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Abstract: Ricin is a toxin which enters cells and depurinates an adenine base in the sarcin-ricin loop
in the large ribosomal subunit, leading to the inhibition of protein translation and cell death. We
postulated that this depurination event could be detected using Oxford Nanopore Technologies
(ONT) direct RNA sequencing, detecting a change in charge in the ricin loop. In this study, A549
cells were exposed to ricin for 2–24 h in order to induce depurination. In addition, a novel software
tool was developed termed RIPpore that could quantify the adenine modification of ribosomal RNA
induced by ricin upon respiratory epithelial cells. We provided demonstrable evidence for the first
time that this base change detected is specific to RIP activity using a neutralising antibody against
ricin. We believe this represents the first detection of depurination in RNA achieved using ONT
sequencers. Collectively, this work highlights the potential for ONT and direct RNA sequencing
to detect and quantify depurination events caused by ribosome-inactivating proteins such as ricin.
RIPpore could have utility in the evaluation of new treatments and/or in the diagnosis of exposure
to ricin.

Keywords: ricin; RNA sequencing; MinIon; ribosome inactivating proteins; saporin; ribosomes

Key Contribution: Oxford Nanopore direct RNA sequencing can identify the depurination event
caused by RIPs including ricin.

1. Introduction

Depurination is where either an adenine or guanine base is enzymatically or chemically
cleaved from the phosphodiester backbone, leaving a gap in the DNA or RNA strand.
Ribosome-inactivating proteins (RIPs) are a class of toxin which inhibits protein synthesis
via the depurination of a specific adenine base present within a conserved ribosomal region
known as the sarcin-ricin loop (SRL) [1]. RIPs induce irreversible hydrolysis of the N-
glycosidic bond at adenine 4605 (A4605) in Homo sapien 28s rRNA [2]. Therefore, A4605
depurination is an ideal candidate for the potential identification of RIP exposure as this
results in the modification of a single known target site.

Ricin is one of the most well-known RIPs due to potent cytotoxic properties and
is a significant risk to both human and animal health, with many deliberate exposures
having been reported, including the assassination of Georgi Markov, a Bulgarian dissident
writer [3,4]. Ricin is a plant lectin and holotoxin composed of two subunits individually
referred to as ricin toxin A-chain (RTA) and ricin toxin B-chain (RTB). Ricin B-chain binds
to cell surface galactosides and facilitates entry, whilst the A-chain catalyses depurination,
classifying ricin as a type II RIP. Related type I RIPs, such as saporin, lack this B-chain and,
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therefore typically, require the use of an artificial cell entry mechanism (i.e., transfection
reagent or antibody conjugation) to enter a cell and cause toxicity. Saporin is dependent on
cell type, enter cells via endocytosis of uncoated vesicles [5], or bind to the macroglobulin
receptor α2 [5,6].

Depurination spontaneously occurs in DNA at a rate of 2000–10,000 events per day
per cell [7], which are broadly resolved by base excision repair [8]. However, mis-repairing
can occur, which leads to mutation and, in some cases, oncogenesis [9]. The depurination
of RNA, depending on context, has multiple downstream effects such as halting transla-
tion [10], preventing the packaging of viral RNA into capsids [11], or inhibiting protein
synthesis in ribosomes by cleavage of a key catalytic adenine [12]. Oxford Nanopore Tech-
nologies sequencing can potentially capture the entire spectrum of modifications present on
nonamplified DNA or RNA. The system works by measuring the ionic current and “dwell
times” of nucleotides traversing through a nanopore. Basecalling software (basecallers)
takes a signal representing a nucleotide or sequence of nucleotides from a sequencing
device and translates this into the constituent nucleotides in a format that can be analysed.
ONT has developed basecallers for Nanopore sequencing (e.g., Guppy) that translate ionic
current and dwell time into the nucleotides AGCT/U. In contrast to other sequencing
methodologies, the nucleic acid being sequenced on an ONT flow cell is analysed across the
nanopore, five nucleotides at a time (i.e., denoted as a kmer). Newer versions of Guppy can
infer 6mA (N6 methyladenine) and 5mC (5-methylcytosine) in DNA. Currently, no ONT
basecallers have yet been trained to recognise modifications on RNA, and downstream
detection tools rely on comparisons between unmodified and the knockout or knock downs
of RNA-modifying proteins to identify specific modifications.

To investigate whether depurination of A4605 in the SRL could be identified by direct
RNA sequencing, a lung epithelial cell line (A549) was exposed to ricin. Post-exposure,
direct RNAseq was used to evaluate the ricin-induced signal alterations in 28s rRNA.
The data indicated that depurination of A4605 formed a signal analogous to what would
occur if the base were U4605 due to the activity of ricin. We describe the development
of RIPpore, a Python script which leveraged the transposition to quantify and isolate
depurinated reads, enabling signal-level investigation of wholly modified and unmodified
populations. The methodology represents a novel use of ONT dRNA sequencing to identify
SRL depurination in a sample exposed to RIPs. The depurination measured is specific to
RIP activity through the use of a neutralising antibody to ricin. Collectively, this work
opens a door to the future transcriptome or genome-wide mapping of apurunic sites and
the detection of RIP toxins through ONT direct RNA sequencing.

2. Results

In order to identify depurination, a combined biological exposure, sequence, and
computational strategy needed to be developed. Cultured A549 cells were exposed to ricin
or saporin (two RIPs) and the resulting RNAs were sequenced, by direct RNAseq using
ONT flow cells (Figure 1).
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Figure 1. Strategy for measuring the effects of ricin using a direct RNA sequencing approach. A549 
cells were exposed to ricin and total RNA extracted from cells and then purified in a continuous 
procedure. A select portion of rRNA potentially containing the A4605 modification was directly 
sequenced on a flow cell. Software was developed, RIPpore, that took the output data and quanti-
fied the adenine modification. 

2.1. Ricin Purification and Cytotoxicity Assay in Cell Culture 
The ricin toxin used in this study was isolated from the Ricinus communis (subsp. Zan-

zibariensis) plant and underwent a two−stage purification process from bean, to crude, to 
purified preparation. The purification of ricin was confirmed by Coomassie blue staining, 
with the solvent−extracted crude preparation showing multiple products, and a single 
product of the expected molecular weight after HPLC purification (Supplementary Figure 
S2A). To assess the toxicity of the crude and purified ricin, a WST−1 cytotoxicity assay was 
performed on the cell lines of choice A549 cells (Supplementary Figure S2B). (Note that 
the complete Commassie blue staining pattern is shown in Supplementary Figure S1.) 

Cell viability plateaued at concentrations of ricin above 10 pM, and further increases 
in concentration did not decrease cell viability, suggesting that these were saturating 
amounts. The half maximal effective dose (EC50) had only a 2 fM difference between prep-
arations. To ensure saturation and to provide parity to other methodologies [13], a 1 nM 
concentration of purified ricin was used throughout this study. Purified ricin toxin was 
also used to reduce the possibility that effects were not due to other constituents of castor 
beans. 

2.2. 28s Ribosomal RNA−Targeted Oligo Design 
To directly sequence the depurinated base(s) in the SRL, ONT Reverse Transcription 

Adapter (RTA) Oligonucleotides A and B (designed to ligate to polyA−tailed mRNAs) 
were customised to specifically ligate to nonpolyadenylated ribosomal RNA. The 3′ polyT 
run was replaced with the reverse complement of the final 10 3′ bases of the 28s rRNA 
(producing: GACAAACCCT). For flow cell efficiency, barcoding was used to multiplex 
samples. Supplementary Table S1 describes the number of reads and samples per flow 

Figure 1. Strategy for measuring the effects of ricin using a direct RNA sequencing approach. A549
cells were exposed to ricin and total RNA extracted from cells and then purified in a continuous
procedure. A select portion of rRNA potentially containing the A4605 modification was directly
sequenced on a flow cell. Software was developed, RIPpore, that took the output data and quantified
the adenine modification.

2.1. Ricin Purification and Cytotoxicity Assay in Cell Culture

The ricin toxin used in this study was isolated from the Ricinus communis (subsp.
Zanzibariensis) plant and underwent a two-stage purification process from bean, to crude,
to purified preparation. The purification of ricin was confirmed by Coomassie blue staining,
with the solvent-extracted crude preparation showing multiple products, and a single prod-
uct of the expected molecular weight after HPLC purification (Supplementary Figure S2A).
To assess the toxicity of the crude and purified ricin, a WST-1 cytotoxicity assay was per-
formed on the cell lines of choice A549 cells (Supplementary Figure S2B). (Note that the
complete Commassie blue staining pattern is shown in Supplementary Figure S1).

Cell viability plateaued at concentrations of ricin above 10 pM, and further increases in
concentration did not decrease cell viability, suggesting that these were saturating amounts.
The half maximal effective dose (EC50) had only a 2 fM difference between preparations. To
ensure saturation and to provide parity to other methodologies [13], a 1 nM concentration
of purified ricin was used throughout this study. Purified ricin toxin was also used to
reduce the possibility that effects were not due to other constituents of castor beans.

2.2. 28s Ribosomal RNA-Targeted Oligo Design

To directly sequence the depurinated base(s) in the SRL, ONT Reverse Transcription
Adapter (RTA) Oligonucleotides A and B (designed to ligate to polyA-tailed mRNAs)
were customised to specifically ligate to nonpolyadenylated ribosomal RNA. The 3′ polyT
run was replaced with the reverse complement of the final 10 3′ bases of the 28s rRNA
(producing: GACAAACCCT). For flow cell efficiency, barcoding was used to multiplex
samples. Supplementary Table S1 describes the number of reads and samples per flow cell;
Supplementary Table S2 shows an overview of the per sample read count, the coverage of
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position 4605 in the 28s rRNA, and the percentage of reads which mapped to the 28s rRNA.
Once ligated, samples were reverse-transcribed, generating a cDNA hybrid for enhanced
stability and to minimise secondary structures in the 28s RNA, facilitating the transit of the
native RNA molecule through the nanopore for sequencing.

2.3. Development of RIPpore: A Tool for Measuring Depurination

Direct RNAseq using Oxford Nanopore enabled the study of chemical modifications
on RNA by measuring potential alterations in charge. The hypothesis was tested where
the depuration of adenine 4605 by an RIP would lead to a detectable signal change or
miscalling of bases. To test this hypothesis, hACE2-A549 cells were exposed to ricin or
saporin (a type I RIP), and the total RNA was extracted and sequenced directly. Reverse
transcription was performed to aid in the sequencing of the 28s Guppy to call the sequence
of the 28s rRNA moving through the pore. We predicted that if the apurinic 4605 site was
present, this would be potentially miscalled as a base, whereas an unmodified base would
be correctly called as an adenine.

Direct sequence reads were mapped to human 28s rRNA using minimap2 (although
uracil was basecalled as thymine, this is referred to as an uracil residue). At 2 h post-ricin
exposure, 12% of nucleotides at the site of depurination (A4605) had an apparent change
from adenine to uracil compared to the equivalent sequence from unexposed cells (Table 1).

Table 1. Table of descriptive statistics of percentage of reads called as uracil by Guppy. Min and max
denote lowest and maximum percentages of uracil across each condition, respectively.

Exposure Min Max Median Mean SD

Control 0.21 0.34 0.28 0.28 0.06
B-Chain 0.15 0.17 0.16 0.16 0.001
Anti Toxin 0.38 0.60 0.48 0.49 0.11
Saporin 7.55 16.97 8.52 11.02 5.18
Ricin 2 h 9.18 15.34 11.65 12.04 3.13
Ricin 4 h 24.77 29.71 26.48 25.98 3.40
Ricin 6 h 26.54 35.06 30.66 30.76 4.26
Ricin 24 h 19.78 39.64 23.81 27.74 10.50
Ricin 100 pm 1.68 2.75 2.07 2.17 0.54
Ricin 10 pm 0.64 1.04 0.96 0.88 0.21
Ricin 1 pm 0.46 0.61 0.58 0.55 0.08

To quantify and further study this in the multiple samples, a python script was
developed, RIPpore, to count the type and number of each nucleotide occurring at base
4605. RIPpore functions by taking a sam file (with reads aligned to the 28s rRNA) and using
pysam to take the pileup column at position 4605. Subsequently, RIPpore calculates the
proportion of thymine bases, using the percentage of thymine as a proxy for depurinated
reads. By analysing the unexposed controls and cells exposed to ricin B-chain (RTB), a
baseline level of noise was established with ~0.3% of reads called as uracil (Table 1). This
identified a limit of detection of the approach, whereby RIP-induced uracil transpositions
above a cut-off of 0.4% were reported as depurinated. This cut-off was calculated by taking
the maximum percentage plus standard deviation of uracil bases called at position A4605
in control and RTB exposed cells. Updating Guppy from version 3.0.6 to 4.4.2 and repeating
basecalling on control data led to a decrease in the noise of uracil from ~1.5% (data not
shown) to a mean of 0.277 (Table 1). Re-basecalling data from RIP-exposed cells found no
change in uracil calls (data not shown). An increase in apparent depurination events was
also observed in 28s rRNA purified from cells exposed to saporin.

Boxplots were used to visualise counts of each nucleotide at base 4605 across all
samples. The data showed a time-dependent increase in depurination, by the concomitant
increase in uracil and decrease in adenine (with significance determined by pairwise t-tests)
(Figure 2). The proportion of cytosine and guanine both increased in count to around 3%
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each at this site. The depurination effect of ricin was detected at the initial time point
analysed (2 h post-exposure), peaked at 6 h, and had declined by 24 h. All ricin exposures
showed a significant difference at this position from the negative control or RTB. Incorrect
basecalling of cytosine and guanidine did occur, but only to a maximum of 3.5% of reads,
with guanidine increasing by 1% over the control (statistically significant at later time
points). Cytosine increased between 1 and 3%, with a large sample variability for the same
conditions, and only saporin exposure showed a significant difference.
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Figure 2. Boxplots showing a time course (2–24 h) of the percentage of nucleotide composition at
position A4605 in 28S rRNA from A549 cells following exposure to vehicle control, ricin B-chain,
saporin, or pure ricin. Either control, B-chain (6 h), or saporin at 24 h, or ricin at 2, 4, 6, and 24 h post-
exposure. Pairwise t-tests assessing control to each exposure were used to perform significance testing.
NS denotes p > 0.05, * p < 0.05 and ** p < 0.01. See Supplementary Figure S5 for all four nucleotides.

The change in depurination levels by the concentration of ricin is not linear, with a
10× reduction in ricin from 1000–100 pm resulting in a level of depurination of 30–2.1%,
appearing to become asymptotic with further reductions having a lesser decrease in levels
of depurination (Figure 3).
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Figure 3. Boxplots showing percentage of nucleotide composition at position A4605 in 28S rRNA
from A549 cells exposed to differing concentrations of ricin (1–1000 pm; 6 h). Pairwise t-tests assessing
control to each exposure were used to perform significance testing. NS denotes p > 0.05, * p < 0.05
and ** p < 0.01. See Supplementary Figure S6 for all four nucleotides.
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Use of the ovine antitoxin shows a reduction in depurination (Figure 4) to a level
below that induced by 1 pm of exposure (Table 1), with an average of 0.48% of calls being
uracil compared to 1 pm having an average of 0.55%. It is noteworthy that although there
was reduced depurination in the antitoxin-treated ricin-exposed cells relative to the control,
this indicates partial rather than complete neutralisation of toxin activity by the antibody.
However, this partial neutralisation is the equivalent of an over 1000-times reduction in
concentration of ricin exposure.
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2.4. Charge Intensity Analysis of the Ricin Loop Shows a Shift Caused by Depurination

In order to further investigate the miscalling event assigned by guppy, we sought to
study the perturbations in signal at the sarcin-ricin loop. As the miscalling of apurinic
4605 as uracil appears consistently dose-dependent and responded as expected to controls
and antitoxin-based neutralisation, we examined how the charge of depurinated A4605
compares to U4605. As the variations in raw measurements such as dwell time and charge
intensity are utilised by basecalling algorithms to predict the nucleotide sequence, the
influence that depurination in the 28s rRNA had upon these raw features was measured.
A previous study suggested that the measurement of transition dynamics of depurinated
DNA showed an increase in dwell time using solid-state nanopores [14] (NB: which has no
relation to ONT and is not a sequencing device). To do so, charge intensities of the ricin
loop were simulated using Nanocompore such that an A4605 was compared to an U4605
(Figure 5A,B, respectively). A sample from ricin-exposed cells would contain sequence
reads that are either called A4605 or U4605. These were matched, using Tombo [15], to the
actual recorded charge intensities in the ricin loop from the control (predominately A4605)
or from cells exposed to ricin (Figure 5C,D, respectively). Tombo was used to superimpose
the recorded charge intensities onto the predicted charge intensities from the reference
sequence. The sequence reads from cells exposed to ricin were segregated to only those
called U4605, and the reads mapping to A4605 were disregarded (Figure 5D). The reference
sequence was modified to U4605 and aligned to the actual charge intensity when the reads
containing U4605 were considered in isolation.

The simulated reads showed a marked decrease in charge intensity at base 4605
comparing A4605 (Figure 5A) to U4605 (Figure 5B).
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Figure 5. Comparison of Nanocompore median simulated charge intensity with the canonical ricin
loop reference sequence (A), and sequence with the apurinic site replaced with an uracil (B). For
(A,B), the x-axis is the reference position, and the y-axis is charge intensity (C). Tombo output
displaying the charge intensity of the ricin loop from control (nonexposed) A549 cells (D). Tombo
output for the ricin loop from cells exposed to ricin for 6 h, mapped to a reference where the A4605 is
altered to U4605. For (C,D), the x-axis is the position of the nucleotide on the 28s RNA and the y-axis
is a normalised charge intensity of the actual (red) and predicted (grey) sequenced reads.

This paralleled the findings from the Nanocompore analysis (Figure 5B) which showed
a decrease in charge associated with an apurunic site at position 4605. See Supplementary
Figure S4 for simulations with cytosine and guanidine at position 4605. This suggested that
Guppy was miscalling the apurunic site as an uracil. When viewing the charge intensities
through Tombo (Figure 5C), the control reads aligned closely with the predicted charge
for A4605, whereas, the immediate nucleotide upstream of site 4605 decreased in charge
intensity with depurination of site 4605. This was observed for both the actual and predicted
charge intensities. This identified the likely mechanism for Guppy basecalling the apurunic
site 4605 and supported the use of quantifying uracil calls as a proxy for depurination.

To further investigate these signal-level changes, Nanocompore was used to study
charge intensity and dwell time at a per base resolution. The changes induced by depuri-
nation were compared between the different exposures and controls and were visualised
using Nanocompore, which curiously shows the depurinated adenine as base 4602, a
difference of three nucleotides compared to its position in the reference; due to this, it is
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referred to as 4602 in the context of Nanocompore and displayed as such in the figures. The
data indicated that there was a decrease in charge associated with the apurunic site, with
the proportion of reads with this shift increasing with time, in RNA from cells exposed to
either ricin or saporin when compared to the unexposed controls (Figure 6).
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Figure 6. Charge density shown as a violin plot of the charge intensity per read at position 4605 on
the 28s RNA determined by Nanocompore analysis of the direct RNA sequencing data (A–F). Shown
are the dwell time and charge intensity at position 4605 from either A549 cells exposed to ricin for 2, 4,
6, and 24 h (A–D), and ricin B-chain (E) and saporin (F). The control exposure is shown in green and
the relevant experimental exposure in orange. The x indicates the mean, the middle-dashed line the
medium, and the outlying dotted lines the interquartile ranges. (G) To identify significant differences
between the exposures, a pairwise comparison of the logged p-values of Gaussian mixture models was
used. (H) Summary of the mean intensity, dwell time, and the log p-value of the difference conditions.
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Nanocompore identified a distinct increase in charge density formed below 107 mean
intensity units (Nanocompore unit), which was absent in the control reads and increases
in a time-dependent manner. This effect was seen initially as a small peak in the exposed
samples, which increased in size over time to a distinct peak, with a concomitant decrease
in the canonical peak at 115 mean intensity units. Ricin exposure for 2, 4, 6, and 24 h
(Figure 6A–D), respectively, caused a rise in reads at a lower charge density, increasing
from 2 to 6 h, peaking, and plateauing between 6 h and 24. The 2 h exposure (Figure 6B)
had the lowest significance in difference to the control of the ricin exposures (Figure 6G,H),
with each subsequent exposure increasing in significance. Exposure with the ricin B-chain
only had little discernible difference in charge density at position 4602, but a slight increase
in dwell time (Figure 6E,G). Exposure of cells to saporin (Figure 6F) resulted in an increase
in reads with a lower charge density and a slight increase in dwell time, which was greater
than those observed in cells exposed to B-chain only. Ricin exposure produced a noticeable
and significant increase in lower-charge reads at site 4602, in a time-dependent manner.

The effect not only occurred at site 4602 but altered both the charge and dwell time of
nucleotides upstream and downstream, but no further than three nucleotides (Figure 5).
An assessment of how many nucleotides up and downstream of position A4602 were
affected by depurination was performed by extending the window used by Nanocompore
to measure the charge density and dwell time (Figure 7).

B-chain produced little effect compared to controls (Figure 7A). A 6 h exposure to
ricin resulted in the signal changes from the abasic site extending primarily across nu-
cleotides 4600–4603 (Figure 7B). Nucleotide position 4603, as with position 4602, showed a
decrease in charge intensity, whereas position 4600 showed an increase in charge intensity.
There was little change in charge density at position 4601, but an increase in dwell time,
indicating a slower translocation speed, corroborating the effect of depurination observed
previously [14]. See Supplementary Figure S3 for violin plots of charge density and dwell
time across all conditions.
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Figure 7. Nanocompore-generated violin plots of charge density and dwell time of: (A) Control
vs. B-chain and (B) Control vs. 6 h ricin exposure. The control exposure is shown in green and the
relevant experimental exposure in orange. The x indicates the mean, the middle-dashed line the
medium, and the outlying dotted lines the interquartile ranges. B-chain and controls gave similar
profiles. For (A,B), the order of the violin plots represented the sequence around the ricin lop, starting
with site 4599 (left) and extending to site 4605 (right). Ricin exposure caused a decrease in charge
at sites 4602 and 4603, but an increase in charge at position 4600. Site 4605 and, to a greater degree,
4601 increased in dwell time in RNA from cells exposed to ricin.
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3. Discussion

Here, we have demonstrated the first detection of depurination with direct RNA
sequencing on an ONT flow cell (i.e., using either the MinION or GridION sequencer), by
utilising the hyper-specific removal of adenine 4605 by ricin to only a single abasic site.
This modification was identified through the development of direct sequencing primers
specific to 28s ribosomes, and the basecalling of direct RNA sequence data producing the
transposition of A4605 to U4605 in depurinated reads (i.e., the nucleotide modification in-
duced the following ricin exposure; Figure 3). This was achieved through the development
of a novel tool to quantify these events: RIPpore. To the authors knowledge, this is also the
first detection of depurination in RNA achieved on ONT sequencers.

To investigate why the modified base was identified as uracil and how this could be
exploited as a way of detecting depurination and RIP activity, we compared the signal
level following exposure of cultured lung epithelial cells to ricin. The data indicated that
the charge intensity and the dwell time were different at base 4605 from RNA obtained
from cells exposed to ricin and saporin internalised via transfection reagents, compared
to unexposed controls (Figures 4 and 5). This provided a likely explanation for Guppy
basecalling depurinated 4605 as uracil. To validate this, Nanocompore was used to simulate
the 28s rRNA with U4605 and produced reads with a lower charge at the 4605 site versus
A4605 (Figure 6A,B). Tombo produced a canonical model with expected charge intensities
for a given sequence, which was compared against the recorded charge intensities. The
analysis using Tombo, comparing U4605 and depurinated reads with A4605 and nondepuri-
nated reads, concurred with the Nanocompore simulated reads (Figure 6C,D). The lower
charge associated with depurination at 4605 was the cause of miscalled bases as U4605
and gave credence to the quantification of RIP-induced depurination by measuring levels
of U4605 with RIPpore. Simulated data were used instead of the generation of ssRNA
oligonucleotides containing U4605, as the synthesis process is limited to a maximum size of
~80 bp, whereas ONT sequencing has historically struggled with reads shorter than 150 bp.
It was only recently that a software update has been made available that can accurately
identify and basecall shorter read lengths to a minimum of 20 bp in length [16]. The issue
of read lengths and the fact that bonito (i.e., the ONT tool used to train basecaller models
for guppy) is not designed to work on bases outside of ATCGU make it difficult to train a
basecaller that is able to detect depurination. In the future, if the synthesis or read length of
oligos containing uracil at base 4605 can be managed, it may be theoretically possible to
train a basecaller that can identify the depurination of base 4605 and that could differentiate
an abasic site from U4605. This would require a tool to specifically replace U at depurinated
bases in the basecalled data with an appropriate symbol (D for depurination or R for ribose
backbone) as part of the training dataset and modification of Bonito (currently used by
ONT to train basecalling models) to handle additional bases outside of ATCGU, which is
not available at present or planned, to the best of our knowledge.

This methodology is proven with concentrations of ricin from 1000 to 1 picomole. As
lethal exposures to ricin typically require upward of nanomolar to micromolar quantities
in order to mediate its toxic effects [3,17], the picomole sensitivity of this technique means
its use for the diagnosis of toxin exposure is worth further investigation. Currently, clinical
diagnosis of ricin is challenging through signs and symptoms and/or the direct detection of
the toxin using physical techniques (e.g., ELISA and mass spectrometry). RIPpore perhaps
offers a novel indirect identification of ricin exposure through the identification of the
specific depurination event induced during intoxication.

RIPpore allowed for quantification of RIP-induced depurination and demonstrated the
time-dependent nature of the effect of ricin exposure on 28 s ribosomes. This matched the
observation using digital droplet PCR (ddPCR) [13]. However, we believe our method may
have more accurate results as it relies on mature 28s rRNA in order for the oligo to bind
to the final 10 3′ bases, whereas PCR methodologies will likely also count any immature
28s rRNA transcripts that might be present. Our study found that after 24 h of exposure,
the proportion of depurinated ribosomes had begun to decrease. Whether this effect was
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due to cell death removing depurinated ribosomes or the transcription of additional 28s
rRNA to combat the loss of functional ribosomes is currently unclear. There is also the
possibility that the cell was attempting to recover by creating additional ribosomal RNA,
but was unable to translate the required proteins for correct ribosome folding which may
then circumvent the action of ricin, resulting in increased nondepurinated reads [18].

For creating and testing countermeasures to RIPs, such as ricin, direct RNA sequencing
will be highly useful in quantifying the relative protection against depurination/ricin
exposure a treatment provides. RIPpore has also demonstrated that an antitoxin to ricin
effectively prevents depurination to a level of an over 1000-times reduction in concentration
of ricin exposure. RIPpore provides a quantitative assessment of depurination from direct
sequence read data. This technique would also be of benefit to those developing RIP-based
immunotoxins to assess off-target ribosome inactivation across various cell types and
targets. This method also creates an additional wealth of data on the epi-state of the 28s
rRNA due to other modifications, which, as of yet, is a relatively unexplored field using
direct RNA sequencing. This will enhance investigation into ribosomal regulation due to
differing modifications in a wide variety of contexts.

4. Materials and Methods
4.1. Ricin Extraction

The ricin preparations used for this investigation were conducted at Dstl. Ricin was
extracted from castor beans of Ricin communis subsp. zanzibariensis as per the methodology
previously published [19].

4.2. Assessment of Ricin Purification

Assessment of ricin preparations by SDS electrophoresis was carried out. The purity
of the ricin preparations was assessed by SDS-PAGE using coomassie blue staining (GE
Healthcare). Samples (1 mL at 5 or 10 mg/mL) were mixed with a 1:1 volume of sample
buffer Tris-HCl (125 mM) pH to 6.8, SDS (10%, w/v), and glycerol (50%, v/v). The samples
were heated at 95 ◦C for 5 min prior to loading 1 mL onto the gel (polyacrylamide gradient
(4–14%); GE Healthcare). Proteins were separated for 40 min before Coomassie blue staining
for visualisation, using the manufacturer’s instructions (Calibrated Densitometer GS-800;
Bio-Rad, Hemel Hempstead, UK). Densitometric scans were analysed using Quantity One
software (Bio-Rad). The purity of ricin was determined as a percentage of the total protein
in each lane, using the average density analysis tool.

4.3. Cell Line

Cells of cell line hACE-A549 were kindly provided by Olivier Schwartz [20]. Cells were
cultured in 10% foetal bovine serum and Dulbecco’s modified Eagle’s medium (DMEM)
at 37 ◦C and 5% CO2. Cells were cultured to 80–90% confluency in a T75 before exposure.
A549 (86012804) cells were obtained from the European Collection of Animal Cell Cultures
(ECACC) (Public Health England, Salisbury, UK). Cells were maintained in culture medium
consisting of DMEM (Sigma Aldrich, Poole, UK) with 10% (v/v) foetal calf serum (Sigma
Aldrich, Poole, UK), 1% penicillin, streptomycin solution (containing 100 units/mL of
penicillin and 0.01 mg/mL of streptomycin), and 1% (w/v) l-glutamine (Sigma Aldrich,
Poole, UK) 2 mM.

4.4. In Vitro Cytotoxicity Assay

Cells were grown in T75 flasks in a humidified atmosphere of 5% CO2 in air at 37 ◦C
and removed from the flask surface using incubation with trypsin (0.05% w/v) (Sigma
Aldrich, Poole, UK) containing EDTA (0.03% w/v) (Sigma Aldrich, Poole, UK) on achieving
70% confluency. The monolayer was allowed to adhere to the culture plates for 24 h before
addition of ricin. For toxicity assessment, ricin toxin was diluted to 100 ng mL−1 in culture
medium and filtered using a 0.2 m sterile filter before further dilution in culture medium
and addition to the assay plate in triplicate. The plates were then incubated for 48 h prior
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to the addition of 10 mL of Roche Cell Proliferation Reagent WST-1 (Sigma Aldrich, Poole,
UK). After 3 h, the absorbance was read on a Thermo Multiskan plate reader (Thermo
Fisher Scientific, Loughborough, UK) at 450 nm to assess cell viability.

4.5. Antitoxin-Based Ricin Neutralisation

An ovine anti-ricin antitoxin that has previously been demonstrated to have neutral-
ising properties toward the toxin [21] was kindly provided by Lucy Cork (Dstl). Ricin
(500 nm) and anti-toxin (50 mg/mL) were mixed (1:1; vol/vol) and then incubated for
30 min at room temperature. This ricin-antitoxin cocktail was diluted into DMEM (1 nm)
before being administered to T75 flasks of A549 cells.

4.6. RIP Exposure

All RIPs were handled with appropriate safety measures. Ricin was added to cell
culture media of a volume appropriate to the cell culture plate or flask being used to create
a solution of 1 nM. Saporin was added as described by Rust et al., at 100 nM [22] for 24 h.
B-chain was added at 1 nM for 6 h. Ricin exposure lasted 2, 4, 6, and 24 h. Cell culture media
were then disposed of in sodium hypochlorite solution for inactivation. Care was taken
not to generate aerosols at this step. Two PBS washes of the monolayer were performed
to remove any remaining RIPs and culture media present. Waste PBS was disposed of in
sodium hypochlorite solution.

4.7. RIP Disposal

RIPs were deactivated by disposal into a solution of sodium hypochlorite with a
minimum of 10,000 ppm active chlorine for 24 h. Sodium hypochlorite and inactivated
RIPs were disposed in accordance with local regulations.

4.8. RNA Extraction

RNA was extracted using Trizol solution (Thermo Fisher) and optionally in conjunction
with Phasemaker tubes (Thermo Fisher) according to the manufacturer’s instructions.

4.9. Quantifying RNA Content

The RNA content of samples was measured using the Qubit RNA system (Thermo,
Qubit RNA HS Assay Kit, Q32855). The Qubit working solution and standards were
prepared as per the manufacturer’s instructions. An amount of 2 µL of each sample
was then added to a tube containing 198 µL of working solution and was vortexed for
2–3 sections All tubes were incubated at room temperature for 2 min. Samples were read
using a Qubit 3.0 Fluorometer using the high-sensitivity method.

4.10. Targeted Direct RNA Oligos A and B with and without Barcodes

The following oligos were synthesised from Eurofins with HPLC purification, and
were used to replace the standard Oligos A and B in the direct RNA sequencing protocol.
The last 10 nucleotides of Oligo B are the reverse complement of the last 10 nucleotides 3′ of
28s rRNA AGGGTTTGTC resulting in GACAAACCCT from NCBI accession: NR_003287.4.
Unbarcoded reads may modify ONT’s oligo A and B as described in Oxford Nanopore
sequence-specific direct RNA protocol DSS_9081_v2_revK_14Aug2019. Deeplexicon and
Poreplex [23,24] oligos were Standard Oligos modified to replace the poly T tail with the
28r rRNA sequence-specific sequence.
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Standard ONT oligos
Oligo A: 5′-/5PHOS/GGCTTCTTCTTGCTCTTAGGTAGTAGGTTC-3′

Oligo B: 5′-GAGGCGAGCGGTCAATTTTCCTAAGAGCAAGAAGAAGCCGACAAACCCT-3′

Deeplexicon 1
OligoA1: 5′-/5Phos/GGCTTCTTCTTGCTCTTAGGTAGTAGGTTC-3′

OligoB1: 5′-GAGGCGAGCGGTCAATTTTCCTAAGAGCAAGAAGAAGCCGACAAACCCT-3′

Deeplexicon 3
OligoA2: 5′-/5Phos/GTGATTCTCGTCTTTCTGCGTAGTAGGTTC-3′

OligoB2: 5′-GAGGCGAGCGGTCAATTTTCGCAGAAAGACGAGAATCACGACAAACCCT-3′

Deeplexicon 2
OligoA3: 5′-/5Phos/GTACTTTTCTCTTTGCGCGGTAGTAGGTTC-3′

OligoB3: 5′-GAGGCGAGCGGTCAATTTTCCGCGCAAAGAGAAAAGTACGACAAACCCT-3′

Deeplexicon 4
OligoA4: 5′-/5Phos/GGTCTTCGCTCGGTCTTATTTAGTAGGTTC-3′

OligoB4: 5′-GAGGCGAGCGGTCAATTTTAATAAGACCGAGCGAAGACCGACAAACCCT-3′

Poreplex 1
Oligo A: 5′-/5Phos/CCTCCCCTAAAAACGAGCCGCATTTGCGTAGTAGGTTC-3′

Oligo B: 5′-GAGGCGAGCGGTCAATTTTCGCAAATGCGGCTCGTTTTTAGGGGAGG
GACAAACCCT-3′

Poreplex 2
Oligo A: 5′-/5Phos/CCTCGTCGGTTCTAGGCATCGCGTATGCTAGTAGGTTC-3′

Oligo B: 5′-GAGGCGAGCGGTCAATTTTGCATACGCGATGCCTAGAACCGACGAGG
GACAAACCCT-3′

Poreplex 3
Oligo A: 5′-/5Phos/CCTCCCACTTTCACACGCACTAACCAGGTAGTAGGTTC-3′

Oligo B: 5′-GAGGCGAGCGGTCAATTTTCCTGGTTAGTGCGTGTGAAAGTGGGAGG
GACAAACCCT-3′

Poreplex 4
Oligo A: 5′-/5Phos/CCTCCTTCAGAAGAGGGTCGCTTCTACCTAGTAGGTTC-3′

Oligo B: 5′-GAGGCGAGCGGTCAATTTTGGTAGAAGCGACCCTCTTCTGAAGGAGG
GACAAACCCT-3′

4.11. Oxford Nanopore Library Preparation

Oxford Nanopore sequence-specific direct RNA protocol DSS_9081_v2_revK_14Aug2019
was used in this study. Note that the reverse transcription step to linearise the 28s rRNA
was performed as the secondary structure inhibits translocation through the nanopore.
For both barcoded and unbarcoded library preparations, 1.4 mM of oligos A and B was
annealed 1:1 in 10 mM Tris-HCl pH 7.5 and 50 mM NaCl as described in the direct RNA
protocol. For each sample, whether barcoded or not, 2 mg of extracted RNA was split
into two 1 mg samples. Each sample proceeded through the Oxford Nanopore protocol as
directed, until step 18, and eluted in 10 mL of nuclease-free water. All samples were pooled
at step 20 and adjusted with the NEBNext Quick Ligation Reaction Buffer as needed for the
volume of reverse-transcribed RNA. The protocol then proceeded as normal.

4.12. Oxford Nanopore Sequencing

Sequencing was undertaken on MinION MD106 flow cells, with the SQK-RNA002 kit
appropriately selected in Minknow. Guppy version 4.4.1 was used for basecalling. Older
runs were re-basecalled with version 4.4.1 for parity.

4.13. Demultiplexing

Poreplex [23] was used to demultiplex individual samples using the options: –trim-
adapter –barcoding –fast5. For one set of samples, DeePlexiCon [24] was used with default
options. Note that any future direct RNA barcoding and demultiplexing tools which work
in a similar method to the above tools will likely produce a satisfactory output.

4.14. Quantification of Depurination

Quantification of depurination was achieved using the following workflow:

1. Concatenate all fastqs in fastq_pass per sample;
2. Map concatenated fastqs to NR_003287.4 using: minimap2 -ax splice -uf -k14 ref.fa

reads.fq > aln.sam minimap2 [25] version 2.17-r941;
3. Sort and index sam file using Samtools Samtools [26] version 1.9;
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4. Run rippore.py to calculate per base nucleotide counts. By default, use base 4605;
if using a different 28s rRNA reference to NCBI: NR_003287.4, provide the correct
base with -b option. rippore.py -s sample.sam. RIPpore can be found at https:
//gitlab.com/yryan/rippore, accessed on 6 August 2021.

4.15. Statistical Analysis

Summary statistics and Figure 2 were generated in R version 4.0.2 using results from
rippore.py with the -o option to create a CSV of nucleotide counts at the depurination site.
Significance was determined using the ggsignif package to perform a series of independent
t-tests, comparing unexposed controls to each exposure condition.

4.16. Raw Signal Analysis

Nanocompore [27] version 1.0.3 was used to identify changes in charge intensity
and dwell time at a range of locations on the 28s ribosome. This analysis used NCBI
NR_003287.4 as a reference. Nanocompore was also used to generate simulated reads of the
28s ribosome, both wildtype and modified to T4605. The Nanopolish SimReads function
was used in its default settings, and no modification options were enabled.

Nanocompore was modified to increase the simulated read dpi, move legends, and
increase font sizes for publication purposes.

The references used were:
>WT
AGTACGAGAGGAACCG
>Uracil
AGTACGTGAGGAACCG
>Guanidine
AGTACGGGAGGAACCG
>Cytosine
AGTACGCGAGGAACCG
Tombo [15] version 1.5.1 was used to generate aggregate plots of 50 random reads

around the ricin loop, for WT and A4605, depurinated, and T4605 to assess changes in read
signal against Nanocompore-simulated signals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxins14070470/s1. Table S1: Overview of Flow cell and direct
RNA reads. Table S2: Overview of Sample Reads per sample and reads at RIP depurination site.
Figure S1: Raw Coomasie Blue of Ricin Purification. Figure S2: A Crude and Purified Coomassie
Blue analysis of ricin extraction B Crude and purified ricin EC50. Figure S3: Figure 5 Extended to
all conditions. Figure S4: Figure 6 Extended to all conditions. Figure S5: Figure 2 with cytosine
and guanine. Figure S6: Figure 3 with cytosine and guanine. Figure S7: Figure 4 with cytosine
and guanine.

Author Contributions: Conceptualization, Y.R. and A.H.; formal analysis, Y.R.; investigation, Y.R.,
A.H., H.T. and C.H.; methodology, Y.R., A.H. and J.D.; resources, A.H.; software, Y.R.; supervision,
G.C.C. and J.A.H.; validation, Y.R., A.H. and H.T.; visualization, Y.R.; writing—original draft, Y.R.;
writing—review and editing, J.D., G.C.C. and J.A.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the UK Ministry of Defence under contract STECH008 along
with the Medical Research Council through MR/S502546/1 and MR/R502339/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Raw Fast5 files available from SRA. BioProject PRJNA752594 (https:
//www.ncbi.nlm.nih.gov/bioproject/PRJNA752594, accessed on 6 August 2021). RIPpore can be
found at https://gitlab.com/yryan/rippore, accessed on 6 August 2021.

https://gitlab.com/yryan/rippore
https://gitlab.com/yryan/rippore
https://www.mdpi.com/article/10.3390/toxins14070470/s1
https://www.mdpi.com/article/10.3390/toxins14070470/s1
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA752594
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA752594
https://gitlab.com/yryan/rippore


Toxins 2022, 14, 470 15 of 15

Acknowledgments: We acknowledge the MRC DiMeN DTP for funding YR and AH as part of a PhD
CASE studentship with Dstl.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. de Virgilio, M.; Lombardi, A.; Caliandro, R.; Fabbrini, M.S. Ribosome-inactivating proteins: From plant defense to tumor attack.

Toxins 2010, 2, 2699–2737. [CrossRef] [PubMed]
2. Stirpe, F.; Gilabert-Oriol, R. Ribosome-Inactivating Proteins: An Overview. In Plant Toxins; Gopalakrishnakone, P., Carlini, C.R.,

Ligabue-Braun, R., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–29.
3. Worbs, S.; Köhler, K.; Pauly, D.; Avondet, M.A.; Schaer, M.; Dorner, M.B.; Dorner, B.G. Ricinus communis intoxications in human

and veterinary medicine—A summary of real cases. Toxins 2011, 3, 1332–1372. [CrossRef] [PubMed]
4. Bradberry, S. Ricin and abrin. Medicine 2012, 40, 80–81. [CrossRef]
5. Bolognesi, A.; Polito, L.; Scicchitano, V.; Orrico, C.; Pasquinelli, G.; Musiani, S.; Santi, S.; Riccio, M.; Bortolotti, M.; Battelli, M.G.

Endocytosis and intracellular localisation of type 1 ribosome-inactivating protein saporin-s6. J. Biol. Regul. Homeost. Agents 2012,
26, 97–109. [PubMed]

6. Polito, L.; Bortolotti, M.; Mercatelli, D.; Battelli, M.G.; Bolognesi, A. Saporin-S6: A useful tool in cancer therapy. Toxins 2013, 5,
1698–1722. [CrossRef] [PubMed]

7. Lindahl, T.; Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 1972, 11, 3610–3618. [CrossRef] [PubMed]
8. Stratigopoulou, M.; van Dam, T.P.; Guikema, J.E.J. Base Excision Repair in the Immune System: Small DNA Lesions with Big

Consequences. Front. Immunol. 2020, 11, 1084. [CrossRef]
9. Cavalieri, E.; Saeed, M.; Zahid, M.; Cassada, D.; Snow, D.; Miljkovic, M.; Rogan, E. Mechanism of DNA depurination by

carcinogens in relation to cancer initiation. IUBMB Life 2012, 64, 169–179. [CrossRef]
10. Jobst, K.A.; Klenov, A.; Neller, K.C.M.; Hudak, K.A. Modified Nucleic Acids in Biology and Medicine; Jurga, S., Erdmann, V.A.,

Barciszewski, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 273–297.
11. Karran, R.A.; Hudak, K.A. Depurination of Brome mosaic virus RNA3 inhibits its packaging into virus particles. Nucleic Acids

Res. 2011, 39, 7209–7222. [CrossRef]
12. Lord, M.J.; Jolliffe, N.A.; Marsden, C.J.; Pateman, C.S.C.; Smith, D.C.; Spooner, R.A.; Watson, P.D.; Roberts, L.M. Ricin Mechanisms

of cytotoxicity. Toxicol. Rev. 2003, 22, 53–64. [CrossRef]
13. Lewis, J.L.; Shields, K.A.; Chong, D.C. Detection and quantification of ricin-mediated 28S ribosomal depurination by digital

droplet PCR. Anal. Biochem. 2018, 563, 15–19. [CrossRef] [PubMed]
14. Marshall, M.M.; Ruzicka, J.A.; Taylor, E.W.; Hall, A.R. Detecting DNA Depurination with Solid-State Nanopores. PLoS ONE 2014,

9, e101632. [CrossRef]
15. Stoiber, M.; Quick, J.; Egan, R.; Eun Lee, J.; Celniker, S.; Neely, R.K.; Loman, N.; Pennacchio, L.A.; Brown, J. De novo Identification

of DNA Modifications Enabled by Genome-Guided Nanopore Signal Processing. bioRxiv 2017. [CrossRef]
16. Oxford Nanopore. Sequencing Short Fragments with Nanopore Technology. 2022. Available online: https://nanoporetech.com/

applications/short-fragment-mode (accessed on 1 July 2022).
17. Audi, J.; Belson, M.; Patel, M.; Schier, J.; Osterloh, J. Ricin poisoning: A comprehensive review. JAMA 2005, 294, 2342–2351.

[CrossRef] [PubMed]
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