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Abstract: Radiolabeled amino acids are an important class of agents for positron emission tomography
imaging that target amino acid transporters in many tumor types. Traditional 18F-labeled amino acid
synthesis strategies are always based on nucleophilic aromatic substitution reactions with multistep
radiosynthesis and low radiochemical yields. In recent years, new 18F-labeling methodologies such
as metal-catalyzed radiofluorination and heteroatom (B, P, S, Si, etc.)-18F bond formation are being
effectively used to synthesize radiopharmaceuticals. This review focuses on recent advances in the
synthesis, radiolabeling, and application of a series of 18F-labeled amino acid analogs using new
18F-labeling strategies.

Keywords: fluorine-18; amino acids; positron emission tomography; radiopharmaceuticals; radiofluorination

1. Introduction

Positron emission tomography (PET) is attracting considerable attention in medical
imaging technology. It can provide noninvasive, functional, and metabolic information at
the molecular level and plays an increasingly important role in the diagnosis and staging of
tumors [1]. As a commonly used tracer for PET imaging, 2-[18F]fluoro-2-deoxy-D-glucose
([18F]FDG) can provide valuable functional information based on the increased glucose
uptake of cancer cells and can describe metabolic abnormalities. [18F]FDG PET/CT is more
sensitive and specific in certain cancers, such as lymphoma, non-small cell lung cancer, and
esophageal cancer, and can be used for tumor staging and restaging. It has also been used
to assess treatment response, which can distinguish responders from non-responders before
morphological alterations occur [2–4]. However, due to high uptake in the normal brain,
[18F]FDG is met with limited success in acquiring images with adequate contrast in brain
tumors [5]. Moreover, some types of tumors may transform their metabolic consumption
from glucose to other nutrients such as amino acids (AAs) [6,7].

AAs can be actively transported to the brain and be used to visualize brain tumors
that are not associated with the disruption of the blood–brain barrier. Malignant tumors
are associated with rapid growth and unrestricted cell proliferation, which require the
uptake and consumption of high levels of AAs [8,9]. Therefore, certain AA transporters
(AATs) are overexpressed or upregulated in tumor cells as carriers for the transport of AAs
into cells [10–12]. The mechanism of AA uptake by tumor cells during molecular imaging
mainly reflects AAT activity rather than protein synthesis; moreover, several unnatural
AAs do not participate in protein synthesis but are a part of AATs. Therefore, the imaging
of positron-labeled AAs in patients with tumors can reflect the expression of AATs in tumor
cells [13].

The advantageous nuclear-decay properties of fluorine-18 (97% β+, 109.7 min half-life)
permit its use in multistep synthesis, thereby rendering it an ideal radionuclide for the
radiolabeling of molecules as potential PET tracers. Over the past decades, several aromatic
AAs such as phenylalanine (Phe) and tyrosine (Tyr) have been radiolabeled with fluorine-18
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via nucleophilic aromatic substitution (SNAr) for PET imaging [14–17]. In SNAr reactions
with [18F]fluoride, a leaving group (-N+Me3, -NO2, -halogens, -mesylate, etc.) and an
activating group (-NO2, -CN, -CF3, or -carbonyl groups, etc.) in the ortho or para position,
with respect to the leaving group, is usually necessary in the precursor, which limits the
substrate scope. Moreover, amino, hydroxyl, and other active groups in AAs will interfere
with the SNAr reaction; thus, protection and deprotection steps are usually required, which
may prolong synthesis time. Therefore, new synthesis strategies are always needed for the
18F-labeling of AAs to expand substrate scope and shorten synthesis time.

In the past decade, significant progress has been made in the field of labeling methods
via the direct 18F-fluorination of nonactivated arenes and aliphatic carbon compounds.
Among them, hypervalent iodine (III) methods and copper-mediated strategies using
pinacol boronate (BPin) ester or boronic acid precursors are currently the most commonly
used methods. Light-mediated radiofluorination strategies allow for the formation of
18F-labeled compounds at room temperature and are known to have good functional
group tolerance. Fluoride bond formation in heteroatoms such as B-18F, Si-18F, and P-18F is
possible at room temperature using 18F-labeling in aqueous media [18–20]. These methods
have also been used for the synthesis of 18F-labeled AA analogs. In this review, we focus
on the new strategies used for the synthesis of 18F-labeled AA analogs and their uses.

2. Metal-Free 18F-AA Synthesis

Since the 1970s, AAs have been labeled with fluorine-18 owing to the important
role of AAs in disease progression [21]. For example, 6-[18F]F-DOPA ([18F]1), an AA
analog PET tracer used to image the presynaptic dopaminergic system in the brain, was
first radiosynthesized with [18F]F2 in 1984; however, its low radiochemical yield (RCY;
3%) limits its use in routine production (Figure 1a) [22]. A desilication reaction has also
been used to synthesize [18F]1 to obtain high regioselectivity and good RCY; however,
manipulating [18F]F2 is complex, and it is challenging to obtain high molar activity (Am)
[18F]1 via an electrophilic reaction (Figure 1b) [23]. Although many researchers have begun
to synthesize [18F]1 using nucleophilic substitution strategies, multistep radiosynthesis is
complicated in an automated module (Figure 1c) [24–27]. Therefore, the convenient and
automated synthesis of [18F]1 continues to pose a challenge.
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3. Copper-Catalyzed 18F-AA Synthesis

Direct radiofluorination on AAs bearing electron-rich arenes, such as Phe, Tyr, and
tryptophan (Trp), is a difficult task when traditional SN2 or SNAr reactions are used.
To solve this problem, several new fluorine-18 radiochemical methodologies have been
reported [28–31]. As transition-metal catalysis can accelerate radiofluorination reaction
rates and enhance selectivity and reactivity, transition metal-catalyzed methodologies
have emerged as an attractive technique with which to fluorinate arenes with nucleophilic
fluoride sources [32,33]. The cationic Pd(IV) complex, Ni−Aryl complex, diaryliodonium
salts, and spirocyclic iodonium ylides (SCIDY) structure, etc., have been studied for the
fluorination of electron-rich arenes and have also been used for AA radiofluorination.

Cu-mediated radiofluorination (CMRF), particularly, has emerged as a powerful
strategy for constructing C–18F bonds, and BPin esters and boronic acids were the most
popular substrates to label aromatic AAs using CMRF [34]. In 2014, the Gouverneur group
reported a CMRF reaction of pinacol-derived aryl boronic esters with a diverse range
of substrates. Using CMRF, [18F]1 was successfully synthesized with high RCY from an
arylBPin precursor (Figure 2). In a typical run of the automated synthesis of [18F]1, a dose
of 609 MBq of the product was isolated from a starting material of 13 GBq [18F]fluoride,
which was equal to a 12% decay corrected RCY [35].
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Tryptophan plays an important role in metabolism in multiple diseases and can
especially indicate the expression of indoleamine 2,3-dioxygenase (IDO1), an enzyme that
maintains normal tryptophan homeostasis [36,37]. Considering the significance of IDO1
in cell proliferation and cancer-cell growth, Giglio and coauthors prepared [18F]3a and
[18F]3b using a similar CMRF reaction to monitor IDO1 activity in vivo (Figure 3a). [18F]3b
accumulation is associated with IDO1 expression in HeLa cells. The micro PET-CT imaging
of [18F]3b showed obvious tumor uptake in the B16F10 melanoma model (Figure 3b);
however, the uptake of [18F]3a did not correlate with IDO1 activity in vivo, which may be
attributed to the metabolism of the radiotracer [38]. However, this reaction is sensitive to
bases and requires oxygen, thereby posing a challenge to modern automation modules [39].

The CMRF of aryl(mesityl)iodonium salts is also highly attractive for some merits,
including mild reaction conditions, high regioselectivity, etc. [40]. In 2014, Sanford and
Scott reported a CMRF of (mesityl)(aryl)iodonium salts using [18F]KF with diverse aromatic
substrates. Two different AA-derived substrates ([18F]4a and [18F]4b) were synthesized in
mild conditions with moderate yields. Additionally, [18F]4b was radiosynthesized using
an automated synthesis module with high Am (4 ± 2 Ci/µmol) (Figure 4) [32].
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Another imaging agent [18F]4c (2-[18F]FPhe) was also synthesized using this protocol
using “low base” or “minimalist” conditions (Figure 5a). The stability of [18F]4c toward
defluorination was studied in healthy rat brains and was found to have sufficient in vivo
stability (Figure 5b). Furthermore, initial biological studies revealed a higher uptake of
[18F]4c in different tumor cells compared with that of [18F]FET (Figure 5c). Thus, [18F]4c is
a promising PET probe for further research [41]. However, this approach also has some
limitations; (mesityl)(aryl)iodonium salts are challenging to synthesize and can have a
limited shelf life.
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Trimethyl(phenyl)tin is another attractive precursor for C–[18F]F bond formation ow-
ing to its good reactivity and stability during CMRF. In 2016, the first practical nucleophilic
fluorination of stannanes using 18F was reported by Scott et al. The CMRF reaction is
compatible with both electron-deficient and electron-rich arene substrates. Clinically rel-
evant radiotracers such as [18F]5a,5b (protected phenylalanine derivatives) and [18F]5c
(protected [18F]1) were obtained with high radiochemical conversion (RCC) using this
approach (Figure 6) [42].
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Zarrad and coworkers also evaluated a CMRF reaction using trimethyl(phenyl)tin
as a model substrate to label aromatic AAs. [18F]1 and [18F]5d–5f were synthesized in
two steps using automation module on a preparative scale with isolated RCYs of 32–54%
(Figure 7) [43].
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nanes. Modified from Zarrad et al. [43].

In 2020, Craig and coworkers reported an alcohol-enhanced CMRF reaction of BPin-
substituted Ni–BPX–AAA complexes for the synthesis of diverse radiolabeled AAs (Figure 8).
Convenient precursor synthesis, high RCYs, and accessibility to automation radiolabeling
may render this method more practical [44].
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4. Ruthenium-Catalyzed 18F-AA Synthesis

In 2017, Ritter et al. reported a direct aromatic fluorination method using the ruthe-
nium π-complex, and [18F]4a was auto-synthesized within 80 min in a 24% isolated
RCY (Figure 9a) [45]. In another study, two glutamine-derived PET tracers, [18F]7a
([18F]fluorophenylglutamine) and [18F]7b ([18F]fluorobiphenylglutamine), were also la-
beled and evaluated using the same method; however, both tracers had a low affinity
toward the rat ASCT-2 transporter in vitro and low uptake in the F98 rat xenograft in vivo
(Figure 9b). The authors concluded that they would optimize the substituents of the arene
ring to obtain a high-quality, glutamine-based PET radiotracer [46].
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5. Manganese-Catalyzed 18F-AA Synthesis

Groves and coworkers developed a manganese porphyrin-mediated 18F-labeling
method that could selectively fluorinate inactivated aliphatic C–H bonds with no carrier-
added [18F]fluoride. Several protected AA analogs ([18F]8a–8d) were 18F-labeled in one
step using this method, with the RCC ranging from 12% to 67% (Figure 10) [47].
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In summary, transition metal-mediated radiofluorination is an attractive strategy for
the one-step radiosynthesis of AAs bearing electron-rich arenes. However, potential metal
contamination is a nonnegligible problem to be considered when this strategy becomes
commonly used in clinical.

6. Photocatalyzed 18F-AA Synthesis

Compared with traditional nucleophilic aromatic 18F-fluorination, photo-mediated
radiofluorination is associated with milder reaction conditions and high functional group
tolerance and could be used for electron-rich arenes [48]. Britton et al. reported a UV light-
promoted, C–H-selective fluorination of aliphatic and benzylic substrates using the HAT
photocatalyst tetrabutylammonium decatungstate (TBADT) and N-fluorobenzenesulfonimide
as the fluorine atom-transfer reagent [49]. In 2017, this methodology was also used for C–H
bond radiofluorination in unprotected and branched aliphatic AAs ([18F]9a–9d) for PET
imaging (Figure 11a). No obvious defluorination and high accumulation in human glioma
and prostate cancer xenografts were observed during the micro PET-CT imaging of [18F]9c
(Figure 11b), thereby warranting its further use [50].
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Figure 11. (a) Synthesis of [18F]9a–9d via a photocatalytic reaction. Modified from Nodwell et al. [50].
(b) PET images of compound [18F]9c in xenografted mice with human glioma. Maximum intensity
projection images overlaid on CT and standalone PET images of the biodistribution of [18F]9c at
60 min show high accumulation of [18F]9c in the tumor (red arrow). Reproduced from ref. [50],
Copyright 2017, American Chemical Society.
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In 2019, Li and coworkers reported a C–H 18F-fluorination method in several arene
substrates using photoredox catalysts (10). Under illumination of a 3.5-W laser (450 nm) in
a mixed system of 4:1 MeCN:t-BuOH with O2 as an oxidant, TEMPO as a redox cocatalyst,
and [18F]F−/TBAF as a fluoride source, [18F]1 and [18F]11a,11b were successfully labeled
and obtained with good RCY (Figure 12a). Furthermore, in vivo PET studies of compound
[18F]11a revealed higher tumor accumulation in human breast cancer (MCF-7)-bearing
mice compared with compound [18F]11b that exhibited nonspecific binding (Figure 12b).
These findings demonstrate the potential of radiofluorination in the design and synthesis
of novel PET agents [51].
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Figure 12. (a) Several amino acid analogs prepared by a photoredox radiolabeled fluorination
of C(sp2)-H. Modified from Chen et al. [51]. (b) PET-CT images of [18F]11a and [18F]11b in mice
containing MCF7 (breast cancer) xenografts. Reproduced from ref. [51], Copyright 2019, The American
Association for the Advancement of Science.

In 2020, Nicewicz, Li, and coworkers further improved their previously reported
methodology by replacing laser irradiation with a blue light-emitting diode (LED) source
and by using an organic oxidant tert-butyl peroxyacetate rather than oxygen. Moreover, a
library containing 48 organic photocatalysts was evaluated in this study, and compound
12 was determined to be the most suitable catalyst for radiofluorination (Figure 13a). This
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procedure is suitable to perform in a microfluidic reactor and continues to retain the
advantages reported in their previous study. [18F]13 (protected [18F]1) was also synthesized
using this method with a 22.8% isolated RCY (Figure 13b). This simplified procedure may
be used as a general methodology for the synthesis of novel 18F-labeled radiotracers [52].
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Recently, Nicewicz and Li et al. reported the photoredox-catalyzed nucleophilic
deoxyfluorination reaction of phenol derivatives. In this method, TBAHCO3 was used
as a phase-transfer agent and an acridinium-based photo oxidant (14) was used under
34-W blue LED irradiation to introduce fluorine-18 into electron-rich arenes. N-Boc-O-
methyltyrosines and -phenylalanine ([18F]15a–15c) were also successfully radiofluorinated
(Figure 14) [53].
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Figure 14. Synthesis of [18F]15a–15c through a photoredox-catalyzed nucleophilic deoxyfluorination
reaction. Modified from Tay et al. [53].

While obvious advances in the light-mediated formation of C-18F bonds have been
explored in recent years, several limitations still remain, including the lack of essential
equipment for the preparation of 18F-labeled compounds and the reproducibility of experi-
ments in other laboratories.

7. Synthesis of 18F-Labeled AAs via [18F]Trifluoromethylation Reaction

As an excellent bioisostere of the methyl group, trifluoromethyl (CF3) is a common
functional group during the synthesis of pharmaceuticals. An increasing number of
[18F]trifluoromethylation labeling methods have been reported and used for the radiosyn-
thesis of AA analogs [10,54,55]. Dion et al. set [18F]CuCF3 as the radiofluorination agent and
boronic acids or iodides as a leaving group to successfully synthesize Boc/OMe-protected
4-[18F]trifluoromethylphenylalanine ([18F]16a) in high RCY up to 89% using two different
strategies (Figure 15) [56].
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In 2019, Kim et al. reported a Cu(I)-mediated [18F]trifluoromethylation method to
synthesize [18F]trifluoromethyl-L-tryptophan ([18F]15b); however, the radiochemical yield
of this tracer was 6%, and molar activity was 0.76 GBq/µmol (Figure 16) [57].
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Using structure-based bioisosterism, Tang et al. synthesized 18F-trifluoromethylated
cysteine enantiomers as “structure-mimetic” AA tracers for glioma PET imaging (Figure 17a).
Meanwhile, compared with [18F]FDG, S-[18F]CF3-D-Cys ([18F]17) exhibited much lower
uptake in most organs, especially in brain tissue, and a 3.81 ± 0.23% ID/g tumor uptake
was reported 45 min after injection (Figure 17b) [58]. In another study, Tang and coworkers
further explored the potential application of [18F]17 in evaluating glioma by comparing
magnetic resonance imaging (MRI) and histopathology. The results showed that, com-
pared with [18F]FDG and [18F]1, [18F]17 had the highest TNRs in the same orthotopic C6
glioma models, suggesting that the tracer may serve as a valuable tool in the diagnosis of
gliomas [59].
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Figure 17. (a) [18F]Trifluoromethyl cysteine synthesis from cyclic sulfamidates. Modified from
Liu et al. [58]. (b) PET images of C6 glioma-bearing mice were scanned at 45, 60, and 75 min after
injection of [18F]17 and 60 min after injection of [18F]FDG (the white arrow indicates the tumor).
Reprinted with permission from ref. [58], Copyright 2019, Georg Thieme Verlag KG.

8. Synthesis of 18F-Labeled AAs via B-18F Bond Formation

After Ting et al. reported two classes of biomolecule precursors (i.e., arylfluoroborates
and alkylfluorosilicates) that could afford late-stage, one-step 18F-labeling with high sta-
bility in aqueous media, the development of the B–F bond gained popularity [60–62]. A
general method to synthesize trifluoroborate AA derivatives using boramino acids (BAAs)
was developed by Liu et al. to simulate natural AAs by demonstrating the biological
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similarity between the trifluoroborate and carboxylate groups (Figure 18). Furthermore,
the 18F-19F isotope exchange reaction to label [18F]-BAA is quite simple, does not require
HPLC purification, and provides good radiochemical yields (>60%, non-decay corrected)
and molar activity (>37 GBq/mmol). Furthermore, the biological similarity between the
trifluoroborate (-BF3−) and carboxylate groups (COO−) was demonstrated. Cellular assays
revealed that the uptake of [18F]-BAAs was AAT-mediated cell uptake, whereas in vivo
studies showed high tumor-specific accumulation. Almost all AAs can be 18F-labeled
similarly for imaging AA transporter activity. [18F]-Phe-BF3 ([18F]18a), as an analog of
Phe, shows specific accumulation in U87MG xenografts. Unlike [18F]FDG, its uptake is
low in the normal brain and inflamed regions (Figure 19a) [63]. Zhou et al. performed
[18F]18a PET imaging on healthy volunteers. Dynamic imaging revealed that the agent
could be distributed and metabolized rapidly, and that uptake by systemic parenchymal
organs was low and mainly cleared by the kidneys. Thus, [18F]18a shows promise as a
new imaging agent in a clinical setting owing to its low background interference [64]. A
recent study suggests that glutamine (Gln) can be the primary energy source for tumor
cells. Several FDG-negative tumors rely on glutaminolysis for energy generation [65,66].
Therefore, [18F]FBQ ([18F]18b) was radiosynthesized and evaluated in a tumor-bearing
animal model inoculated with 4T1 xenografts. Small-animal PET imaging showed visible
tumor uptake and rapid renal clearance; however, high uptake by the bone indicates the
unsuitability of [18F]18b for clinical translation [67]. [18F]FBQ-C2 ([18F]18c) was synthesized
to improve the stability of [18F]18b. Stability studies indicated it to be more stable than
[18F]18b both in vitro and in vivo, and no obvious bone uptake was determined (<1%ID/g).
A competitive inhibition assay revealed that [18F]18c was taken up by cancer cells through
the system ASC and N, which is similar to that used by Gln. Moreover, [18F]18c shows
better accumulation in tumors than [18F]18b and [18F]FGln during PET imaging, thereby
making it a promising PET tracer for tumor diagnosis [68].
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[18F]-B-MET ([18F]18d) was the first 18F-labeled, methionine-based tracer to be synthe-
sized and evaluated in three glioma tumor models (C6, GL26, and U87) using PET imaging.
The results revealed that LAT-1 is responsible for tracer uptake in brain-tumor models, and
the glioma tumor was rapidly detected by the tracer. Moreover, higher [18F]18d uptake
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was also found to colocalize with the enhancement in T1-enhanced MRI in an orthotopic
U87 human glioma model (Figure 19c). Its favorable biological properties and push-button
synthesis make it a potential candidate for clinical translation [69].

[18F]18e ([18F]-FBY) was initially used as a theranostic for imaging-guided boron
neutron capture therapy by evaluating the biodistribution of 18e using mouse tumor
models [70]. Six healthy volunteers were injected with [18F]18e to evaluate the safety and
radiation dosimetry. The results showed that [18F]18e was cleared mainly through the renal
system and was well tolerated by all healthy volunteers with no obvious adverse symptoms.
Additionally, [18F]18e was capable of producing an obvious contrast in the glioma tumors
of 13 patients with suspected primary or recurrent diffuse gliomas [71]. In another study, a
[18F]18e PET scan was performed on 35 patients with suspected malignant brain tumors
for further diagnosis. The study group found that all primary glioblastoma, recurrent
glioma, and metastatic brain tumor cells could significantly take up [18F]18e [72]. Therefore,
[18F]18e shows immense potential in the diagnosis, staging, and prognosis of patients with
gliomas. In a follow-up study, an 18F-labeled alanine derivative ([18F]18f) was reported for
cancer imaging. Good tumor contrast was achieved in xenograft tumor-bearing mice, and
the tracer could distinguish tumors from inflammation in vivo (Figure 19d) [73].
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Figure 19. (a) [18F]18a shows specific accumulation in U87MG xenografts and low uptake in normal
brain and an inflammatory region. Reproduced from ref. [63], Copyright 2019, The American
Association for the Advancement of Science. Normal brain tissue indicated by “+”, tumor regions
indicated by white arrows, and inflammatory regions indicated by cyan arrows. (b) Representative
small-animal PET/CT imaging of [18F]18b, [18F]18c, and [18F]FGln in the same BGC823 xenograft-
bearing mice at 45 min post-injection. Reproduced from ref. [68], Copyright 2017, American Chemical
Society. (c) Representative contrast-enhanced, T1-weighted MR coronal images and merged [18F]18d
PET/MR images of orthotopic U87glioma. Reprinted from ref. [69], Copyright 2019, with permission
from Springer Nature. (d) Representative PET imaging of [18F]18f and [18F]FDG in nu/nu mice
bearing BGC-823 xenografts (right shoulder) and inflammation model (left hindlimb) at 45 min
post-injection. Reproduced from ref. [73], Copyright 2017, American Chemical Society.
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9. Synthesis of 18F-Labeled AAs via P–18F Bond Formation

In 2021, Li et al. reported an F− site-specific nucleophilic substitution reaction on
phosphonates that can be used for the one-step 18F-labeling of biomolecules containing com-
mon active groups. 18F-labeled AA mimics such as [18F]19a ([18F]PFA-Phe) and [18F]19b
([18F]PFA-Leu) have also been radiosynthesized in this way with RCYs of 69% and 35%,
respectively (Figure 20) [74]. One of the limitations of this is that the similarity between
fluorophosphonic acid and carboxylic acid needs further research.
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Figure 20. Synthesis of [18F]19a and [18F]19b via a nucleophilic substitution by F− on phosphonate
prostheses. Modified from Wang et al. [74].

10. Synthesis of 18F-Labeled AAs via S–18F Bond Formation

Ethenesulfonyl fluoride (ESF) can react with nucleophiles such as thiols, amines, and
enamines to provide high yields and is considered to be one of the strongest Michael
acceptors [75,76]. Therefore, [18F]20a ([18F]ESF) can be used as a potential prosthetic group
to radiolabel AAs. AAs such as cysteine and tryptophan were successfully conjugated with
[18F]20a to obtain yields between 39% and 73%. However, [18F]AA-ESFs showed low stabil-
ity in rat serum over 2 h, and only [18F]20b had a purity of 12%. The other AA conjugates
were completely defluorinated within 1 h (Figure 21) [77]. These findings suggest that S–F
bond stability is greatly dependent on the conjugate. Thus, a radiosynthon that contains
di-tert-butyl groups could potentially provide protection and prevent hydrolysis of the
sulfur–[18F] fluorine bond [78].
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Recently, an ultrafast isotopic exchange method has been reported to prepare aryl
[18F]fluorosulfates by sulfur fluoride exchange (SuFEx) between aryl fluorosulfate and
[18F]fluoride. This method has been used for the 18F-radiolabeling of Tyr analogs ([18F]21)
with 98% RCY (Figure 22a) [79]. A study has reported the injection of [18F]20 in healthy mice
to determine its in vivo stability. A considerably low bone radioactivity uptake (maximum
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SUVbw 155 ± 43, 90–120 min p.i.) indicated the high stability of [18F]21 against in vivo
defluorination (Figure 22b,c) [80]. Therefore, SuFEx radiofluorination shows potential to
accelerate the development of novel AA PET tracers.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 16 of 24 
 

 

(maximum SUVbw 155 ± 43, 90–120 min p.i.) indicated the high stability of [18F]21 against 
in vivo defluorination (Figure 22b,c) [80]. Therefore, SuFEx radiofluorination shows po-
tential to accelerate the development of novel AA PET tracers. 

 
Figure 22. (a) Synthesis of [18F]21 by a [18F]SuFEx reaction. Modified from Zheng et al. [79]. (b) Eval-
uation of [18F]21 in healthy mice (n = 4) using micro-PET. (c) Time-activity curves demonstrated slow 
washout from the liver, high concentration in the intestine, and a low uptake in bone. Abbreviations: 
b—bone (humeral head); G—gall bladder; I—intestine; K—kidney; L—liver. Reprinted with per-
mission from ref. [80], Copyright 2022 Elsevier Masson SAS. 

11. Synthesis of 18F-Labeled AAs via Si–18F Bond Formation 
Iovkov et al. radiosynthesized a silicon-based fluoride acceptor (SIFA)-modified phe-

nylalanine through 18F/19F exchange reaction; however, the SiFA-modified AA (such as [18F]22) 
is not used for imaging AAT. It serves as a prosthetic group that incorporates into peptides 
and proteins for direct [18F]-fluoride labeling in the late stage (Figure 23) [81,82]. 

 
Figure 23. Synthesis of the [18F]22. Modified from Iovkova et al. [81]. 

12. Conclusions and Perspectives 
As AA PET imaging plays a vital role in metabolic molecular imaging, fast and con-

venient labeling methods are crucial. However, the 18F labeling of AAs is still challenging 
using traditional SNAr or SN2 substitution reactions for the lack of reactive site. In addition, 
the complicated structure of the prosthetic group, which may impact the tracer’s bioactiv-
ity, hampers its wide utility. Thus, novel radiofluorination methods with short synthesis 
time and safe agents are urgently needed (Table 1). For example, CMRF is an important 
strategy that can label aromatic AAs in high yields; BAAs can serve as general imaging 

Figure 22. (a) Synthesis of [18F]21 by a [18F]SuFEx reaction. Modified from Zheng et al. [79]. (b) Eval-
uation of [18F]21 in healthy mice (n = 4) using micro-PET. (c) Time-activity curves demonstrated slow
washout from the liver, high concentration in the intestine, and a low uptake in bone. Abbrevia-
tions: b—bone (humeral head); G—gall bladder; I—intestine; K—kidney; L—liver. Reprinted with
permission from ref. [80], Copyright 2022 Elsevier Masson SAS.

11. Synthesis of 18F-Labeled AAs via Si–18F Bond Formation

Iovkov et al. radiosynthesized a silicon-based fluoride acceptor (SIFA)-modified
phenylalanine through 18F/19F exchange reaction; however, the SiFA-modified AA (such as
[18F]22) is not used for imaging AAT. It serves as a prosthetic group that incorporates into
peptides and proteins for direct [18F]-fluoride labeling in the late stage (Figure 23) [81,82].
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12. Conclusions and Perspectives

As AA PET imaging plays a vital role in metabolic molecular imaging, fast and conve-
nient labeling methods are crucial. However, the 18F labeling of AAs is still challenging
using traditional SNAr or SN2 substitution reactions for the lack of reactive site. In addition,
the complicated structure of the prosthetic group, which may impact the tracer’s bioactiv-
ity, hampers its wide utility. Thus, novel radiofluorination methods with short synthesis
time and safe agents are urgently needed (Table 1). For example, CMRF is an important
strategy that can label aromatic AAs in high yields; BAAs can serve as general imaging
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probes for AATs using a structure-based bioisosterism strategy. To make 18F-labeled AA
probes more routine in clinical use, the “ideal” synthesis method could be optimized in the
following aspects:

• Easy synthesis and high stability of the precursor;
• High regioselectivity and functional group tolerance (to avoid manipulation of the

protecting group);
• Scale-up synthesis with automation module.

Given the continuous demand for novel AA PET radiopharmaceuticals in precision
medicine, an ever-growing toolbox of radiofluorination methods is of importance to bridge
the gap between the unmet clinical needs and the ongoing progress in modern fluorine-18
chemistry. Radiochemists are always searching for simplified radiochemical methods that
are able to introduce the 18F radionuclide in a kit-like manner under mild conditions.
Additional methods for the radiosynthesis of AA probes for clinical use are thus warranted.
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Table 1. Overview of new strategies for 18F-labeled amino acids’ radiosynthesis.

Strategy
18F Labeling
Reaction Site

Example
Radiotracer Catalyst Reaction Conditions RCY Advantages Limitations Ref.

CMRF
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R

[18F]2 Cu(OTf)2(py)4
[18F]KF/K222, DMF,

110 ◦C, 20 min 55% ± 23%
High RCY;

deprotection reaction
was also carried out

Hard to perform on
automation module [35]

CMRF
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[18F]7a 
CpRu(COD)Cl, 

ipr
lmCl 

[18F]F−, DMSO : 
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mediated 18F 
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23% ± 3% 
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Ph
O

O
B

R

[18F]4a (CH3CN)4CuOTf [18F]KF/18-crown-6,
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n = 3)
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The corresponding
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[32]

CMRF
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sis; high yield 
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[63] 
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[51]

Photoredox-catalyzed
deoxyfluorination of
phenol derivatives
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trifluoromethylation
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Table 1. Cont.

Strategy
18F Labeling
Reaction Site

Example
Radiotracer Catalyst Reaction Conditions RCY Advantages Limitations Ref.

Difluorocarbene-derived
radio trifluoromethylthi-

olation
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Isotope exchange
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