019). Briefly, reaction mixtures 
contained 100 mM Tris–HCl buffer (pH 7, 4), recombinant 
protein (5 μg), 0.4 μM radiolabeled SAM  [3H] (15 Ci/mmol 
stock solution, 0.4 μM final concentration, PerkinElmer), 
0.2 μM TRR, 10 μM TRX, 300 μM NADPH, 1 mM GSH 
and with or without iAs (0.1, 1 or 10 μM). The order of 
addition to the reaction mixture was as follows: AS3MT 
protein in Tris buffer, cofactors (TRX, TRR, NADPH then 
GSH), arsenicals at the specified concentration when indi-
cated, and finally, the radioactive SAM. The reaction was 
incubated at 37 °C during 16 h. Reaction was stopped by 
adding Laemmli buffer, samples were separated by SDS-
PAGE and the gel stained with Coomassie Blue. After 
de‐staining, the gel was incubated for 1 h in  EN3HANCE 
(PerkinElmer) followed by 30 min wash in cold water, 
according to the manufacturer’s instructions and the reac-
tion was visualized by fluorography.

Dialysis and secondary methylation assay

After the initial in vitro methylation as described above, 
samples were dialyzed using a Slide-A-Lyzer Mini Dialy-
sis Device, 20 K MWCO (ThermoFisher, 69590). SAH 
(0.8 nM) was added to each sample, prior to loading in the 
dialysis chamber. Slide-A-Lyzers were immersed in PBS 
with 0.8 nM SAH and stirred gently for 6 h. Samples were 
transferred to Amicon Ultra-0.5 Centrifugal Filter Units 
(Millipore, UFC503024), washed 3 times with PBS and 
concentrated to 10 µL per reaction of secondary methylation 
(as per manufacturer’s instructions). Secondary methylation 
assay was performed as described above.

HG‑CT‑AAS analysis of products of in vitro reaction

Speciation analysis of As was carried out directly in the assay 
mixtures. Samples sent to analysis were incubated with 1 μM 
iAs, unless stated otherwise. Aliquots of the mixtures were 
treated with L-cysteine to reduce pentavalent As species to 
their trivalent counterparts and analyzed by hydride genera-
tion atomic absorption spectrometry coupled with a cryotrap 
as previously described (Currier et al. 2011). This analysis 
determined concentrations of iAs, MAs and DMA. Total 
As concentration was calculated as sum of iAs, MAs, and 
DMA. The instrumental limits of detection for iAs, MAs and 
DMA using this method are 14, 8, and 20 pg As, respectively 
(Hernández-Zavala et al. 2008). Trimethylated As metabo-
lites were not detected in the methylation assays with or 
without treatment with L-cysteine, which is consistent with 
previous studies using human AS3MT (Ding et al. 2012).

Mass spectrometry in AML12 cells

AML12 cells (ATCC) were grown in DMEM/F12 (Wisent) 
supplemented with 10% FBS (Wisent), insulin (Sigma), Holo-
Transferrin (Sigma), Dexamethasone (Sigma). Cells were sta-
bly transfected with either the empty vector (EV) p3X-flag 
or the p3X-WTmAS3MT-flag constructs and selected with 
900 μg/mL of G418 (Wisent). Immunoprecipitation using 
Flag M2 beads (Sigma) was performed according to manu-
facturer’s instructions. Beads were washed and sent to MS/
MS for analysis at Université de Sherbrooke. The analysis 
was performed as previously described (Dubois et al. 2016).

Murine AS3MT model generation

The AS3MT model was generated using the fully auto-
mated Swiss Model website (https:// swiss model. expasy. 
org/) and the FASTA protein sequence of AS3MT from 

Fig. 3  GSH is sufficient for AS3MT automethylation. A Representa-
tive data from a time course of the in  vitro methylation assay over 
16 h in the presence or absence of cofactors as indicated in top left 
panel. The bottom left panel is the same with low exposure to con-
firm lack of overexposure. Top right panel is the Coomassie Blue for 
loading control, and bottom right panel corresponding to the quan-
tification signal (arbitrary unit) obtained by fluorograph of AS3MT 
automethylation. B Representative in  vitro methylation assay (left 
panel), Coomassie Blue (middle panel) and quantification signal 
(arbitrary unit) obtained by the fluorograph (right panel) of AS3MT 
in the presence of indicated cofactors 0.2  μM TRR, 10  μM TRX, 
300 μM NADPH, 1 mM GSH and 1 μM iAs. A, B Error bars rep-
resents standard error of the mean (SEM) from three independent 
experiments (n = 3). * indicates P < 0.05, ** indicates P < 0.01, *** 
P < 0.001, and **** P < 0.0001. C Arsenic speciation profile obtained 
from HPLC/ICP-MS corresponding to the in vitro methylation assay 
from panel B. Amount of arsenicals (iAs and DMA) are expressed in 
ppm. Error bars represents standard error of the mean (SEM) from 
two independent experiments (n = 2). ** indicates P < 0.01 and *** 
P < 0.001

◂
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mus musculus (NM_020577.3). The website automati-
cally matches sequence based on its pre-existing data-
base. This particular sequence was constructed based 
on 6CX6. Using the site’s available tools, pictures were 
taken to show the individual cysteine molecules of inter-
est. Purple = arsenic, yellow = sulfur, red = oxygen, 
blue = nitrogen, grey = carbon.

Results

Automethylation of AS3MT requires 
the SAM‑binding pocket

In addition to its well-known substrate arsenic, we examined 
whether AS3MT had protein methylation activity towards 
exogenous substrates. Histones are well-characterized targets 
of methyltransferases (Chi et al. 2010; Guccione and Richard 

Fig. 4  Catalytic dead AS3MT-
C207S and AS3MT-C157S 
lack automethylation in vitro. A 
Representative in vitro methyla-
tion assay of AS3MT wild-type 
or cysteines mutants (C207S 
and C157S) in the presence of 
increasing concentration of iAs 
(0.1 µM, 1 µM and 10 µM) as 
indicated in the fluorograph top 
panel. The middle panel is the 
Coomassie Blue for loading 
control, and bottom panel cor-
responding to the quantification 
signal (arbitrary unit) obtained 
by fluorograph of AS3MT auto-
methylation. Error bars repre-
sents standard error of the mean 
(SEM) from three independ-
ent experiments (n = 3). *** 
indicates and **** indicates 
P < 0.0001. When indicated 
between () is compared to lane 
2. B Arsenic speciation profile 
obtained from HPLC/ICP-MS 
corresponding to the in vitro 
methylation assay from panel 
A as indicated. The AS3MT-
HLA is used as negative control 
in this experiment. Amount 
of arsenicals (iAs, MAs and 
DMA) are expressed in ppm. 
Error bars represents standard 
error of the mean (SEM) from 
two independent experiments 
(n = 2). ** indicates P < 0.01 
and *** indicates P < 0.001
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2019). We performed an in vitro protein methylation assay 
using recombinant mouse AS3MT glutathione S-transferase 
(GST) fusion protein purified from bacteria and a radiola-
beled S-adenosyl-L-methionine (SAM)  [3H] to visualize the 
methylation of potential substrates (Bedford et al. 2000). 
After 16 h, the reaction was analyzed by SDS-PAGE fol-
lowed by fluorography. AS3MT was unable to methylate free 
histone H2A, H2B, H3, or H4 (Fig. S1), even in the presence 
of cofactors known to facilitate arsenic methylation, namely 
GSH, NADPH, TRR and TRX (Aposhian et al. 2003; Ding 
et al. 2012; Mandal et al. 2001; Thomas et al. 2004); how-
ever, we did observe the automethylation of AS3MT (Fig. 
S1). Automethylation of GST-AS3MT was weakly observed 
without cofactors (Fig. 1B, lane 3) and it was significantly 
(threefold) enhanced with cofactors (Fig. 1B, lane 4).

SAM is known to contact nine key residues 
(LDLGSGSGR; Fig. 1C) forming the SAM-binding pocket 
(Martin and McMillan 2002; Petrossian and Clarke 2009). 
To show that the AS3MT methyltransferase activity was 
required for the automethylation, we substituted DLG to 
HLA within the SAM-binding pocket (Fig. 1C) to generate 
an AS3MT methyltransferase-dead mutant (AS3MT-HLA). 
As expected, AS3MT-HLA was unable to automethylate 
itself (Fig. 1D), suggesting the methyltransferase activity of 
AS3MT was required for the observed methylation events. 
Furthermore, the observed automethylation of the AS3MT 
was not limited to mouse AS3MT, as human recombinant 
MBP (maltose binding protein)-AS3MT fusion protein, 
was also detected in an in vitro methylation assay (Fig. S2). 
These finding suggest that automethylation of mouse and 
human AS3MT is a conserved event (Fig. S2).

Arsenic substrates compete 
with the automethylation

To test the effect of arsenic addition on AS3MT autometh-
ylation, we performed the in vitro methylation assay reac-
tion in the presence of various arsenicals (iAsIII, MAsIII 
or DMAV) with increasing concentration (0.1 µM, 1 µM 
or 10 µM). The AS3MT automethylation decreased with 
iAs at 0.1 and 1 µM but not 10 µM (Fig. 2A, lanes 4–6), 
while MAsIII resulted in a dramatic decrease of the auto-
methylation in a concentration dependent manner (Fig. 2A, 
lanes 7–9). DMAV had no effect on AS3MT automethyl-
ation (Fig. 2A, lanes 10–12). Of note, a faster migrating 
methylated protein with the molecular mass of TRX was 
observed in an iAs dose-dependent manner (Fig. 2A, lanes 
4–6). We performed arsenic methylation experiments using 
the in vitro assays and hydride-generation atomic absorp-
tion spectrometry coupled with a cryotrap (HG-CT-AAS) to 

confirm GST-AS3MT was methylating arsenic. Both iAsIII 
and MAsIII were methylated by GST-AS3MT under these 
conditions (Fig. 2B). These findings show AS3MT auto-
methylation is competing with iAsIII and MAsIII substrates.

Reducing conditions facilitate AS3MT 
automethylation

In vitro, AS3MT catalyzes arsenic methylation within 2 h 
of incubation (Currier et al. 2013). We performed a time 
course experiment to understand the kinetics of AS3MT 
automethylation. In the absence of cofactors, we detected 
automethylation within 2 h and it reached a plateau by 8 h 
(Fig. 3A, lanes 2–4, and see lower exposure). The addition 
of cofactors immediately led to AS3MT automethylation 
increase up to 16 h (Fig. 3A, lanes 6–10). These observa-
tions suggest cofactors act as sources of reducing poten-
tial for both AS3MT and its automethylation. AS3MT is a 
cysteine-rich protein that can form intramolecular disulfide 
bonds (Packianathan et al. 2018). It was proposed that the 
reduction of these disulfide bonds by the reducing cofactors 
is required for regeneration of AS3MT to perform successive 
methylation steps (Dheeman et al. 2014). We tested whether 
using the reducing agent, dithiothreitol (DTT), could replace 
endogenous reductants and accelerate the automethylation. 
Remarkably, addition of an increasing amount of DTT rang-
ing from 0.01 mM to 10 mM (Fig. S3, lanes 3–6) enhanced 
the AS3MT automethylation, albeit to a lesser extent than 
addition of the cofactors (Fig. S3, lane 2). These findings 
show the AS3MT automethylation preferentially occurs 
when the enzyme is in a reduced state.

GSH is sufficient for AS3MT automethylation

To further decipher the reducing role of the cofactors in arse-
nic methylation, we assessed the effect of each individual 
cofactor on the automethylation of AS3MT and its methyla-
tion of arsenic. In absence of cofactors, the AS3MT auto-
methylated signal obtained corresponds to the basal level 
(Fig. 3B, lane 1). Upon addition of thioredoxin reductase 
(TRR), thioredoxin (TRX) or NADPH, AS3MT autometh-
ylation did not increase (Fig. 3B, lanes 3–5, and see lower 
exposure). Addition of the GSH alone increased AS3MT 
automethylation to that observed by the combination of 
cofactors (Fig. 3B, lane 6 compared to lane 2). The faster 
migrating band observed in the presence of iAsIII is TRX.

To test whether the AS3MT automethylation correlates 
with the catalytic activity of the AS3MT, we performed 
an in vitro methylation assay using non-radioactive SAM 
followed by HG-CT-AAS analysis of As metabolites. We 
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assayed arsenic methylation under the same conditions as 
optimal AS3MT automethylation (16 h). At this time point, 
the iAsIII methylation was complete so that little to no 
MAs was observed. As expected, in absence of cofactors 

or AS3MT, the totality of the iAs provided in the reac-
tion remained unmethylated (iAs; Fig. 3C, controls), as 
previously reported (Currier et al. 2013). In the presence 
of all cofactors or GSH alone, DMA was observed with 
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a proportional decrease in iAs, but not with the addition 
of TRR, TRX, or NADPH alone (Fig. 3C, right part of 
panel). Of note, AS3MT in the presence of GSH alone was 
less active than in the presence of all cofactors combined 
(Fig. 3C) as previously shown (Ding et al. 2012).

In humans, iAs can bind C61, C156, and C206 located 
in the hAS3MT pocket, while MAs and DMA bind two and 
one cysteines, respectively (Li et al. 2013). These cysteines 
are critical to arsenic methylation (Dheeman et al. 2014). To 
further test whether automethylation is linked to the activ-
ity of the AS3MT, we generated two arsenic methylation 
dead mutants in the corresponding murine cysteine residues 
(AS3MT-C157S and AS3MT-C207S) as purified GST-
fusion proteins and subjected them to the in vitro methyla-
tion assay. Both AS3MT-C157S and AS3MT-C207S lost 
their ability to self-methylate (Fig. 4A). To validate the lost 
catalytic capacity of these two mutants in our in vitro experi-
ment, a Hydride Generation-CryoTrapping-Atomic Absorp-
tion Spectrometry analysis (HG-CT-AAS), was performed 
after 16 h. These AS3MT-C157S and -C207S, in addition to 
the negative control AS3MT-HLA, were unable to methylate 
arsenic (Fig. 4B). These findings show that C157 and C207, 
in addition to their known requirement for the methylation of 
arsenic (Thomas et al. 2007), are also required for AS3MT 
automethylation.

AS3MT automethylation requires four cysteine 
residues: C33, C62, C157, and C207

To identify the automethylated residues of mouse AS3MT 
in vivo, Flag-epitope tagged AS3MT was immunoprecipi-
tated from stably transfected AML12 hepatocyte cells and the 
precipitates were digested with trypsin and subjected to mass 
spectrometry (MS/MS) for peptide detection (Fig. 5A). Our 
analysis reported 23 peptides covering 226 residues or ~ 60% 
of AS3MT (Fig. S4). The MS/MS spectrum revealed meth-
ylated C33 and C62 in a total of four cysteines detected in 
our coverage (Fig. 5B). The other two detected cysteines, 
C87 and C252, were not methylated, while cysteines form-
ing the active site, C157 and C207, were not detected in our 
assay, even with various proteinase digestion methods. This 
approach showed that AS3MT is methylated in cells and 
defined C33 and C62, as automethylation sites.

To further characterize the cysteines responsible for auto-
methylation and the methylation of arsenic, C33 and C62 
were converted to a neutral alanine in single mutants C33A 
and C62A or a dual mutant C33A-C62A, and then assessed 
for in vitro methylation assays. Both AS3MT-C33A and 
AS3MT-C62A showed a dramatic decrease of automethyla-
tion (Fig. 5C, lanes 4 and 5). Furthermore, AS3MT-C33A-
C62A completely abrogated the ability to automethylate, 
suggesting C33 and C62 represent the two sites of autometh-
ylation. Using HG-CT-AAS, AS3MT-C33A, AS3MT-C62A 
and AS3MT-C33A-C62A were all defective in their ability to 
methylate iAs in the presence of cofactors (Fig. 5D). These 
findings show that AS3MT automethylation is governed by 
at least four cysteines C33, C62, C157, and C207, which are 
the same residues needed to catalyze arsenic methylation.

AS3MT automethylation does not prevent iAs 
methylation

We next asked whether prior automethylation influenced iAs 
methylation. We purified GST-AS3MT, both unmethylated 
(no automethylation) and automethylated with SAM with 
cofactors (automethylation). These protein preparations were 
dialyzed with a 20 K cutoff to remove cofactors (Fig. 6B, 
lanes 3 and 5) and SAM. These preparations were used in 
subsequent methylation reactions to methylate iAs. The ‘no 
automethylation’ GST-AS3MT behaved like GST-AS3MT 
as it automethylated with cofactors and catalyzed the con-
version of iAs to DMA (Fig. 6C lane 9, and 6D). However, 
automethylated GST-AS3MT did not methylate iAs in the 
absence of exogenous SAM (Fig. 6D, lane 5), suggesting 
automethylated AS3MT does not act as an intermediate step 

Fig. 5  AS3MT automethylation requires cysteines C33 and C62. 
A Representative western blot of immunoprecipitation (IP (10%)) 
samples using flag beads in mouse AML12 cell lines expressing sta-
bly either Flag-AS3MT or empty vectors as indicated (IN = input, 
FT = flow through). * indicates the light chain of the anti-Flag anti-
body coupled to the protein A sepharose beads. B Top panel repre-
sents the mass spectrum (MS/MS) of methylated cysteine (AS3MT-
meC33) in the identified peptides from IP in panel A. Bottom 
panel indicated the identified peptides containing the two identified 
methylated cysteine 33 and 62 from the IP-MS/MS in panel A, two 
independent experiments (n = 2) were performed. C Representa-
tive in  vitro methylation assay (left panel), Coomassie Blue (mid-
dle panel) and corresponding quantification signal (arbitrary unit) 
obtained by fluorograph (right panel) of AS3MT (wild-type) and 
AS3MT indicated mutants (C33A, C62A, and C33A-C62A) in the 
presence of cofactors. Error bars represents standard error of the 
mean (SEM) from three independent experiments (n = 3). ** indicates 
P < 0.01, *** P < 0.001, and **** P < 0.0001. D Arsenic speciation 
profile obtained from HPLC/ICP-MS corresponding to the in  vitro 
methylation assay from panel C as indicated. Amount of arsenicals 
(iAs and DMA) is expressed in ppm. Error bars represents standard 
error of the mean (SEM) from two independent experiments (n = 2). 
** indicates P < 0.01 and *** P < 0.001
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in iAs methylation. The ‘automethylated’ GST-AS3MT lev-
els increased with  [3H] SAM with and without cofactors 
(Fig. 6C, lane 11 and 14 versus lane 10). Both enzymes were 
equally able to convert iAs to DMA in the presence of SAM 
(Fig. 6D). These findings suggest that the automethylation 
of AS3MT is consistent with an active AS3MT capable of 
methylating iAs.

Discussion

Inorganic arsenic (iAs) is metabolized in a series of 
methylation steps catalyzed by AS3MT forming MAsIII, 
DMAIII and the volatile trimethylarsine (TMA). This pro-
cess is conserved across species from bacteria to man. The 
methylation of arsenic is coordinated by three conserved 
cysteine residues proposed to participate in catalysis, 
namely C62, C157, and C207 in mouse AS3MT (Fig. 7). 
The current model of iAs methylation requires a series of 
intramolecular disulfide bonds to form before the enzy-
matic methylation of arsenite (iAs3+) (Dheeman et al. 
2014). In the presence of endogenous reductants, these 
disulfide bonds are reduced, leading to the methylation of 
the iAs in the presence of the methyl group donor SAM. 
Using in vitro methylation assays, we find that AS3MT 
undergoes an automethylation step in the absence of iAs 
at C33 and C62. This automethylation was enhanced by 
its cofactor GSH or even DTT, suggesting that reduced 
cysteines accept methyl groups from SAM (Fig. 7). Fol-
lowing the addition of iAs, the automethylation of AS3MT 
is decreased, as transfer of these methyl groups completes 
the first round of iAs methylation. Furthermore, using a 
Flag-AS3MT immunoprecipitation coupled to MS/MS, we 
identified both C33 and C62 as acceptors of methyl groups 
in vivo. Site-directed mutagenesis (C to A) revealed that 
three of the previously described cysteines were required 

for AS3MT automethylation step. Our results identify a 
novel discovery of the automethylation of AS3MT and 
adds a new feature of its enzymology.

Automodification occurs frequently in post-translational 
modifying enzymes and serves to regulate activity and speci-
ficity of the enzyme. This modulation is well characterized 
for protein kinases where autophosphorylation of the acti-
vation loop causes a conformational change for substrate 
accessibility (Pawson 2002). In the methylome kingdom, 
many methyltransferases are automodified at the same type 
of residues as their substrates (Clarke 2013). However, the 
functional consequences of these automethylation events, 
for the most part, remain unknown. Arginine methyltrans-
ferases PRMT6 (Frankel et al. 2002), PRMT7 (Geng et al. 
2017) and PRMT8 (Sayegh et al. 2007) automethylate. Auto-
methylation of PRMT8 occurs in the absence of endoge-
nous substrates, decreasing the affinity of PRMT8 for SAM, 
and therefore, is a way to downregulate the enzyme in the 
absence of substrate (Sayegh et al. 2007). Lysine methyl-
transferase MLL1 (Patel et al. 2014), SUV39H2 (Iglesias 
et al. 2018; Piao et al. 2016), PRDM9 (Koh-Stenta et al. 
2017), and G9a (Chin et al. 2007) also automethylate. In the 
case of G9a, automethylation creates a new binding site for 
the methyl-lysine interactor HP1 (Chin et al. 2007). Akin to 
protein kinases, automethylation of an internal loop in Clr4 
(Suv39h) promotes a conformational switch to enhance the 
activity of Clr4 (Iglesias et al. 2018) and automethylation 
of the PRC2 also modulates its histone methyltransferase 
activity (Lee et al. 2019; Wang et al. 2019).

Cysteine methylation generates the chemically stable 
S-methylcysteine, somewhat resembling methionine (Clarke 
2013). Notably, cysteines are frequently present in active 
sites where they function as strong nucleophiles and their 
methylation may sterically block their nucleophilic abili-
ties. Interestingly, methionine in the active site of LaeA was 
shown to be methylated generating a S-methylmethionine 
(Patananan et al. 2013). Thus, it is possible that the active 
site cysteine may be able to receive two methyl groups gen-
erating S-dimethylcysteine, a reactive sulfonium, able to 
transfer a methyl group to an exogenous substrate or a neigh-
boring residue. However, our data do not support the pos-
sibility of a S-dimethylcysteine, a reactive sulfonium as an 
intermediate to methylate iAs. This is based on the remeth-
ylation experiment in the absence of added SAM (Fig. 6C, 
D). One can argue that the stoichiometry of methylation in 
Fig. 6 is not high enough to observe such a phenomenon. 
We concluded that the S-methylcysteines are present when 
AS3MT is active and whether it plays a role in activating and 
in methylation reaction of iAs remains to be shown.

Fig. 6  Automethylated AS3MT can methylate iAsIII. A Experimen-
tal design to test 2nd methylation step. B Representative fluorograph 
(left panel) and Coomassie Blue (right panel) show that automethyl-
ated AS3MT is retained, and cofactors are removed following dialy-
sis. C Purified AS3MT, non-automethylated and automethylated, 
were used in 2nd in  vitro methylation reactions with and without 
cofactors,  [H3] SAM, and/or 1 µM iAsIII. Representative fluorograph 
(left panel) and Coomassie Blue (right panel) are presented. D Arse-
nic speciation profile obtained from HPLC/ ICP-MS correspond-
ing to the in vitro methylation assay from panel C where iAsIII was 
added. Amount of arsenicals (iAs and DMA) are expressed in ppm. 
Error bars represents standard error of the mean (SEM) from three 
independent experiments (n = 3). * indicates P < 0.05, ** indicates 
P < 0.01, *** P < 0.001, and **** P < 0.0001
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Fig. 7  Proposed model for the 
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AS3MT model (generated 
using Swiss Model https:// swiss 
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cysteines are colored yellow, 
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results in the opening of the 
catalytic pocket. Step2: When 
these cysteines are released, one 
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by one cysteine or multiple 
cysteines. Step3: One methyl 
group is transferred from the 
catalytic pocket onto the arsenic 
iAs to accomplish the methyl-
transferase activity
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