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Abstract
Shared patient encounters form the basis of collaborative relationships, which are crucial to

the success of complex and interdisciplinary teamwork in healthcare. Quantifying the

strength of these relationships using shared risk-adjusted patient outcomes provides

insight into interactions that occur between healthcare providers. We developed the Shared

Positive Outcome Ratio (SPOR), a novel parameter that quantifies the concentration of

positive outcomes between a pair of healthcare providers over a set of shared patient

encounters. We constructed a collaboration network using hospital emergency department

patient data from electronic health records (EHRs) over a three-year period. Based on an

outcome indicating patient satisfaction, we used this network to assess pairwise collabora-

tion and evaluate the SPOR. By comparing this network of 574 providers and 5,615 rela-

tionships to a set of networks based on randomized outcomes, we identified 295 (5.2%)

pairwise collaborations having significantly higher patient satisfaction rates. Our results

show extreme high- and low-scoring relationships over a set of shared patient encounters

and quantify high variability in collaboration between providers. We identified 29 top per-

formers in terms of patient satisfaction. Providers in the high-scoring group had both a

greater average number of associated encounters and a higher percentage of total encoun-

ters with positive outcomes than those in the low-scoring group, implying that more experi-

enced individuals may be able to collaborate more successfully. Our study shows that a

healthcare collaboration network can be structurally evaluated to characterize the collabo-

rative interactions that occur between healthcare providers in a hospital setting.

Introduction

Federal agencies such as the Centers for Medicare and Medicaid Services (CMS) and the
Agency for Healthcare Research and Quality (AHRQ) are working to promote care coordina-
tion across the nation in order to improve healthcare quality [1]. While there is uncertainty
about the definition and proper measurement of care coordination quality [2], collaboration
among a patient’s numerous providers is fundamental to its success. An NIH-funded report

PLOS ONE | DOI:10.1371/journal.pone.0163861 October 5, 2016 1 / 18

a11111

OPENACCESS

Citation: Carson MB, Scholtens DM, Frailey CN,

Gravenor SJ, Kricke GE, Soulakis ND (2016) An

Outcome-Weighted Network Model for

Characterizing Collaboration. PLoS ONE 11(10):

e0163861. doi:10.1371/journal.pone.0163861

Editor: Zhong-Ke Gao, Tianjin University, CHINA

Received: April 11, 2016

Accepted: September 15, 2016

Published: October 5, 2016

Copyright: © 2016 Carson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

from the Northwestern University Office for

Sponsored Research for researchers who meet the

criteria for access to confidential data.

Funding: This work was supported by

K01LM011973-01, National Library of Medicine,

https://www.nlm.nih.gov: MBC, GEK, NDS; Clinical

and Translational Science Award (CTSA) award

UL1TR001422, National Center for Research

Resources - transitioned to the National Center for

Advancing Translational Sciences (NCATS), http://

sdminutes.cit.nih.gov/about/almanac/organization/

NCRR.htm: MBC and NDS.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163861&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.nlm.nih.gov:
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm:
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm:
http://sdminutes.cit.nih.gov/about/almanac/organization/NCRR.htm:


defines communication and collaboration between providers within and across institutions as
the two prerequisites to care coordination and concludes that effective collaboration improves
care coordination [3]. In the past, quality measures were developed to assess physician-nurse
and physician-pharmacist collaborations, and to evaluate the effectiveness of the programs
designed to foster collaboration [2]. The current practice for clinical quality measure develop-
ment involves gathering a consensus from the scientific literature, clinical practice guidelines,
and domain experts [4, 5]. Implementing these approaches can be effective on the patient level,
but do not reveal a comprehensive picture of care collaboration in a healthcare facility.

Research involving complex networks [6–14] has surged since the turn of the century and
spanned a variety of disciplines including sociology [15, 16], biology [17–19], medicine [20–
22], chemical engineering [23–26], material science [27], finance [28], and others [29]. The
affiliation network, a commonly studied type of social network, is a useful structure for identi-
fying relationships between individuals based on shared events or interests. These networks
often consist of two disjoint sets of entities, “actors” and “groups”, with a link indicating that
an actor is associated with a group. From this bipartite network one can create a projection
consisting of actor nodes with links between them if they have co-membership to one or more
groups. Research with affiliation networks often focuses on co-authorship [30] and collabora-
tion [29, 31, 32].

A collaboration network can help to characterize the relationships formed between thou-
sands of providers caring for shared patients in a hospital setting. However, storing and model-
ing the underlying data to facilitate network generation can be a challenge. Because the
components of a healthcare event are highly interconnected, a traditional relational data model
does not scale well as the data set size increases [33]. A graph data model, however, offers three
advantages for representing large, highly connected data sets. First, the nature of the model is
such that all entities are logically linked through a variety of relationships. This inherent con-
nectedness of all data results in faster query times compared to a relational model, which
requires that tables be joined to create relationships between entities, a process that quickly
increases in computational time as the number of joins are increased [34]. Second, the lack of a
predefined schema makes the graph data model flexible; updates and modifications do not
require table alterations. Third, the labeled property graph model, the most common variation
of graph data model, allows properties to be added to both nodes and relationships. Nodes can
also contain one or more labels. These features allow for a rich representation of the data and
facilitate ad hoc querying of the associated database [33, 34].

For example, consider a patient, a provider, an encounter, and activities occurringduring
the encounter as four components of a healthcare event. The logical relationship between these
components could be defined as follows: “Provider P performs Activity A for Patient X during
Encounter E”. Each provider may perform one or more activities during each encounter and
may be involved in multiple encounters per day. The relationship between a specific instance
of an activity, a provider, and an encounter can be modeled using a hyperedge [29, 35]. In this
case, each hyperedge would describe the following: “Provider P performedActivity A during
Encounter E”. Not only does this construct identify a relationship between the three entities,
but it also provides data flexibility by enabling extraction of activity subsets and associated pro-
viders. This identification is especially useful when examination of a specific activity group
within a protocol is warranted, e.g., an analysis of all providers and activities associated with
patient discharge.

A number of previous studies have analyzed the professional networks of providers within
healthcare systems [36–49]. A few studies have focused on identifying targets for improving
care coordination on both organizational and patient levels [37, 40, 42, 50]. However, each of
these studies is based on either a survey or direct observation [51]. Most include small patient
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and provider samples, which may not capture larger trends in the healthcare system of interest.
Some studies have made use of larger data sets but focused specifically on interactions between
physicians and other physicians or nurses and other nurses [38, 44–48, 52]. In addition, the
majority use single-source commercial or Medicare claims data [43, 44, 47, 52–54].

CMS recognizes the importance of the electronic health record (EHR) as a rich resource for
gathering information and promoting coordination of care. Incentive programs are offered to
encourage Meaningful Use of EHRs [2]. Though it can be difficult to use EHR data to construct
an interaction map of providers and the patients they share [55], there are precedents in the lit-
erature [38, 56, 57]. Recently, we showed that EHRs can be used to effectively identify providers
affiliated with a set of common heart failure patients and subsequently demonstrated methods
for visualizing and describing collaborative interactions among these providers [58]. We now
extend these methods by developing an informative edge-weighting scheme, which allows for
data-driven measurements of the relationships in a collaboration network [59]. To monitor
and improve healthcare quality, a weight must impart actionable information about the
patients and providers involved.

In this study we propose a method to construct a collaboration network from electronic
health record (EHR) data and establish a generalizable, graph-based framework for calculating
and measuring the Shared Positive Outcome Ratio (SPOR), an objective composite measure
that quantifies the concentration of risk-adjusted positive outcomes for each pair of actors over
a set of shared events. Our objective here is to use this flexible model to characterize pairwise
collaboration in terms of patient encounter outcomes, given the frequency of collaboration
between providers. Our long-term goal is to understand, monitor, and improve provider col-
laboration by creating a highly adaptable, scalable, network-based platform that measures dif-
ferences in working relationships between various providers.

Materials and Methods

Quantifying and Measuring Collaboration: the Shared Positive Outcome

Ratio (SPOR)

The SPOR is a pairwisemetric that quantifies the ratio of risk-adjusted positive outcomes
shared between two providers vs. risk-adjusted positive outcomes shared with other providers.
We describe the risk adjustment process and subsequently explain the metric development
below. While our methods are describedusing the terms “provider” and “encounter” as appro-
priate for our application, we note that the methodology can be adapted to other sets of actors
and events.

CalculatingRisk-adjustedOutcomes. A simple binary scheme for capturing positive (1)
and negative (0) outcomes for each encounter would fail to capture the baseline probability of
a positive outcome for the patient involved in the encounter. This might unduly penalize a pro-
vider pair for negative outcomes in patients with very low chance of a positive outcome at base-
line, or unduly reward a provider pair for positive outcomes in patients with a high chance of a
positive outcome at baseline. For this reason, we propose using “risk-adjusted outcomes” that
range from 0 to 1 and are: (a) higher for positive outcomes for encounters with patients that
had lower positive outcome probabilities, and (b) lower for positive outcomes for encounters
with patients that had higher positive outcome probabilities, regardless of their experiencewith
providers.

Our method to calculate “risk-adjusted” outcomes incorporates logistic regression modeling
for a positive outcome for the encounter and a set of baseline covariates. Let I be the set of
encounters. Given an encounter i 2 I, the outcome related to this encounter, yi, can be defined
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as

yi ¼
1! positive outcome

0! negative outcome
ð1Þ

(

For a given set of baseline covariates, logistic regression can be used to model associations of
the baseline values with the outcomes and positive outcome probabilities can then be estimated
for each encounter. If x1i,x2i,. . .,xri are values of r baseline covariates for the patient involved in
encounter i, let

pi ¼ Prðyi ¼ 1Þ ¼
eb0þb1x1iþb2x2iþ...þbrxri

1þ eb0þb1x1iþb2x2iþ...þbrxri
ð2Þ

where the β parameters are estimated using logistic regression. We then define a risk-adjusted
outcome, ri, as follows:

riðyiÞ ¼
1þ ðyi � piÞ

2
ð3Þ

Note the nature of the values of ri given values of yi and pi:

yi ¼

1; high Pi ! ri is close to 0:5

0; high Pi ! ri is close to 0

1; low Pi ! ri is close to 1

0; low Pi ! ri is close to 0:5

ð4Þ

8
>>>>><

>>>>>:

This has the effect of generously rewarding unexpectedly good outcomes (ri close to 1) and
heavily penalizing unexpectedly bad outcomes (ri close to 0) while giving smaller rewards and
penalties for expected outcomes (both close to 0.5). The intent of this risk adjustment is to
account for variability in the characteristics of shared encounters between providers and should
be informed by domain experts when the SPOR model is applied.

Deriving the SPOR. Let J be the set of providers and consider a subset of provider pairs (j,
j0) such that Aj \ Aj0 6¼ 0, whereAj is the set of encounters in I involving j.

The SPOR is a ratio of two indices. The first, which we call the shared encounter index (SEI),
is intended to measure the frequency two providers are involved in the same encounters inde-
pendent of outcome. Modeled after the Jaccard index [60], this statistic can be defined as:

SEIj;j0 ¼
jAj \ Aj0 j

jAj [ Aj0 j
ð5Þ

whereAj and Aj’ are the sets of patient encounters involving providers j and j’, respectively. The
second, termed the shared positive outcome index (SPOI), measures the ratio of outcomes for
encounters shared by two providers relative to outcomes for all encounters involving either
provider. The SPOI is defined as:

SPOIj;j0 ¼

P
Aj\Aj0

riðyiÞ
P

Aj[Aj0
riðyiÞ

ð6Þ

Outcome-Weighted Collaboration Network Model

PLOS ONE | DOI:10.1371/journal.pone.0163861 October 5, 2016 4 / 18



The ratio of the SPOI and the SEI summarizes the observed risk-adjusted outcomes for
encounters shared by two providers, relative to the expected outcomes:

SPORj;j0 ¼
SPOIj;j0
SEIj;j0

ð7Þ

This pairwisemeasurement of the strength of an encounter-sharing relationship attempts to
answer the following question for any pair of providers:How many more good outcomes do
these two providers achieve when they work together versus when they work with other provid-
ers? For each provider, the “concentration” of good outcomes with each collaborator is mea-
sured. See Fig A and Table A in S1 File for examples of the relationship between patterns of
shared patients and resulting SPOR values.

Testing the Method with Clinical Data

Data ProcessingOverview. We implemented a multi-step process to generate the data set
with which we tested our method. First, we built a graph data model to represent providers,
activities, and associated encounters. Second, we extracted patient encounter data from elec-
tronic health records. For each encounter, we identified and extracted the set of all activities, a
list of all healthcare providers who performed these activities, and a list of attributes associated
with each entity type. In addition, we identified an outcome and an acuity measure that we
used for risk-adjustment modeling of the encounters. In this study, “acuity” is equivalent to the
ESI-level (Emergency Severity Index) (http://www.esitriage.org). After acquiring the initial
data set, we processed and organized the raw data by checking for consistency and logic, deal-
ing with missing values (e.g., IDs, position titles, activities, etc.), and omitting patient encounter
records with inconsistencies. Using the parameters defined in our graph data model, we loaded
the cleaned set into a graph database, which served as a data repository and query engine for
our analysis. Next, we created a provider-encounter network to identify providers who shared
encounters. From this bipartite network we created one-mode projections, termed provider
collaboration networks. We calculated the SPOR for each pairwise relationship and set this
SPOR as the edge weight. Finally, we performed statistical analysis on our networks.

Software Used. Patient encounter, provider, and activity data was extracted from Cerner’s
FirstNet1 software, an EHR system used by the emergency department, via extract, transform,
and load (ETL) scripts and stored in operational data stores (ODSs) by the Northwestern Med-
icine Enterprise Data Warehouse (NM EDW), a repository for electronic health record data.
T-SQL queries from Microsoft SQL ServerManagement Studio [61] were used to export the
raw data set to comma separated value (.csv) files.We used the Neo4j graph database manage-
ment system [35] to create the data repository for our analysis and Cypher (Neo4j’s native
query language) to query the database. Data was accessed and extracted from the database
using Python [62] and the Py2neo library [63]. We used Python’s NetworkX package [64] to
create and analyze the networks along with custom functions to calculate the SPOR. Network
visualization, statistics, and community detectionwere performed using Gephi [65, 66]. R [67]
was used to perform statistical analysis and calculate risk-adjustment factors. Cypher was used
to update the graph database with data generated by our analyses. The graph data model exam-
ple in Fig 1 was created using Arrows [68].

The Graph Data Model. We identified the actions performed by each provider during
each encounter by linking patient data elements stored in the EHR to each activity type. Once
this information was gathered, we translated it into a labeled property graph model. A simpli-
fied example of the graph model for two encounters and four providers is shown in Fig 1.
Hyperedges were used to identify instances of provider activities. As mentioned previously,
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Fig 1. A simple example of the graph data model showing five actions performed by four providers during two encounters.

(A) Providers 1, 2, and 3 each performed one activity during encounter 1, while provider 4 performed two activities during encounter 2.

A hyperedge was used to represent an instance of activity during an encounter. Notice that both Provider 3 and Provider 4 performed a
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this method allowed us to identify the relationships between a provider, an activity, and an
encounter. Hyperedges also enabled data subsetting and filtering. For example, the SPOR met-
ric could be calculated for providers based only on clinical actions (leaving out administrative
activity). In this study, we do not distinguish between or add weight to any specific activity or
group of activities. Therefore, all involved providers are considered equal contributors to an
encounter outcome in the calculation of the SPOR.

Data Set. The EmergencyDepartment (ED) of Northwestern Memorial Hospital (NMH)
is a large, urban, academic medical facility with an annual volume of over 86,000 patients in
2014 [69]. We retrospectively acquired information from a subset of the electronic health rec-
ords for patients who were admitted to the ED between January 1, 2012 and December 31,
2014 using the NM EDW. The primary outcome of interest was the likelihood to recommend
(LTR) as reported by the Press Ganey Associates, Inc. Patient Satisfaction Survey, which is the
most widely used commercial patient satisfaction instrument in the United States. The survey
process for each patient was conducted as follows. First, the hospital sent patient encounter
information to Press Ganey three days after the patient was discharged from the ED. Press
Ganey then directly sent the patient a survey by email or mail depending on the preferred
method of contact within 1 day. The patient completed the survey and returned it to the hospi-
tal, the average return time being 7 days and 2 weeks for surveys returned by email and mail,
respectively. The survey return for the period corresponding to our data set was approximately
12%. A patient’s likelihood to recommend NMH’s ER (LTR) was measured on a 5-point Likert
scale; LTR+ = score of 5/5, or highly likely to recommend; LTR- = score of 4/5 or below, not
highly likely to recommend. The final cleaned set included 6,822 ED encounters of which 4,120
were LTR+ and 2,702 were LTR-. This set included 2,743 providers, each belonging to one of
seven general categories (physician, resident, student, nurse, pharmacist, or other) and holding
one of 103 positions. We identified three general activity categories (orders, notes, intake-out-
put), which include 24 subcategories. Each activity had one of 18 action types including order,
complete, performed, verified,modified, discontinued, and others. Each provider performed
one or more activities during each encounter, with each instance counted as a separate event.
All included provider actions occurred as part of the ED encounter. Northwestern University’s
Institutional ReviewBoard approved the study with a waiver of patients’ informed consent.

Evaluating Provider Collaboration. Using the theoretical framework defined above, we
measured and evaluated collaboration for a group of providers over a set of encounters. The eval-
uation process is summarized in Fig 2. Our first step was to extract providers, associated encoun-
ters, and properties of each from the graph database. Next, we calculated risk-adjusted outcomes
using a logistic regression model.We then created a bipartite provider-encounter network with
the risk-adjusted outcome as an encounter property. From this we created a provider collabora-
tion network, calculated the SPOR for each relationship, and added the SPOR as an edge weight.
The number of shared encounters between two providers was also stored as an edge property.
During this process, the resulting collaboration network was adjusted to include only those rela-
tionships between providers that exceeded a given threshold number of encounters (between two
and ten in this study). Subsequently, we created an adjacencymatrix for this network in which
each element corresponded to the SPOR of the collaborative relationship between two providers.
We then returned to the provider-encounter network and randomly permuted the risk-adjusted
outcomes for each encounter. Following the previous procedure, we created 1,000 “random” col-
laboration networks followed by an adjacencymatrix for each populated with SPOR values. We

“Nursing Assessment” activity during different encounters. (B) Without hyperedges between the provider and the encounter nodes, it

would not be possible to determine, for example, which provider performed the “Nursing Assessment" during encounter 2.

doi:10.1371/journal.pone.0163861.g001
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compared each SPOR in the real network to SPORs for corresponding edges in each random net-
work. We then calculated a p-value for each pair of providers by identifying the number of times
the SPOR value for that pair in a random network exceeded the SPOR value for that pair in the
real network (see Table B in S1 File for an example). We classified those collaborations with a p-
value� 0.05 as “high-scoring” and p-value� 0.95 as “low-scoring”. For the high and low SPOR
groups, we identified the number of times each provider was involved in these collaborations.
Next, we collected those providers for whom at least 5% of their total collaborative interactions
were included in the high- or low-scoring groups.

The SPOR value for a collaborative relationship was highly volatile for those providers sharing
few patients. When providers share only a small number of patients, one high- or low-scoring rela-
tionship has a large impact on the SPOR value. Because of this effect, we built a series of collabora-
tion networks using an increasing threshold for the minimum number of shared patients required
to constitute a collaborative relationship between a pair of providers and subsequently examined
the distribution of SPORs across each network. This helped identify the threshold value that would
generate a stable distribution and ensured that the score for each collaborative relationship was
dependent on a minimum number of events, which made subsequent analysis more reliable.

Results

Collaboration Network

We created a set of collaboration networks, each with a different threshold on the number of
shared encounters required to connect a pair of providers. We found that the distribution of

Fig 2. The collaboration evaluation strategy used in this study.

doi:10.1371/journal.pone.0163861.g002

Outcome-Weighted Collaboration Network Model

PLOS ONE | DOI:10.1371/journal.pone.0163861 October 5, 2016 8 / 18



SPOR values moved closer to normal as the threshold was increased (Fig 3). We identified
extreme SPOR values for four of these collaboration networks with the shared encounter
threshold at � 2,� 4,� 6,� 8, and� 10. Table 1 and Fig B in S1 File provide summary statis-
tics for these networks including the percentage of collaborative relationships in each network
with high and low SPOR scores. As the required number of shared encounters between provid-
ers was increased, the 90th and 95th percentiles slowly decreased, while the 5th and 10th percen-
tiles slowly increased. The mean remained approximately constant, while the standard
deviation decreased. This highlights the volatility in the low-threshold networks and demon-
strates the need to set a minimum requirement on the number of shared encounters. Based on
the SPOR value distributions, we chose a threshold of� 6 shared encounters between a pair of
providers to define collaboration, which removed the noise of nascent relationships. We per-
formed all further analysis on this network. Because this threshold is context- and data-depen-
dent, this process should be performed separately for each data set included in a study.

The collaboration network (� 6 encounters, see Fig C in S1 File) included 574 providers
and 5,615 relationships. The network diameter was 9 and the network density was 0.034, a
value that highlights the fact that a large proportion of the providers in the network have not
collaborated with each other. The average degree, i.e., the average number of collaborations for
an individual provider, was 19.5. The network modularity was 0.228, suggesting that, while
there were groups of providers who worked together more frequently compared to others,
these groups had significant overlap. The average clustering coefficient, 0.586, indicated a

Fig 3. SPOR value distributions. The distribution of SPOR values across the provider collaboration network as the number of

collaborations required between providers for inclusion into the network was increased. The distribution stabilized when the lower limit

on shared encounters was set at six. The x-axis value shown is on a log2 scale, which means –1 is equivalent to a SPOR of 0.5 and a

value of 1 is equivalent to a SPOR of 2, while the expected SPOR value is 0.

doi:10.1371/journal.pone.0163861.g003
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moderate tendency for a collaborative pair of providers to have other collaborators in common.
The average path length was 2.4, meaning that the average provider was 2–3 steps removed
from a collaboration with any other provider.

To examine high- and low-scoring collaborative relationships more closely, we identified
the providers involved with the largest number of these interactions. Specifically, we chose
those providers for which these high- or low-scoring collaborative interactions represented at
least 5% of their total collaborative interactions in the network. Using this definition, we identi-
fied 29 providers with multiple high-scoring collaborations, indicating potential top perform-
ers in terms of patient satisfaction (Table C in S1 File). We found 38 providers with multiple
low-scoring collaborations (Table D in S1 File). Fifteen providers belonged to both the high-
and low-scoring groups. Interestingly, while the average number of high- or low-scoringcolla-
borative relationships was similar across the two groups (8.03 and 8.26, respectively), the aver-
age number of total collaborations for the providers in the high-scoring group was greater.
Providers belonging to the high-scoring group had a weighted average of 6.6% of their total col-
laborations identified as significantly high scoring, while the low-scoring group had a weighted
average of 8.3% of their total collaborations identified as significantly low scoring.When con-
sidering only those providers unique to the scoring groups (white rows in the Tables C and D
in S1 File), the weighted averages were 9% and 13% for the high- and low-scoring groups,
respectively. Providers in the high-scoring group had both a higher average number of associ-
ated encounters (255 vs. 220) and a higher percentage of total encounters with positive out-
comes (61% vs. 57%) than those in the low-scoring group. These could be indications that as
providers gain more experience, their ability to form successful collaborations with other pro-
viders increases.

Fig 4 shows an example collaboration network from our graph database. Twenty-one pro-
viders are shown as blue nodes labeled by a randomized ID number. The 21 relationships
shown between the providers are labeled with the SPOR value for the respective collaboration.
One relationship is highlighted in yellow with associated properties including the SPOR value
and the total number of encounters shared between the pair of providers displayed below.

Table 1. Statistics for five provider collaboration networks based on an increasing number of shared patients required for a collaborative

interaction.

Collaboration is defined as a working relationship between two providers who share. . .

� 2 encounters � 4 encounters � 6 encounters � 8 encounters � 10 encounters

# providers 1,479 769 576 456 359

# collaborations 54,030 14,742 5,615 2,534 1,327

# SPORs p-val� 0.05 2,880 (5.3%) 778 (5.3%) 295 (5.2%) 158 (6.2%) 63 (4.7%)

# SPORs p-val� 0.95 2,793 (5.2%) 790 (5.4%) 336 (5.9%) 147 (5.8%) 91 (6.9%)

SPOR Values

95th % 1.44 1.35 1.28 1.25 1.22

90th % 1.39 1.27 1.22 1.20 1.18

Mean 0.99 0.99 1.00 1.00 1.00

10th % 0.47 0.70 0.76 0.81 0.82

5th % 0.41 0.63 0.70 0.74 0.75

SD 0.30 0.21 0.18 0.15 0.14

As the shared patient threshold increased, the mean SPOR remained constant. The 5th and 10th percentiles increased as the threshold increased, while the

90th and 95th percentiles decreased. The standard deviation decreased as well, indicating that the SPOR distribution was more stable for networks with a

higher threshold.

doi:10.1371/journal.pone.0163861.t001
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Descriptive Statistics for Test Data

Table 2 provides a summary of encounter-level statistics. We found that the average emergency
department patient stayed approximately 4.5 hours and was given acuity level 3 (“Urgent”). An
average visit involved nine providers, each of whom performed two to three activities. The

Fig 4. An example provider collaboration network showing 21 providers and 21 SPOR relationships. Properties associated with

the highlighted edge (yellow) including the SPOR coefficient, the number of shared patient encounters between the two providers

(num_collabs), and an indication of the significance of the SPOR coefficient (p-value) are shown in the bottom left. The proximity of

nodes to each other is based on the SPOR coefficient, with high-scoring relationships being shorter in length than low-scoring

relationships.

doi:10.1371/journal.pone.0163861.g004

Table 2. Encounter-level Statistics for the Test Data Set.

Provider Count LoS (hrs.) Activity Count Action Count

Minimum 1.0 0.2 2.0 2.0

1st Quart 6.0 2.7 9.0 14.0

Median 8.0 4.0 15.0 23.0

Mean 9.2 4.5 16.4 25.9

3rd Quart 11.0 5.7 22.0 35.0

Max 39.0 51.9 102.0 152.0

St. Dev. 4.3 2.8 8.6 15.3

A summary of encounter-level descriptive statistics showing the number of providers who performed at least one activity during the encounter, length of stay

(LoS) in hours, activity count (the number of times an activity type occurred), and action count (the number of activity instances or provider actions).

doi:10.1371/journal.pone.0163861.t002
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mean values of length of stay and number of providers generally increasedwith acuity level
from category 5 (Non-urgent) to category 1 (Resuscitation) (see Table E in S1 File). Our data
set contained 4,477 female and 2,345 male patients. The mean (median) age for females was 50
(51). For males, mean (median) age was 53 (54) (see Fig D in S1 File).

The provider-encounter network consisted of 2,743 providers and 6,822 encounters for a
total of 9,565 nodes. The network contained 59,265 directed edges, where each directed edge
from a provider to an encounter indicated that the provider performed at least one action dur-
ing the encounter. The network density was 0.002, the average out-degree (the average number
of provider-associated encounters) was 21.6, and the average in-degree (the average number of
providers associated with an encounter) was 9.2.

Discussion

We have proposed a method to construct a collaboration network using electronic health
record (EHR) data and to evaluate pairwise relationships with a novel metric, the Shared Posi-
tive Outcome Ratio (SPOR). Using our method and an emergency department test data set, we
have shown that, in terms of patient satisfaction, collaborative relationships between pairs of
providers are not equal, and that it is possible to identify extreme high- and low-scoring rela-
tionships over a set of shared patient encounters. On a global level, collaboration between pro-
viders appears to be highly variable in terms of patient satisfaction. In addition, a majority of
providers are involved in both high- and low-scoring relationships, suggesting that collabora-
tion is also highly variable on an individual level. Our results indicate that an increase in the
number of shared encounters between a pair of providers may improve collaboration in some
cases. Increasing the threshold for the minimum number of shared patient encounters between
a pair of providers in the collaboration network results in a trend towards a normal distribution
of SPOR values. Though the SPOR has been designed to score pairwise collaboration, the
graph database structure facilitates identification of high-scoring groups of providers through
graph search methods (See Fig 4).

This study demonstrates that a healthcare collaboration network and the relationships it
represents can be structurally evaluated to gain insight into the interactions that occur between
healthcare providers in a hospital setting. Measuring collaborative relationships by risk-
adjusted outcomes provides a relevant and informative basis for identifying successful patient
care teams in medicine. Though we initially anticipated more variation in the SPOR value dis-
tribution from our test data, our results are not necessarily surprising and in fact have a positive
connotation. The structure of the collaboration network makes it difficult for a collaborative
relationship score to fall in either extreme. The small number of extreme values in this Emer-
gency Department set suggests that the patient care environment in this hospital is consistent
and stable.

This study has a number of limitations related to patient encounter data and outcome
sources. First, since our test data set was extracted from electronic health records, the model
cannot capture events such as cell phone and hallway conversations, text messages, personal
conflicts, and other confounding factors that could potentially affect working relationships
within a hospital environment. Second, the model has been tested using data from one domain
(emergencymedicine), and analysis with data sets from other hospital departments would pro-
vide an informative comparison. Third, even though we used a risk adjustment strategy, there
may be other factors such as time of patient admission and daily provider caseload that could
affect patient encounter outcomes. Finally, we chose patient satisfaction as the outcome in this
study because it is considered an important factor in hospital quality measurement [70, 71].
However, there are potential drawbacks to basing outcomes on the Press Ganey survey.
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Depending on the time between the encounter and survey, a patient’s ability to remember
events accurately may vary, leading to potential recall bias [72]. The bias is mitigated slightly
by only surveying patients who are discharged immediately following their EmergencyDepart-
ment encounter in an effort to eliminate the confounding experience of an inpatient hospital
stay. Because only non-admitted patients receive the survey, there tends to be a selection bias
toward patients in less severe condition (i.e., lower acuity) [73]. Another factor contributing to
non-randomness of this data is that patients receive only one satisfaction survey every 90 days
regardless of the number of emergency room visits during that period.Also, patients who leave
the emergency room without being evaluated by a provider will not participate in the survey
[74]. Whether satisfaction indicates quality patient care has also been questioned [75]. While
these factors are problematic, we believe that the significance of patient satisfaction for hospital
reimbursement and comparison provided motivation for its use in demonstrating our method.
Subsequent studies will explore other important outcomes such as 30-day hospital readmission
[76, 77].

Future work will also address a variety of issues to improve our network model. First, we
plan to modify the SPOR to measure collaboration between teams of 3 or more members.
Information from additional sources will be added to enrich the network and improve its
modeling capability. Further enrichment and expansion of the model will provide more effec-
tive recommendations for new care team members. Second, by including inpatient, outpatient,
or other facility data in addition to ED records, collaborations within and between environ-
ments could be characterized and compared. Third, while the current study considers all activi-
ties to constitute equal contributions to encounter participation, it is easy to imagine that
certain activities could contribute more or less to the quality of a patient’s hospital experience.
For example, some procedures, while necessary, may cause pain or discomfort. Other activities
may involve long wait times. Patients receiving these activitiesmay be more inclined to be dis-
satisfied with their experience. In this study we chose to treat all activities equally, lacking
definitive evidence to justify weighting any specific group of activities. However, because of the
richness of our graph data model, such evidence, if available, could be employed to create a
more specialized collaboration network. Studies to come will include a closer inspection of
activity types and provider roles and their relationship to the SPOR. Through further analysis
of specific protocols and related activities, it would be possible to find areas of excellence in col-
laboration as well as areas that can be targeted for improvement.

Supporting Information

S1 File. Fig A, A Toy Example of a Provider-encounter Network. Thirty nodes and fifty-
three relationships are shown in this example network. Provider nodes (blue) are labeled with
IDs. Encounter nodes are labeled with risk-adjusted outcome values. Each provider is linked to
one or more encounters with an “INVOLVED_IN” relationship. The SPOR metric answers the
following question: How many more good outcomes do two providers achieve when they work
together versus when they work with any other provider? Therefore, in the situation where two
providers collaborate exclusively with each other (regardless of how many other providers are
involved), the SPOR score for their collaboration is 1. In relation to the provider-encounter
network, these providers are usually in highly connected subgraphs, or cliques (P011, P012,
P013, P014, and P015). The exception in this example is ‘P005, P004’, but these providers still
share all of their respective encounters with each other. These collaborations are highlighted in
red in Table A. The orange highlighted collaborations are between providers who share one
encounter between them and one encounter with various other providers, which also results in
a SPOR score of 1. Table A, Toy Example SPOR values. SPOR values for the provider
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collaborations in Fig A. Table B, SPOR: Observedvs. Random. An example of SPOR data for
each collaboration and comparisons with the same collaboration score from permuted net-
works (those with collaborations based on randomized outcomes). Collaborations with a p-
value� 0.05 (high-scoring) or p-value� 0.95 (low-scoring) were considered significant (exam-
ple in bold). Fig B, SPOR Statistics for Five CollaborationNetworks. Plot of descriptive sta-
tistics for the SPOR values of five collaboration networks, each with an increasing threshold for
the number of shared encounters between providers. Fig C, Provider CollaborationNetwork.
Nodes = providers, edges = collaborative relationships. The network included 574 providers
and 5,615 relationships. An edge between two provider nodes indicates that they shared at least
six patient encounters in our data set. Six modularity classes of providers were identified:Mod-
ule 1 (light blue): 35.2%; Module 2 (dark blue): 17.5%; Module 3 (sea green): 16.5%; Module 4
(magenta): 15.6%; Module 5 (red): 12.2%; Module 6 (olive green): 1.7%. Nodes are sized
according to degree centrality value, i.e., the number of others with whom a provider collabo-
rated. Table C, High-scoring SPOR group. Twenty nine providers who had at least 5% of
their total collaborative relationships in the highest 5% of SPOR scores (p-value� 0.05). Fif-
teen providers (in blue) are present in both the top 5% and the bottom 5% (see Table D). The
number of associated encounters with positive outcomes and the total number of associated
encounters for each provider are shown in grey. Table D, Low-scoringSPOR group. Thirty
eight providers who had at least 5% of their total collaborative relationships in the lowest 5% of
SPOR scores (p-value� 95%). Fifteen providers (in blue) are present in both the top 5% (see
Table C) and the bottom 5%. The number of associated encounters with positive outcomes and
the total number of associated encounters for each provider are shown in grey. Table E,
Encounter-level Summary Statistics by Acuity. For the encounters in our data set, the mean
and (median) number of providers and the length of stay (LoS) generally increased in accor-
dance with the acuity value assigned to the patient upon arrival to the emergency department.
Approximately 1% of the ED population is assigned acuity level “1 –Resuscitation”. The major-
ity of these patients are admitted to the hospital due to the severity of their condition. These
admitted patients do not receive the ED patient satisfaction survey, leading to the low number
of encounters associated with this acuity level in our data set. Fig D, Patient Age by Gender.
Our data set contained 4,477 female and 2,345 male patients. The mean (median) age for
females was 50 (51). For males, mean (median) age was 53 (54). Due to its close proximity to a
pediatric emergency department, the NMH ED accepts only patients who are 18+ years of age.
(DOCX)
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