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oxygen (HBO) therapy on neuronal death
induced by sciatic nerve transection in rat
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Abstract

Background: Recent studies shows that hyperbaric oxygen (HBO) therapy exerts some protective effects against
neural injuries. The purpose of this study was to determine the neuroprotective effects of HBO following sciatic
nerve transection (SNT).

Methods: Rats were randomly divided into five groups (n = 14 per group): Sham-operated (SH) group, SH + HBO
group, SNT group, and SNT + pre- and SNT + post-HBO groups (100% oxygen at 2.0 atm absolute, 60 min/day for
five consecutive days beginning on 1 day before and immediately after nerve transaction, respectively). Spinal cord
segments of the sciatic nerve and related dorsal root ganglions (DRGs) were removed 4 weeks after nerve transection
for biochemical assessment of malodialdehyde (MDA) levels in spinal cord, biochemical assessment of superoxide
dismutase (SOD) and catalse (CAT) activities in spinal cord, immunohistochemistry of caspase-3, cyclooxigenase-2 (COX-
2), S100beta (S100ß), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in spinal cord and DRG.

Results: The results revealed that MDA levels were significantly decreased in the SNT + pre-HBO group, while SOD and
CAT activities were significantly increased in SNT + pre- and SNT + post-HBO treated rats. Attenuated caspase-3 and
COX-2 expression, and TUNEL reaction could be significantly detected in the HBO-treated rats after nerve transection.
Also, HBO significantly increased S100ß expression.

Conclusions: Based on these results, we can conclude that pre- and post-HBO therapy had neuroprotective effects
against sciatic nerve transection-induced degeneration.
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Background
After peripheral nerve transection, a proportion of
sensory and motor neurons progressively die through
apoptosis [1–3]. Therefore, it has been thought that the
survival of the axotomized populations of neurons is the
prime issue to restore the function of target organs [4].
Several mechanisms account for the apoptosis of
neuronal cells after nerve transection, including excito-
toxicity, alternations in electrical activity, oxidative
stress, neurotrophic support deficit, neurotoxic inflam-
matory products, and alternation in cellular homeostasis
[5–7]. Therefore, it has been postulated that the use of

free radical scavengers [8], anti-inflammatory agents [9],
and nerve growth factors [10] may offer some protection
against neural apoptosis after peripheral nerve transec-
tion. Due to the complexity of the nerve cell destructive
processes after nerve transection, a satisfactory thera-
peutic method has not been developed yet. So, finding
an appropriate therapeutic method to reduce this
process is an important issue in field of peripheral nerve
regeneration.
Hyperbaric oxygen (HBO) therapy, treatment provid-

ing 100% oxygen at a pressure greater than that at sea
level, can be considered as one of these methods. In this
regard, studies documented that HBO have neuroprotec-
tive effects against traumatic brain and spinal cord injury
[11, 12], ischemic brain and spinal cord injury [13, 14],
neurodegenerative disorders [15, 16], oxidative damage
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in neuronal culture [17], and neuropathic pain [18].
Recently, HBO has been demonstrated to improve nerve
regeneration [19, 20] following peripheral nerve injury.
The beneficial effects can be attributed to some
biological activities such as anti-oxidative [21, 22], anti-
inflammatory [23, 24], and anti-apoptotic [25, 26] prop-
erties. Also, it was documented that HBO increased
oxygen supply [27] and improved neural metabolism
[28] after ischemia, along with promoting thrombolysis
[29]. Despite the neuroprotective effects of HBO therapy
against various experimental models of neural injury and
disease, no studies have been conducted on the influence
of HBO on neural apoptosis after nerve transection.
Accordingly, we investigated the beneficial effects of
HBO therapy on neuronal cell preservation after sciatic
nerve transection.

Methods
Animals
A total of 70 adult male Sprague-Dawley rats were used
in this study (laboratory animal research center, Sari,
Iran). The animals were kept in the laboratory under
constant conditions of light/dark cycle (12 h/12 h) and
temperature (23 ± 1 °C). Experimental procedures and
protocols used in this study were approved by ethical
committee of Health Sciences, Mazandaran University of
Medical Sciences (IR.MAZUMS.REC.1396.2978).

Nerve transection and experimental design
Under anesthesia with intraperitoneal ketamine (60 mg/
kg) plus xylazine (10 mg/kg), sciatic nerve was trans-
ected unilaterally (right side) at the level of the sacrotu-
berous ligament. Spontaneous regeneration of sciatic
nerve was inhibited by excising a 3 mm segment of
distal nerve stump, and reflection of the distal and
proximal ends of the transected nerves [30]. The rats
were placed in HBO chamber, the pressure was gradually
raised to and maintained at 2.0 atm absolute (at a rate of
0.1 ATA/min), then allowed to breathe 100% oxygen for
60 min per day and decompressed to normal room
pressure at a rate of 0.1ATA/min [31, 32]. All rats in the
same group were kept in the chamber for 30 min to
adapt it to the experimental conditions and then under-
went treatment at the same time.
The animals were randomly allocated in five groups,

each containing 14 rats: (Ι) Sham-operated (SH) group
(underwent skin suture alone); (ΙΙ) SH + HBO group
(underwent skin suture and received HBO); (III) sciatic
nerve transection (SNT) group (underwent skin suture
followed by sciatic nerve transection); (IV) SNT + pre-
HBO group (HBO treatment beginning on 1 day before
nerve transection and followed for 5 days); (V) SNT +
Post-HBO group (HBO treatment for 5 days beginning

on immediately after nerve transection and recovery
from anesthesia).
Four weeks after nerve transection, each group of

animals was divided into 2 subgroups: (A) in which rats
(n = 7) were euthanized with an intraperitoneal injection
of overdose of sodium pentobarbital, and spinal cord
segments of the sciatic nerve removed from vertebral
column for biochemical analysis, (B) in which rats (n =
7) were euthanized with an intraperitoneal injection of
overdose of sodium pentobarbital, and spinal cord segments
of the sciatic nerve and related dorsal root ganglions (ipsilat-
eral L4 and L5 DRGs) removed for histopathological assess-
ment and immunohistochemistry. The doses and treatment
schedules were based on previous studies [29–31] and pilot
experiments in our laboratory.

Biochemistry
Four weeks after nerve transection, the obtained spinal
cord samples were immediately frozen and stored in a −
80 °C freezer for assays of tissue malondialdehyde
(MDA) levels as a product of lipid peroxidation, and
catalase (CAT) and superoxide dismutase (SOD) activ-
ities. Thiobarbituric acid reactive substances measure-
ment was used to calculate of MDA level as micromoles
per milligram of protein [33]. Catalase (CAT) enzyme
activity was measured spectrophotometrically based on
the reaction of the enzyme with methanol in the presence
of hydrogen peroxide and expressed as unit per milligram
of protein [34]. The estimation of superoxide dismutase
(SOD) activity was based on the inhibition of superoxide
radical reaction with pyrogallol which was determined
spectrophotometrically by the absorbance at 420 nm and
expressed as unit per milligram of protein [35].

Histopathology
Four weeks after nerve transection, the obtained spinal
cord segments and related dorsal root ganglions were
immediately fixed in 10% neutral buffered formalin.
Five-micrometer serial transverse sections were taken
from the paraffin-embedded blocks, deparaffinized, and
then stained with Cresyl violet to assess the histopatho-
logical changes. All the histological assessments were
done in a blinded fashion.

Immunohistochemistry
For immunohistochemistry, some sections were incu-
bated with anti-caspase 3 rabbit polyclonal antibody
(1:200 in PBS, v/v, Abcam), anti-COX 2 rabbit polyclonal
antibody (1:200 in PBS, v/v, Abcam), and anti-S100ß
rabbit polyclonal antibody (1:500 in PBS, v/v, Abcam)
overnight at 4 °C. Sections were washed with PBS and
incubated with secondary antibody conjugated with
horseradish peroxidase (goat anti-rabbit IgG, Abcam) for
2 h. For quantitative analysis, immunohistochemical
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photographs (n = five photos from each five-micrometer
serial transverse sections of ipsilateral spinal cord
segments of the sciatic nerve and related dorsal root
ganglions, the thickness of between sampled sections
was 48 μm for spinal cord and 36 μm for DRG) from all
rats in each experimental group were assessed by densi-
tometry using ImageJ software. Data are expressed as a
percentage of total tissue area.

TUNEL staining
TUNEL staining on some sections was performed using
a TUNEL detection kit (Roche). Briefly, the sections
incubated for 10 min with 3% H2O2 and for 15 min
with proteinase-K, and then incubated with TUNEL re-
action mixture for 60 min at 37 °C. In the following, the

samples were incubated for 30 min with converter POD
at 37 °C and demonstrated with DAB for 10 min. For
quantitative analysis, immunohistochemical photographs
(n = five photos from each five-micrometer serial trans-
verse sections of ipsilateral spinal cord segments of the
sciatic nerve and related dorsal root ganglions, the thick-
ness of between sampled sections was 48 μm for spinal
cord and 36 μm for DRG) from all rats in each experi-
mental group were assessed by densitometry using
ImageJ software. Data are expressed as a percentage of
total tissue area.

Statistical analysis
Statistical analysis was performed with SPSS Version 15.
Results were presented as mean values with standard

Table 1 Effect of HBO on biochemical markers of rat spinal cord affected by sciatic nerve transection

Experimental Groups MDA
μmol/mg-protein

CAT
unit/mg-protein

SOD
unit/mg-protein

SH 60.67 ± 1.52 107 ± 26.87 10.33 ± 2.08

SH + HBO 60.33 ± 14.29 97 ± 8.48 9 ± 2.82

SNT 97.33 ± 1.52** 15 ± 2.64*** 1.83 ± 1.25*

SNT + pre-HBO 65.67 ± 5.50## 80 ± 17.06# 9 ± 4.35#

SNT + post-HBO 90.67 ± 15.89 75 ± 19.80# 8.33 ± 1.52#

Data are represented in Mean ± SD. **p < 0.01 versus SH and SH + HBO; ##p < 0. 01 versus SNT; ***p < 0. 001 versus SH and SH +HBO; #p < 0. 05 versus SNT; *p < 0. 05
versus SH and SH +HBO by one-way ANOVA followed by Tukey′s post-hoc tests

Fig. 1 Light Photomicrographs of dorsal root ganglion (a) and spinal cord (b) horizontal section of SNT group show chromatolysis of the dorsal
root ganglion neurons and anterior horn neurons of the spinal cord (arrows), while sections of dorsal root ganglion and spinal cord of SNT + HBO
treated groups (c and d) show normal microscopic appearance in some of the sensory and motor neurons without chromatolysis (stained with
cresyl violet; Scale bar = 100 μm)
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deviations. Normality of the data determined by
Kolmogrov-Smirnov (K-S) normality test. Also, analysis
of variance (ANOVA) followed by Tukey′s multiple
comparison tests were used to assess the results. A value
of p < 0.05 was considered significant.

Results
Biochemical analysis
Biochemical analysis of the MDA levels, and SOD and
CAT activities for all groups is shown in Table 1. Sciatic
nerve transection in the SNT group produced a signifi-
cant elevation (p < 0.01) in lipid peroxidation level com-
pared to SH and SH +HBO groups. The MDA levels in
the SNT + pre-HBO group were significantly lower than
that those in the SNT group (p < 0.01). Treatment with
HBO in the SNT + post-HBO group did not produced a
significant decrease in MDA levels compared to SNT
group (p > 0.05).

Sciatic nerve transection in the SNT group produced a
significant (p < 0.001) decrease in catalase (CAT) activity
compared to SH and SH +HBO groups. The CAT
activities in the SNT + pre- and SNT + post-HBO groups
were significantly (p < 0.05) higher than that in the SNT
group, while the differences between SNT + Pre- and
SNT + post-HBO groups were not significant (p > 0.05).
Sciatic nerve transection in the SNT group produced a

significant (p < 0.05) decrease in superoxide dismutase
(SOD) activity compared to SH and SH+HBO groups. The
SOD activities in the SNT+Pre- and SNT+Post-HBO
groups were significantly (p < 0.05) higher than that in the
SNT group, while the differences between SNT+Pre- and
SNT+Post-HBO groups were not significant (p > 0.05).

Histopathologic assessment
Histological examination of the nerve-transected ani-
mals revealed cellular degeneration in sensory dorsal

Fig. 2 Light Photomicrographs show immunohistochemical staining of caspase-3 in dorsal root ganglion neurons and anterior horn neurons of the
spinal cord in SNT (a and b) and SNT + HBO treated (c and d) groups, respectively. The positive staining of caspase-3 is presented by a brown color of
cytoplasm (arrows) (Scale bar = 100 μm). The intensity of the immunohistochemical staining in sensory and motor neurons were decreased after HBO
treatment. Densitometry analysis of immunohistochemical photomicrographs for caspase-3 was assessed (e). Data are expressed as a percentage of
total tissue area. ***P < 0.001 versus SH and SH+HBO groups; ###P < 0.001 versus SNT group by one-way ANOVA followed by Tukey′s post-hoc tests
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root ganglion neurons (Fig. 1a) and in spinal cord
motoneurones (Fig. 1b). The changes include dissol-
ution of Nissl bodies and displacement of the nucleus
to the periphery, chromatolysis. Treatment with HBO
in the SNT + Pre- and SNT + Post-HBO groups re-
duced the changes; so that normal microscopic ap-
pearance in some of neural cells was detected in
dorsal root ganglion (Fig. 1c) and spinal cord (Fig.
1d). No detectable injury was shown in SH and SH +
HBO groups.

Immunohistochemical assessment
Nerve transection in the SNT group increased the
expression of caspase-3 in dorsal root ganglion (Fig. 2a)
and spinal cord (Fig. 2b) compared to SH and SH +

HBO groups. HBO treatment in the SNT + Pre- and
SNT + Post-HBO groups reduced the degree of positive
staining for caspase-3 in dorsal root ganglion (Fig. 2c)
and spinal cord (Fig. 2d) compared to SNT group.
Quantitative analysis of caspase-3 positive staining in the
experimental groups is shown in Fig. 2e.
Nerve transection in the SNT group increased the

expression of COX-2 in dorsal root ganglion (Fig. 3a)
and spinal cord (Fig. 3b) compared to SH and SH +
HBO groups. HBO treatment in the SNT + Pre- and
SNT + Post-HBO groups reduced the degree of positive
staining for COX-2 in dorsal root ganglion (Fig. 3c) and
spinal cord (Fig. 3d) compared to SNT group. Quantita-
tive analysis of COX-2 positive staining in the experi-
mental groups is shown in Fig. 3e.

Fig. 3 Light Photomicrographs show immunohistochemical staining of COX-2 in dorsal root ganglion neurons and anterior horn neurons of the spinal
cord in SNT (a and b) and SNT + HBO treated (c and d) groups, respectively The positive staining of COX-2 is presented by a brown color of cytoplasm
(arrows) (Scale bar = 100 μm). The intensity of the immunohistochemical staining in sensory and motor neurons were decreased after HBO treatment.
Densitometry analysis of immunohistochemical photomicrographs for COX-2 was assessed (e). Data are expressed as a percentage of total tissue area.
***P < 0.001 versus SH and SH+ HBO groups; **P < 0.01 versus SNT group by one-way ANOVA followed by Tukey′s post-hoc tests
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Nerve transection in the SNT group increased the
expression of S100ß, a marker of Satellite and Schwann
cells, in dorsal root ganglion (Fig. 4a) compared to SH
and SH +HBO groups. HBO treatment in the SNT +
Pre- and SNT + Post-HBO groups increased the degree
of positive staining for S100ß in dorsal root ganglion
(Fig. 4b) compared to SNT group. Quantitative analysis
of S100ß positive staining in the experimental groups is
shown in Fig. 4c.

TUNEL assessment
Almost no TUNEL-positive cells could be detected in
SH and SH +HBO groups, whereas many cells were
intensely stained in the dorsal root ganglion (Fig. 5a)
and spinal cord (Fig. 5b) obtained from SNT group. In
contrast, a small number of TUNEL-positive cells were
detected in dorsal root ganglion (Fig. 5c) and spinal cord
(Fig. 5d) obtained from HBO pre- and post-treated rats.
Quantitative analysis of TUNEL- positive staining in the
experimental groups is shown in Fig. 5e.

Discussion
The current study indicated that hyperbaric oxygen therapy
promotes neuron survival through attenuating apoptosis,
inflammation, and lipid peroxidation, and also through
improving antioxidant status after sciatic nerve transection.
Our immunohistochemical results showed that sciatic

nerve transection considerably increased the expression
of caspase-3 in sensory dorsal root ganglion neurons
and in spinal cord motoneurones, which plays a critical
role in apoptosis. On the contrary, our results showed
that these up regulations significantly attenuated after
HBO treatment, while the differences between pre- and
post-treatment were not significant. To correlate neur-
onal cell apoptosis, we carried out TUNEL staining
method. Retrograde neuronal apoptosis, which occurs in
sensory dorsal root ganglion neurons and in spinal cord
motoneurones, is one contributing factor of poor
sensory recovery and reduced motor function after
peripheral nerve transection [3, 36]. On the other hand,
the survival of the neurons following injury is of great
importance for the outcome of the axonal regeneration

Fig. 4 Light Photomicrographs show immunohistochemical staining of S100ß in dorsal root ganglion neurons of SNT (a) and SNT + HBO treated
(b) groups, respectively. The positive staining of S100ß is presented by a brown color of cytoplasm (arrows) (Scale bar = 100 μm). The intensity of
the immunohistochemical staining in sensory neurons were decreased after HBO treatment. Densitometry analysis of immunohistochemical
photomicrographs for S100ß was assessed (c). Data are expressed as a percentage of total tissue area. *P < 0.05 versus SH and SH + HBO groups;
#P < 0.05 versus SNT group by one-way ANOVA followed by Tuke’s post-hoc tests

Shams et al. BMC Neurology  (2017) 17:220 Page 6 of 10



and target organ reinnervation. In this regard, it is well
known that neuronal cell apoptosis after peripheral
nerve transection is mediated through expression of
apoptosis-related genes namely Bax, Bcl2, and caspase-3
[37, 38]. Several studies have shown that HBO prevents
apoptosis in experimental neurological disorder models.
In this regard, it was found that HBO therapy prevented
apoptosis through opening of the mitochondrial ATP-
sensitive potassium channels [39], decreasing of caspase-
3 [40], and decreasing of phosphorelated-p38 mitogen-
activated protein kinas [41] in ischemic brain. Also, it
was documented that HBO therapy prevented apoptosis
through decreasing of hypoxia-inducible factor-1α (HIF-
1α) [42], adaptor molecule apoptosis-associated speck-
like protein (ASC), and caspase-3 [43, 44] after spinal
cord injury. Recently, it was found that hyperbaric
oxygen therapy following chronic sciatic nerve constric-
tion injury produced antinociceptive effects through

different mechanisms such as downregulation of
caspase-3 and inhibition of apoptosis [32].
Our immunohistochemical results showed that sciatic

nerve transection considerably increased the expression
of COX-2 in dorsal root ganglion and spinal cord. On
the contrary, our results showed that these up regula-
tions significantly attenuated after HBO treatment com-
pared to non-treated rats, while the differences between
pre- and post-treatment were not significant. Following
peripheral nerve injury, various inflammatory mediators
were upregulated in spinal cord and dorsal root ganglion
[45, 46], which have been implicated in the axonal
degerative process after injury. One of the inflammatory
mediators that play an important role during these
processes is cyclooxygenase-2 (COX-2) [47]. Several
lines of evidence have shown that HBO treatment exerts
neuroprotective effects via mechanisms such as inhib-
ition of inflammation. In this regard, it was found

Fig. 5 Light Photomicrographs show TUNEL-positive cells in dorsal root ganglion neurons and anterior horn neurons of the spinal cord in SNT (a
and b) and SNT + HBO treated (c and d) groups, respectively. The positive staining of TUNEL is presented by a brown color of nucleus (arrows)
(Scale bar = 100 μm). The intensity of the TUNEL staining in sensory and motor neurons were decreased after HBO treatment. Densitometry analysis of
photomicrographs for TUNEL reaction was assessed (e). Data are expressed as a percentage of total tissue area. ***P < 0.001 versus SH and SH +HBO
groups; **P < 0.01 versus SNT group; ###P < 0.001 versus SNT group by one-way ANOVA followed by Tukey’s post-hoc tests
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previously that the antinociceptive effect of HBO treat-
ment is associated somewhat with anti-inflammatory
properties in a rat model of neuropathic pain [48]. HBO
treatment decreased NF-kB, IL-1ß, and TNF-α levels after
spinal cord injury [12]. Another study reported that HBO
reduced COX-2 level in ischemic cerebral tissue [49].
In the present study, HBO treatment decreased

malondialdehyde (MDA) levels as an index of lipid per-
oxidation in spinal cord of pre-treatment group
compared to non-treated rats, while the difference in
post-treatment group was not significant. Therefore,
HBO pre-treatment was more effective than HBO
post-treatment against lipid peroxidation. Also, HBO
treatment increased catalase and superoxide dismutase
activities as endogenous antioxidants in spinal cord of
pre- and post-treatment groups compared to non-
treated rats, while the differences between pre- and
post-treatment were not significant. Free radical-induced
lipid peroxidation is the primary pathway of peripheral
nerve injury [50], which is elevated in the spinal cord
after sciatic nerve transection [51]. Evidences also affirm
that pheripheral nerve transection leads to pro-oxidative
status in the spinal cord due to a decrease in antioxidant
enzyme activities [52]. Studies revealed the alternation of
enzymatic antioxidant activity after HBO exposure. Li
et al. [21] reported that HBO induced tolerance against
brain ischemia-reperfusion injury by upregulation of
antioxidant enzyme activity of catalase and superoxide
dismutase. Also, it was found that HBO enhanced super-
oxide dismutase activity and reduced tissue damage after
hypoxia-ischemia brain damage in neonatal rats [53].
Our immunohistochemical results showed that sciatic

nerve transection increased the expression of S100ß in
the dorsal root ganglion. Paradoxically, we found that
HBO applied before or after SNT further increased
S100ß expression significantly compared to SNT alone.
Therefore, since it is well known that S100ß acts as an
inhibitor of apoptosis and a stimulator of cell prolifera-
tion in neurodegenerative process [54], the increase in
S100ß induced by SNT alone could be viewed as a com-
pensatory mechanism of the body to deal with apoptosis
after SNT (the present study) and other neural injuries
[55, 56]. In this regard, previous studies have shown that
S100ß expression upregulated in dorsal root ganglion
after sciatic nerve transection [55]; so that treatment
with S100ß decreased neural death after sciatic nerve
transection [56]. Zhang et al. [57] found that HBO ther-
apy after traumatic brain injury reduced neuronal loss
and increased expression of S100 astrocyte marker in
brain tissue.

Conclusions
The biochemical, histopathological, and immunohisto-
chemical evidences demonstrated that pre- and post-

HBO therapy had neuroprotective effects against sciatic
nerve transection-induced degeneration. On the other
hand, the results propose that HBO treatment is effect-
ive in protection of sensory and motor neurons against
retrograde apoptosis and enhance neuronal survival time
after peripheral nerve transection.
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