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Abstract. We previously reported a two-step biochemical diagnosis to discriminate classic 
21-hydroxylase deficiency (C21OHD) from P450 oxidoreductase deficiency (PORD) by using urinary 
steroid metabolites: the pregnanetriolone/tetrahydrocortisone ratio (Ptl / the cortisol metabolites 5α- 
and 5β-tetrahydrocortisone (sum of these metabolites termed THEs), and 11β-hydroxyandrosterone 
(11OHAn). The objective of this study was to investigate whether both C21OHD and non-classic 
21OHD (C+NC21OHD) could be biochemically differentiated from PORD. We recruited 55 infants with 
C21OHD, 8 with NC21OHD, 16 with PORD, 57 with transient hyper-17α-hydroxyprogesteronemia 
(TH17OHP), and 2,473 controls. All infants were Japanese with ages between 0–180 d. In addition 
to Ptl, THEs, and 11OHAn, we measured urinary tetrahydroaldosterone (THAldo) and pregnenediol 
(PD5). The first step: by Ptl with the age-specific cutoffs 0.06 mg/g creatinine (0–10 d of age) and 
0.3 mg/g creatinine (11–180 d of age), we were able to differentiate C+NC21OHD and PORD from 
TH17OHP and controls (0–10 d of age: 0.065–31 vs. < 0.001–0.052, 11–180 d of age: 0.40–42 vs. < 
0.001–0.086) with 100% sensitivity and specificity. The second step: by the 11OHAn/THAldo or 
11OHAn/PD5 ratio with a cutoff of 0.80 or 1.0, we were able to discriminate between C+NC21OHD 
and PORD (1.0–720 vs. 0.021–0.61 or 1.8–160 vs. 0.005–0.32, respectively) with 100% sensitivity 
and specificity. Ptl, 11OHAn/THAldo, and 11OHAn/PD5 could differentiate between C+NC21OHD 
and PORD in Japanese infants.
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Introduction

The clinical differential diagnoses of 
21-hydroxylase deficiency (21OHD) and 
cytochrome P450 oxidoreductase deficiency 
(PORD) are sometimes difficult since both 
deficiencies can have similar phenotypes and high 
levels of 17α-hydroxyprogesterone (17OHP) in the 
blood. We previously reported specific cutoff(s) to 
discriminate between classic 21OHD (C21OHD) 
and PORD by using urinary steroid metabolites, 
i.e. the pregnanetriolone (Ptl)/ the cortisol 
metabolites 5α- and 5β-tetrahydrocortisone 
(sum of these metabolites termed THEs) ratio 
and 11β-hydroxyandrosterone (11OHAn), by 
using gas chromatography/mass spectrometry 
(GC/MS) (1). However, we did not investigate 
whether the cutoffs were able to discriminate 
between non-classic 21OHD (NC21OHD) and 
PORD. The prevalence of NC21OHD is estimated 
at 1 case out of 2 million individuals in Japan 
(2), whereas it is reported to be 1 out of 1,000 in 
Caucasians (3, 4), and is considered to be the most 
common form of congenital adrenal hyperplasia. 
Patients with NC21OHD have mildly impaired 
21-hydroxylase activity leading to various 
symptoms from childhood to adulthood, such as 
precocious pubarche, acne, hirsutism, infertility, 
etc. (5, 6). Biochemical diagnosis of NC21OHD 
is challenging because of the relatively mild 
glucocorticoid deficiency seen in patients. We 
previously reported that clinically diagnosed 
21OHD, including classic and non-classic 21OHD 
(C+NC21OHD), can be distinguished from 
transient hyper-17α-hydroxyprogesteronemia 
(TH17OHP) and controls by Ptl measurements 
in GC/MS (7). Additionally, we reported in 
the same study that C+NC21OHD could be 
differentiated from PORD by the ratio between 
11OHAn and pregnanediol, which is a metabolite 
of progesterone, in three infants between the 
ages of 1 and 3 months (7).

The objective of this study was to investigate 
whether C+NC21OHD could be biochemically 
differentiated from PORD in Japanese infants. 

In addition to Ptl, THEs, and 11OHAn, we 
focused on the pregnenolone (P5) metabolite 
pregnenediol (PD5), and the aldosterone 
metabolite tetrahydroaldosterone (THAldo). 
We focused on these metabolites because in 
PORD, (i) blood P5 was shown to be higher (8, 
9), and (ii) blood aldosterone and urinary THAldo 
were shown to be normal or slightly higher, 
respectively, compared to that in normal subjects 
(7, 9, 10).

Materials and Methods

All legal guardian(s) gave written informed 
consent and the study was approved by the 
Institutional Review Boards at Keio University 
Hospital and Keio University School of 
Medicine. We recruited 55 infants with C21OHD 
(gestational age, 35–41 wk; birth weight, 1,658–
4,174 g), 8 infants with NC21OHD (37–40 wk; 
2,704–3,408 g), 16 infants with PORD (34–41 wk; 
1,018–3,418 g), 57 infants with TH17OHP (37–41 
wk, 2,062–4,980 g), and 2,473 controls (34–41 
wk, 770–4,610 g). All infants were Japanese 
with ages between 0–180 d, the period during 
which most patients with C21OHD or PORD 
are diagnosed (7, 11). The diagnosis of 21OHD 
and PORD was confirmed by CYP21A2 and POR 
gene analyses, respectively. Notably, all patients 
with NC21OHD were positive in newborn mass-
screening in Japan. Patients with 21OHD 
having normal genitalia and elevated dried 
blood spot 17OHP (positive results in newborn 
mass-screening), but without any evidence of 
salt wasting (low serum sodium, high serum 
potassium, high plasma renin activity, etc.) 
were classified as NC21OHD. Any subjects with 
abnormal physical findings except for external 
genitalia were excluded. None of the subjects 
received antenatal or perinatal glucocorticoid 
before urine sampling.

We measured urinary steroid metabolites by 
GC/MS (12). The 21-deoxycortisol metabolite Ptl, 
and the cortisol metabolites 5α-tetrahydrocortisone 
and 5β-tetrahydrocortisone (hereafter referred 
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to collectively as THEs) were measured and 
the ratio of Ptl to the cortisol metabolites (Ptl/
THEs) (1, 13, 14) was calculated to differentiate 
C21OHD, NC21OHD, and PORD from TH17OHP 
and control (Fig. 1). Ptl was considered equal to 
0.001 mg/g creatinine for calculations in infants 
whose Ptl was under the detection limit (< 5 
pg/injection). In addition to the metabolite of 
11β-hydroxyandrostenedione, 11OHAn, (1), we 
measured THAldo and PD5. These steroids and 
their metabolites were previously shown to be 
increased in PORD (8–10). We then calculated 
the 11OHAn/THAldo and 11OHAn/PD5 ratios to 
discriminate between C+NC21OHD and PORD 
(Fig. 1). Quantification and quality ions of each 
metabolite were as follows (m/z): Ptl 449, 359; 

5αTHE 488, 578; 5βTHE 488, 578; 11OHAn 
448, 358; THAldo 506 (quantified ion only); PD5 
372, 462. Urinary creatinine was measured by 
IATRO-LQ CRE (A)II (LSI Medience Co., Tokyo, 
Japan). Urinary steroid concentration was 
expressed relative to urinary creatinine (mg/g 
creatinine).

Statistical analysis was performed using the 
Mann-Whitney U test. A p value of < 0.05 was 
considered statistically significant.

Results

Differentiation of C+NC21OHD and PORD 
from TH17OHP and controls

Results of Ptl and Ptl/THEs are shown in 
Table 1 and Fig. 2. Both Ptl and Ptl/THEs showed 
similar overlap between C+NC21OHD, PORD, 
TH17OHP, and control within 10 days of age 
by uniform cutoff through 0–180 d of age (Ptl 
0.1 and Ptl/THEs 0.020). We then separately 
set the cutoff for 0–10 d of age and 11–180 d of 
age. Ptl differentiated C+NC21OHD and PORD 
from TH17OHP and control with 100% (95% 
confidence interval (CI): 97.6–100%) sensitivity 
and 100% (95% CI: 99.9–100%) specificity using 
the 0.06 mg/g creatinine (0–10 d of age) and 
0.3 mg/g creatinine (11–180 d of age) cutoffs. 
Ptl/THEs differentiated with 100% (95% CI: 
96.5–100%) sensitivity and 99.9% (95% CI: 
99.8–99.9%) specificity using the 0.01 (0–10 d 
of age) and 0.02 (11–180 d of age) cutoffs.

Discrimination between C+NC21OHD and 
PORD

Table 2 and Fig. 3 show the results of urinary 
11OHAn in C+NC21OHD and PORD. 11OHAn 
discriminated between C21OHD and PORD 
with 96.8% (95% CI: 93.3–96.8%) sensitivity 
and 100% (95% CI: 86.1–100%) specificity using 
the 0.35 mg/g creatinine cutoff. We then focused 
on the aldosterone and P5 metabolites, THAldo 
and PD5. Although both metabolites showed 
significantly higher distribution in PORD than in 
C+NC21OHD (THAldo p < 0.001, PD5 p < 0.001), 

April 2016

Fig. 1. A steroid metabolic map. Solid arrow, steroid 
synthesis; open arrow, steroid metabolism; 
solid line, impaired 21-hydroxylase activity; 
open line, impaired 17-hydroxylase/17,20-
lyase activity. First step, differentiation 
of C+NC21OHD and PORD from 
TH17OHP and the control. Second step, 
discrimination between C+NC21OHD 
and PORD. Both 21-hydroxylase and 
17-hydroxylase/17,20-lyase activity 
are reduced in PORD, whereas only 
21-hydroxylase is reduced in C+NC21OHD. 
Preg, pregnenolone; Prog, progesterone; 
DOC, deoxycorticosterone; Aldo, aldosterone; 
17OHPreg, 17α-hydroxypregnenolone; 
11DOF, 11-deoxycortisol; DHEA, 
dehydroepiandrosterone ;  AD4, 
androstendione.
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there was clear overlap between the two groups 
(Table 2). Table 3 and Fig. 4 show the results of 
urinary 11OHAn/THAldo and 11OHAn/PD5 ratio 
calculations. 11OHAn/THAldo discriminated 
with 100% (95% CI: 97.2–100%) sensitivity and 
100% (95% CI: 88.9–100%) specificity using the 
0.80 cutoff. 11OHAn/PD5 discriminated with 
100% (95% CI: 97.2–100%) sensitivity and 100% 
(95% CI: 88.9–100%) specificity using the 1.0 
cutoff.
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Table 1 Results of Ptl and Ptl/THEs in C+NC21OHD, PORD, TH17OHP, 
and controls

Ptl (mg/g creatinine) Ptl/THEs

C+NC21OHD 8.7 (0.12–42) 2.8 (0.13–20)
PORD 1.0 (0.065–2.6) 0.13 (0.010–0.23)
TH17OHPnemia 0.007 (< 0.001–0.086) < 0.001 (< 0.001–0.006)
Controls < 0.001 (< 0.001–0.085) < 0.001 (< 0.001–0.027)

mean (range).

Fig. 2. Urinary Ptl and Ptl/THEs in infants with 
C+NC21OHD, PORD, TH17OHP, and 
controls. The upper graph is for Ptl and the 
lower one is for Ptl/THEs. Lines indicate 
cutoffs: Ptl 0.05 mg/g creatinine (0–10 d of 
age) and 0.1 mg/g creatinine (11–180 d of 
age), Ptl/THEs 0.01 (0–10 d of age) and 0.02 
(11–180 d of age). Closed circle, C21OHD; 
gray circle, NC21OHD; triangle, PORD; open 
square, TH17OHP; dot, control.

Table 2 Results of 11OHAn, THAldo, and PD5 in C+NC21OHD and PORD

11OHAn THAldo PD5

C+NC21OHD 2.3 (0.16–22) 0.093 (0.005–0.80) 0.123 (0.012–1.3)
PORD 0.037 (0.007–0.22) 0.34 (0.074–0.94) 0.63 (0.32–2.7)

mean (range), mg/g creatinine.

Fig. 3. Urinary 11OHAn in infants with C21OHD, 
NC21OHD, and PORD. Line indicates 
cutoff of 0.35 mg/g creatinine. Closed circle, 
C21OHD; gray circle, NC21OHD; triangle, 
PORD.
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Discussion

We demonstrated that a two-step biochemical 
diagnosis using urinary steroid metabolites 
is useful for diagnosis of 21OHD and PORD 
when patients with NC21OHD were included 

among the subjects. We propose a two-step 
biochemical diagnosis using Ptl for the first step, 
and 11OHAn/THAldo or 11OHAn/PD5 for the 
second step, because these two markers showed 
no overlap in each step.

In the first step, we set the age-specific cutoff 
of Ptl to differentiate C+NC21OHD and PORD 
from TH17OHP and the control. We separately 
set the cutoff at 0–10 and 11–180 d of age because 
patients with 21OHD and PORD who were 0–10 
d old showed lower Ptl values. Assuming that 
steroid metabolic enzyme activity in the liver 
was immature at early ages after birth, we could 
explain the imperfectness of the uniform cutoff 
through 0–180 d of age.

In the second step, a downstream/upstream 
metabolites ratio, 11OHAn/THAldo or 11OHAn/
PD5, was more useful than the single metabolite, 
11OHAn. Steroid downstream/upstream 
metabolite ratios have previously been used as 
markers of enzyme defects (15, 16). Indeed, as 
mentioned in the Introduction, we had used the 
ratio between 11OHAn and pregnanediol (PD), 
a metabolite of progesterone, for distinguishing 
PORD from 21OHD (7). As PD measurement is 
sometimes problematic in our GC/MS methods 
in newborns (our unpublished data), we used 
a single metabolite, 11OHAn, to discriminate 
between C21OHD and PORD (1). In this 
study, we chose metabolites of aldosterone and 
pregnenolone, THAldo, and PD5, for the following 
two reasons. First, aldosterone and pregnenolone 
are upstream of 17α-hydroxylase (Fig.1). Second, 
THAldo and PD5 can be measured in all newborn 
infants (our unpublished data).

In this study, we recruited 0–180 d old infants 
because most patients with C21OHD or PORD 
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Table 3 Results of 11OHAn/THAldo and 11OHAn/PD5 in 
C+NC21OHD and PORD

11OHAn/THAldo 11OHAn/PD5

C+NC21OHD 20 (1.0–720) 18 (1.8–160)
PORD 0.15 (0.021–0.61) 0.059 (0.005–0.32)

mean (range).

Fig. 4. Urinary 11OHAn/THAldo and 11OHAn/
PD5 in infants with C21OHD, NC21OHD, 
and PORD. The upper graph is for 11OHAn/
THAldo and the lower one is for 11OHAn/
PD5. Lines indicate cutoffs: 11OHAn/
THAldo 0.80, 11OHAn/PD5 1.0. Closed 
circle, C21OHD; gray circle, NC21OHD; 
triangle, PORD.
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are diagnosed in this period (7, 11). Although 
it was reported that patients with PORD who 
were above 180 d of age showed similar trends 
in urinary steroid metabolites (i.e., high Ptl and 
normal-range 11OHAn) (11), further analysis is 
required to determine whether our cutoffs can 
be applicable to infants over 180 d of age.

This method has two advantages compared 
to repeated 17OHP measurement: it is a single 
assay and offers the noninvasiveness of urine 
sampling. Thus, this method is a potential option 
for scrutiny of newborn mass-screened positive 
patients together with liquid chromatography/
tandem mass spectrometry (17, 18) and genetic 
analysis (19, 20).

Some limitations of this study should be 
discussed. First, we do not know whether our 
two-step method is applicable to all cases of 
NC21OHD. In this study, NC21OHD patients 
had positive results in a newborn mass-screening 
program in Japan. A few NC21OHD cases have 
been reported to be positive in newborn mass-
screening programs (21), but most were negative 
because of the relatively low baseline levels of 
17OHP (5). Positive NC21OHD may possess less 
21-hydroxylase activity than negatives ones; i.e., 
their Ptl, 11OHAn, and PD5 may be higher or 
THEs and THAldo may be lower. Second, as 
we described in a previous study (1), our data 
in Japanese infants may not apply to other 
ethnicities because of differences in common 
POR mutations and their residual activities in 
PORD (9, 22, 23). Additional studies are required 
for non-Japanese individuals. Third, preterm 
infants were not included in this study whose 
gestational age was less than 34 wk. Those 
infants might have more immature steroid 
metabolism in the liver, theoretically leading 
to lower Ptl and 11OHAn compared with the 
subjects of this study.

In conclusion, we demonstrated a two-step 
biochemical diagnosis of C+NC21OHD and 
PORD by urinary steroid profiling using Ptl, 
THAldo, PD5, and 11OHAn.
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