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ABSTRACT To design immune interventions that can synergize with antiretroviral
therapy (ART) to reduce the rate of HIV mother-to-child transmission (MTCT), it is es-
sential to characterize maternal immune responses in the setting of ART during
pregnancy and breastfeeding and define their effect on MTCT. Prior studies reported
an association between breast milk envelope (Env)-specific antibodies and antibody-
dependent cell cytotoxicity (ADCC) activity with reduced postnatal transmission. In
this study, we investigated whether these immune correlates were similarly associ-
ated with protection in a matched case-control study of mother-infant pairs receiv-
ing maternal ART or infant nevirapine prophylaxis during breastfeeding in the
International Maternal-Pediatric-Adolescent AIDS Clinical Trials Network Promoting
Maternal-Infant Survival Everywhere (PROMISE) trial, assessing postnatal transmission
risk in 19 transmitting and 57 nontransmitting mothers using conditional logistic re-
gression models adjusted for maternal plasma viral load. The odds ratios of postna-
tal MTCT for a 1-unit increase in an immune correlate were 3.61 (95% confidence in-
terval [CI], 0.56, 23.14) for breast milk Env-specific secretory IgA (sIgA), 2.32 (95% CI,
0.43, 12.56) for breast milk and 2.16 (95% CI, 0.51, 9.14) for plasma Env-specific IgA, and
4.57 (95% CI, 0.68, 30.48) for breast milk and 0.96 (95% CI, 0.25, 3.67) for plasma ADCC
activity, with all CIs spanning 1.0. Interestingly, although mucosal IgA responses are poor
in untreated HIV-infected women, there was a strong correlation between the magni-
tudes of breast milk and plasma Env-specific IgA in this cohort. In this analysis of the
small number of postnatal virus transmissions in the landmark PROMISE study, no single
antibody response was associated with breast milk transmission risk.

IMPORTANCE Each year, �150,000 infants become newly infected with HIV-1 through
MTCT despite ART, with up to 42% of infections occurring during breastfeeding. Sev-
eral factors contribute to continued pediatric infections, including ART nonadher-
ence, the emergence of drug-resistant HIV strains, acute infection during breastfeed-
ing, and poor access to ART in resource-limited areas. A better understanding of the
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maternal humoral immune responses that provide protection against postnatal
transmission in the setting of ART is critical to guide the design of maternal vaccine
strategies to further eliminate postnatal HIV transmission. In this study, we found
that in women treated with antiretrovirals during pregnancy, there was a positive
correlation between plasma viral load and breast milk and plasma IgA responses;
however, conclusions regarding odds of MTCT risk were limited by the small sample
size. These findings will inform future studies to investigate maternal immune inter-
ventions that can synergize with ART to eliminate MTCT during breastfeeding.

KEYWORDS ADCC, HIV-1, antibodies, antiretroviral therapy, breast milk,
postnatal transmission

With optimal maternal antiretroviral therapy (ART) and infant prophylaxis, the rate
of human immunodeficiency virus type 1 (HIV-1) transmission through breast-

feeding has been significantly reduced, to less than 5% (1–5). However, several factors
contribute to continued infant exposure to HIV during breastfeeding and thus a risk of
vertical transmission, including nonadherence to ART, acute maternal infections, and
loss to care, primarily in resource-limited areas (6). Postnatal HIV-1 transmission ac-
counts for up to 42% of the overall mother-to-child transmission (MTCT) rate, and the
risk of transmission remains constant for the duration of breastfeeding (7, 8).

In addition to high maternal plasma viral load and low peripheral CD4� T cell count,
risk factors specific to breast milk transmission include breast milk viral load and breast
pathologies, including mastitis or abscess (8–10). As a result, strategies to prevent
transmission focusing on avoidance or early cessation of breastfeeding have been
tested. Yet formula feeding is associated with increased infant morbidity due to
diarrheal illnesses and poor nutrition in developing countries (11, 12). Moreover, early
weaning to decrease the duration of breastfeeding, and thus infant exposure to HIV-1,
led to higher mortality in HIV-infected infants (13). Infants receiving mixed feeding
compared to exclusively breastfed infants are also at increased risk of postnatal HIV-1
transmission and have higher mortality in the first few months of life (14, 15). As a
result, current World Health Organization guidelines recommend universal breastfeed-
ing in HIV-infected mothers in resource-limited regions (16). Therefore, alternative
interventions to avoid transmission of HIV through breastfeeding will be needed to
eliminate postnatal MTCT.

Even in the absence of maternal ART, the majority of HIV-exposed, breastfeeding
infants remain uninfected, suggesting that there may be maternal humoral immune
responses in breast milk that protect against infant HIV-1 acquisition (17, 18). There are
conflicting data on the role of virus envelope (Env)-specific antibodies (Abs) in breast
milk in protection against postpartum transmission. Several studies have found no
association between HIV-1 Env-specific Abs and risk of postpartum transmission (19,
20). One group reported that Env-specific secretory IgA (sIgA) was detected more
frequently in transmitting than in nontransmitting mothers, suggesting that it is not
protective and may instead be associated with increased transmission risk (21). Further
work has evaluated the role of neutralizing and antibody-dependent cell-mediated
cytotoxicity (ADCC) activity in breast milk in transmitting and nontransmitting mothers
(22). While there are low levels of neutralizing antibodies in breast milk of all HIV-
infected mothers, high ADCC activity has been reported in nontransmitting compared
to transmitting mothers (22). These findings suggest that nonneutralizing antibody
functions in breast milk may help reduce postnatal transmission risk and merit further
investigation in larger immune correlate studies of postnatal MTCT.

Our group recently investigated the immune correlates of postnatal transmission of
HIV-1 in a cohort of clade C HIV-1-infected transmitting (n � 22) and matched non-
transmitting (n � 65) women from the control arm of the Malawian Breastfeeding,
Antiretrovirals, and Nutrition (BAN) clinical trial (23). Of note, these mothers only
received postnatal ART prophylaxis around delivery, providing an opportunity to probe
the relationship between natural immunologic factors and postnatal transmission risk.
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Importantly, the study identified that the magnitude of Env-specific IgA and sIgA
responses in breast milk directed against a consensus Env gp140 antigen were signif-
icantly associated with reduced risk of postnatal HIV-1 transmission (23). These findings
indicate that a viable strategy for decreasing postnatal transmission of HIV-1 to infants
could be a maternal vaccine that boosts Env-specific IgA responses in breast milk.
However, as the mothers in the BAN cohort did not receive postnatal ART, the current
standard of care, it is important to investigate whether these previously defined breast
milk immune correlates are important for protection in mother-infant pairs receiving
postnatal prophylaxis.

In this study, we aimed to determine whether breast milk Env-specific IgA and sIgA
are similarly predictive of transmission risk in the setting of maternal ART or infant
nevirapine (NVP) prophylaxis during breastfeeding. We studied a cohort of postnatally
transmitting (n � 19) and nontransmitting (n � 57) mothers from the breastfeeding
arm of the International Maternal-Pediatric-Adolescent AIDS Clinical Trials (IMPAACT)
network Promoting Maternal-Infant Survival Everywhere (PROMISE) 1077BF (Breast-
feeding) protocol (24). Postnatal transmission rates in the postpartum component of
the PROMISE trial were 0.6% and 0.9% for the maternal ART and infant NVP arms,
respectively (5). We assessed levels of maternal HIV Env-binding and functional plasma
and breast milk antibody responses and their association with postnatal HIV-1 trans-
mission. This work provides valuable insight into the role of maternal Env-specific HIV-1
antibody responses in postnatal transmission with standard-of-care therapy. Further-
more, it presents a novel characterization of the magnitude and breadth of immune
responses across breast milk and plasma in women who received ART during preg-
nancy, which has not previously been described. This study will inform the design of
maternal immune interventions that can synergize with ART to prevent MTCT and
improve the safety of breastfeeding.

RESULTS
High plasma viral loads and lower peripheral CD4� T cell counts in postnatally

transmitting compared to those in nontransmitting mothers. Transmitting and
nontransmitting mothers were similar on age, gestational age of the infant at birth, sex
of the infant, and postpartum randomization to maternal ART or infant NVP prophylaxis
(Table 1). However, of note, transmitting women had higher plasma viral loads at the
time of measurement closest to transmission than did matched nontransmitting
women {median [quartile 1 (Q1) to quartile 3 (Q3) of the interquartile range], 4.20 [3.24
to 4.96] versus 2.15 [1.59 to 3.31] log10 copies/ml}. In addition, 89% of transmitting
women had a plasma viral load of �1,000 copies/ml prior to transmission, compared to
only 35% of the nontransmitting women. Transmitting women also had lower CD4� T
cell counts than nontransmitting women (median [Q1 to Q3], 563 [425 to 839] versus
743 [621 to 935] cells/mm3). Finally, transmitting women had fewer previous births than
did nontransmitting women (median maternal parity of 2 versus 5, including PROMISE
delivery).

Maternal Env-specific IgA levels and ADCC activity are correlated across breast
milk and plasma compartments. While Env-specific IgG and ADCC activity in plasma
and breast milk are consistently directly correlated, we have previously described a lack
of correlation between HIV-1 Env-binding IgA responses in breast milk and plasma (25).
We examined correlations between IgA and ADCC responses across breast milk and
plasma compartments (Table 2). The magnitude of total IgA binding responses against
clade B HIV-1 consensus gp140 antigen (B.con gp140) was positively correlated be-
tween breast milk and plasma (� � 0.683 and P � 0.001). ADCC antibody titer and
potency were weakly correlated across the two compartments (� � 0.317 and P � 0.005
for ADCC antibody titer; � � 0.315 and P � 0.006 for potency).

Primary analysis: breast milk Env-specific IgA and sIgA binding response and
ADCC antibody titer association with postnatal transmission risk. We investigated
whether breast milk total IgA and sIgA directed against B.con gp140 and breast milk
ADCC responses were associated with postnatal transmission in this cohort. The odds
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ratio (OR) (95% confidence interval [CI], P value) of postnatal transmission for each
1-unit increase in breast milk total IgA against B.con gp140 was 2.32 (0.43, 12.56) and
that for sIgA against B.con gp140 was 3.61 (0.56, 23.14) (Table 3). Env-specific binding
Ab responses in breast milk had, on inspection, higher median levels in transmitting
than in nontransmitting women (median log10 AUC [area under the curve], �0.14

TABLE 1 Clinical characteristics of postnatal transmitting and matched nontransmitting HIV-1-infected mothers from the PROMISE 1077BF study

Characteristica

Values for subjects with indicated transmission status

Transmitter (n � 19) Nontransmitter (n � 57)

Maternal age (yrs)
Min–max 18–38 18–36
Median (Q1–Q3) 24 (23–29) 26 (23–29)

Maternal viral load (log10 copies/ml), first measurement after delivery
Min–max 1.48–5.57 1.30–5.25
Median (Q1–Q3) 3.97 (2.52–5.00) 2.22 (1.60–2.68)
Undetectable 3 (16%) 17 (30%)
Detectable and �1,000 copies/ml 3 (16%) 29 (51%)
�1,000 copies/ml 13 (68%) 11 (19%)

Maternal viral load (log10 copies/ml), measurement closest to transmission
Min–max 1.59–5.47 1.28–5.25
Median (Q1–Q3) 4.20 (3.24–4.96) 2.15 (1.59–3.31)
Undetectable 1 (5%) 24 (42%)
Detectable and �1,000 copies/ml 1 (5%) 13 (23%)
�1,000 copies/ml 17 (89%) 20 (35%)

Maternal peripheral CD4� T cell count (cells/mm3), measurement after delivery
Min–max 188–1,337 366–1,606
Median (Q1–Q3) 563 (425–839) 743 (621–935)

Maternal peripheral CD4� T cell count (cells/mm3), closest to transmission
Min–max 270–1,337 314–1,606
Median (Q1–Q3) 560 (436–795) 743 (628–966)

Gestational age at birth (wks)
Min–max 35–41 30–48
Median (Q1–Q3) 38 (36–40) 38 (35–39)

Sex of child
M 8 (42%) 22 (39%)
F 11 (58%) 35 (61%)

Maternal parity, including PROMISE delivery
Min–max 1–5 1–9
Median (Q1–Q3) 2 (2–3) 5 (4–6)

Country
India 1 (5%) 3 (5%)
Malawi 12 (63%) 36 (63%)
South Africa 2 (11%) 6 (11%)
Uganda 4 (21%) 12 (21%)

PP component randomizationb

Maternal triple ART 8 (42%) 26 (46%)
Infant prophylaxis 6 (32%) 26 (46%)
AP observation follow-up 5 (26%) 5 (9%)

Age of infant at breast milk specimen collection prior to transmission (wks)
Min–max 1–74 1–74
Median (Q1–Q3) 26 (6–50) 26 (6–50)

Infant age at infection (wks)
Min–max 6–87
Median (Q1–Q3) 38 (14–74)

aMin, minimum; max, maximum; M, male; F, female.
bIn the maternal triple-ART arm, the mother received lopinavir-ritonavir (LPV-RTV) plus tenofovir-emtricitabine (TDF/FTC). In the infant prophylaxis arm, the infant
received nevirapine (NVP). In the AP observation follow-up, the mother received a triple-ART regimen until the week 1 postpartum visit.

Hompe et al.

September/October 2019 Volume 4 Issue 5 e00716-19 msphere.asm.org 4

https://msphere.asm.org


versus �0.40 and �0.19 versus �0.37 for total IgA and sIgA, respectively) (Fig. 1A and
B). A sizable proportion of mothers had undetectable functional ADCC activity in breast
milk (5/19 [26%] of transmitting women and 23/57 [40%] of nontransmitting women),
and the odds ratio of HIV-1 transmission for breast milk ADCC antibody titer was 4.57
(0.68, 30.48; P � 0.12) (Table 3 and Fig. 1C).

Secondary analysis: plasma Env-specific IgA binding responses, plasma ADCC
antibody titer, and plasma and breast milk ADCC potency association with MTCT
risk. A secondary analysis was conducted to determine if the magnitude of HIV
Env-specific binding antibody responses in plasma, ADCC antibody titer in plasma, and
ADCC potency in breast milk or plasma were associated with risk of postnatal HIV
transmission. The odds ratios for postnatal transmission of HIV were 2.16 (0.51, 9.14) for
plasma total IgA against B.con gp140, 0.96 (0.25, 3.67) for plasma ADCC antibody titer,
and 1.04 (0.96, 1.13) for plasma ADCC potency (Table 3). In addition, for breast milk
ADCC potency the odds ratio of HIV-1 transmission to the infant was 1.02 (0.95, 1.08)
(Table 3). Interestingly, all of these immune responses had higher median levels in
transmitting than in nontransmitting women (Fig. 2).

Breast milk sIgA and plasma IgA responses correlate with maternal plasma
viral load. As transmitting women had higher median plasma viral loads than non-
transmitting women (Table 1), we performed correlations between each antibody
response and plasma viral load to assess whether this association could explain the
higher median levels of immune correlates that we observed in transmitting than in
nontransmitting women (Table 4). Maternal plasma viral load was positively correlated
with breast milk sIgA (� � 0.248 and P � 0.03) and plasma total IgA binding to B.con
gp140 (� � 0.294 and P � 0.01). Correlations were very weak between maternal viral
load and all other measured immune parameters, including breast milk total IgA
binding to B.con gp140, breast milk ADCC antibody titer and potency, and plasma
ADCC antibody titer and potency (Table 4).

Secondary analysis: breast milk and plasma Env epitope-specific binding an-
tibody responses association with postnatal transmission risk. In further secondary
analysis, we assessed the magnitude of breast milk and plasma Env-specific binding
antibody responses against a panel of HIV-1 Env antigens and their association with
postnatal transmission risk (see Table S1 in the supplemental material). We measured
Env-specific IgG and IgA responses in plasma and Env-specific IgG, IgA, and sIgA
responses in breast milk by binding antibody multiplex assay (BAMA). Overall, the

TABLE 2 Correlations of primary and secondary maternal immune variables across breast
milk and plasma compartments

Immune response: breast milk vs plasma
Spearman correlation
coefficient (P value)

Total IgA against HIV-1 B.con gp140 0.683 (�0.001)
ADCC antibody titer 0.317 (0.005)
ADCC potency (maximum % killing) 0.315 (0.006)

TABLE 3 Associations of HIV Env-specific breast milk and plasma antibody responses and HIV-1 transmission to the infant

Analysis Immune response Assay Odds ratio (95% CI)a P value

Primary immune variable Breast milk total IgA against HIV-1 B.con gp140 ELISA 2.32 (0.43, 12.56) 0.33
Breast milk sIgA against HIV-1 B.con gp140b ELISA 3.61 (0.56, 23.14) 0.18
Breast milk ADCC antibody titerb ADCC-Luc 4.57 (0.68, 30.48) 0.12

Secondary immune variable Plasma total IgA against HIV-1 B.con gp140 ELISA 2.16 (0.51, 9.14) 0.30
Plasma ADCC antibody titerb ADCC-Luc 0.96 (0.25, 3.67) 0.95
Breast milk ADCC potency ADCC-Luc 1.02 (0.95, 1.08) 0.61
Plasma ADCC potency ADCC-Luc 1.04 (0.96, 1.13) 0.30

aOdds ratios (ORs) and 95% confidence intervals (CI) for ELISA area under the curve and ADCC antibody titer and potency were determined by logistic regression
modeling controlling for log10 plasma viral load. Odds ratios greater than 1 indicate higher odds of transmission for a 1-unit change in the immune response levels.

bImmune response is dichotomous, with categories of below the lower limit of detection (LLD) and above the LLD. The odds ratio interprets as above the LLD relative
to below the LLD.
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magnitude of these Env epitope-specific antibody responses in either compartment
and transmission risk in the logistic regression model did not show any conclusive
associations after correction for multiple comparisons (Table S1). Of note, the 95%
confidence intervals in this analysis were large.

However, several plasma and breast milk IgG binding responses were positively
associated with postnatal transmission risk prior to correction for multiple comparisons
(results for multiple comparisons are shown in Table S1). Plasma IgG responses directed
against three HIV Env epitopes—the V3 loop peptide, a consensus clade B gp120
protein, and the V1V2 region from a clade C virus—were positively associated with
increased transmission risk (OR � 3.92 [1.04, 14.69] and P � 0.04; OR � 10.56 [1.13,
98.26] and P � 0.04; OR � 3.36 [1.08, 10.49] and P � 0.04). In addition, breast milk IgG
directed against the consensus clade B gp120 epitope was similarly associated with
increased postnatal transmission risk (OR � 4.49 [1.13, 17.83] and P � 0.03).

DISCUSSION

In this study, we assessed HIV Env-specific binding and functional antibody re-
sponses in breast milk and plasma and their association with postnatal HIV-1 transmis-
sion risk in women treated with antiretrovirals (ARVs) during pregnancy who received
variable postnatal prophylaxis in the IMPAACT PROMISE study. A comparison of Env-
specific antibody responses in breast milk versus plasma has not been reported for
low-risk transmitting women and has key implications for the development of vaccine
interventions to eliminate postnatal HIV transmission. Prior studies have consistently
demonstrated that in HIV/simian immunodeficiency virus (SIV) infection, there is an
impaired IgA response in breast milk and other mucosal compartments (26–28). While
Env-specific IgG and ADCC activity in plasma and breast milk were directly correlated,
we previously described the lack of correlation between HIV-1 Env-binding IgA re-
sponses in breast milk and plasma in a cohort of HIV-infected women with minimal ART

FIG 1 Magnitudes of breast milk Env-specific IgA and sIgA binding responses by ELISA and functional ADCC
antibody titers in transmitting and nontransmitting mothers. The magnitude of breast milk total IgA (A) and sIgA
(B) binding to B.con gp140, measured as the area under the curve by ELISA, was higher in transmitting than in
nontransmitting women (median log10 AUC, �0.14 versus �0.40 and �0.19 versus �0.37). Breast milk ADCC Ab
titer (C) was also higher in transmitting compared to nontransmitting women (median log10 ADCC Ab titer, 1.39
versus 1.31). Medians are represented by horizontal black lines. The box represents the interquartile range, and the
dashed lines extend to the highest and lowest values.

Hompe et al.

September/October 2019 Volume 4 Issue 5 e00716-19 msphere.asm.org 6

https://msphere.asm.org


coverage (25). Yet in this cohort, we found that Env-specific IgA binding responses were
highly correlated in breast milk and plasma and were comparable in magnitude.

Breast milk B.con gp140-specific total IgA and sIgA responses were inconclusive as
to the risk of postnatal transmission in regression models adjusted for maternal viral
load, with point estimates inconsistent with previous findings from the BAN study (23).
Plasma Env-specific IgA binding responses, plasma and breast milk ADCC activity, and
Env epitope-specific binding antibody responses were also not significantly associated
with MTCT risk. As our analyses were limited by the small number of transmitting
women in this cohort, we are unable to make definitive conclusions about the asso-
ciation of maternal antibody responses with postnatal transmission risk. We found
moderate correlations between the magnitudes of plasma IgA, breast milk IgA, and
breast milk sIgA binding to B.con gp140 and maternal plasma viral load, suggesting
that the high levels of binding antibody responses observed in transmitting, healthy

FIG 2 Magnitudes of plasma Env-specific IgA binding responses by ELISA, plasma ADCC antibody titer, and plasma
and breast milk ADCC potency in transmitting and nontransmitting women. The magnitude of plasma total IgA (A)
binding to B.con gp140, measured as the area under the curve by ELISA, was higher in transmitting than in
nontransmitting women (median log10 AUC, 0.01 versus 0.48). Plasma ADCC Ab titer (B) was also higher in
transmitting women than in nontransmitting women (median log10 ADCC Ab titer, 2.29 versus 2.09). Plasma (C) and
breast milk (D) ADCC potencies, as maximum percent specific killing, were higher in transmitting than in
nontransmitting women (median max percent specific killing, 26.06 versus 25.00, and 27.66 versus 25.86). Medians
are represented by horizontal black lines. The box represents the interquartile range, and the dashed lines extend
to the highest and lowest values.

TABLE 4 Correlations of maternal plasma viral load and HIV Env-specific breast milk and
plasma antibody responses and ADCC activity

Immune response
Spearman correlation
coefficient (P value)

Breast milk total IgA against HIV-1 B.con env03 gp140 by ELISA 0.223 (0.053)
Breast milk sIgA against HIV-1 B.con env03 gp140 by ELISA 0.248 (0.030)
Breast milk ADCC antibody titer �0.058 (0.62)
Plasma total IgA against HIV-1 B.con env03 gp140 by ELISA 0.294 (0.010)
Plasma ADCC antibody titer 0.073 (0.53)
Breast milk ADCC potency 0.026 (0.82)
Plasma ADCC potency 0.039 (0.74)
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women could be at least partially driven by ongoing virus replication and antigen
exposure.

Our analyses of breast milk and plasma maternal ADCC activity revealed no con-
clusive association with transmission risk and thus contribute to an ongoing debate
regarding the potentially protective role of ADCC in postnatal transmission. Prior work
has shown that ADCC responses may contribute to better viral control in chronic SIV
infection (29, 30) and mediate partial protection in SIV-challenged rhesus monkeys (31).
However, several human studies have shown no association between maternal ADCC
responses and risk of HIV-1 transmission (23, 32). Milligan et al. evaluated the ADCC
activity of antibodies passively transferred from HIV-infected mothers to their infants
and found higher levels of ADCC activity in uninfected than in infected infants (32).
ADCC activity in infected infants was also associated with decreased mortality, sug-
gesting that it may mediate disease progression and contribute to improved clinical
outcomes in HIV infection. Mabuka et al. recently demonstrated higher levels of Env
gp120-specific ADCC activity in breast milk in nontransmitting than in transmitting
mothers, further implicating ADCC as a potentially protective immune correlate (22).
However, this study selected women with high viral loads and systemic neutralizing
antibodies. It is possible that maternal ADCC responses are protective only in the
setting of high antigen burden, supported by the fact that in our study, one-third of
mothers had ADCC titers below the limit of detection. Sun et al. (30) also found an
association between ADCC responses and improved viral control in SIV infection when
rhesus monkeys were stratified by viral load and those with low viral load excluded.

Our analysis facilitates a comparison to prior studies examining immune parameters
that are associated with postnatal transmission risk in different cohorts of transmitting
and nontransmitting HIV-infected, breastfeeding women (Table 5). Studies by Mabuka
et al., Kuhn et al., and Pollara et al. examined immune correlates in women from the
Kenyan Breastfeeding versus Formula Feeding Study, Zambia Exclusive Breastfeeding
Study, and BAN trial, respectively (21–23). The cohorts were comprised of clade
C-infected women and had comparable sample sizes, with the exception of the study
by Mabuka et al., which compared 9 transmitting to 10 nontransmitting women, all
clade A infected. The PROMISE cohort included clade C-infected women from Malawi,
India, and South Africa, as well as clade A- and D-infected women from Uganda.
Women in the PROMISE antepartum (AP) component randomized to maternal triple
ART or monotherapy received more ARVs, with better maternal immune status than
that of women in the other studies. However, postnatal prophylaxis in the PROMISE
study varied, with mothers randomized to receive triple ART for the duration of
breastfeeding (42%), to receive 7 to 14 days of ART postpartum (26%), or to the infant
nevirapine prophylaxis arm (32%).

Differences in maternal humoral immune responses associated with postnatal trans-
mission were observed across studies. Mabuka et al. (22) reported that ADCC activity
was associated with reduced postnatal transmission risk in a cohort of untreated
women, in contrast to the subsequent analyses which have shown no clear association
between breast milk ADCC activity and postnatal transmission risk in mothers receiving
ART. With regard to HIV Env-specific antibody responses, Kuhn et al. (21) found that
sIgA was detected more often in breast milk of 26 postnatal transmitting mothers
(76.9%) than in that of 64 nontransmitting mothers (46.9%; P � 0.009) and thus did not
appear to be protective against MTCT. Pollara et al. (23) identified total IgA and sIgA
binding to B.con gp140 by enzyme-linked immunosorbent assay (ELISA) and BAMA,
respectively, as being associated with decreased postnatal transmission risk in women
who received only peripartum nevirapine, while this analysis of the small number of
postnatal infections that occurred in the PROMISE study was inconclusive as to the
association of maternal humoral immune responses with postnatal transmission risk. It
is possible that previously identified antibody responses are not as robust and do not
mediate any protective benefit in the setting of better-controlled viremia due to ARV
use throughout pregnancy and immediately postpartum.

While our study is unique in its assessment of maternal antibody responses and
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transmission risk in the setting of ARV use during pregnancy and postpartum, it had
several limitations. The analysis was underpowered, limited by sample size due to the
small number of transmissions during breastfeeding. Unfortunately, due to issues with
shipping and transportation from study sites in Tanzania and Zimbabwe, only 76 of 104
originally requested samples were available for inclusion in the study. Sample size
limited our ability to perform analyses stratified by postpartum ARV status or the type
of peripartum ARV regimen. Larger studies using cohorts of ART-treated women should
be done to better define the association between maternal binding antibody responses
and ADCC activity and postnatal transmission risk. Further study also needs to evaluate
the effect of potential confounding factors—adherence and the development of drug
resistance— on postnatal transmission risk in the setting of lifetime maternal ART. In
addition, another opportunity for future study could include analyzing the data by
study site to determine the effect of geographical areas, HIV clade, and coexisting
infections on humoral immune responses and postnatal transmission. This could not be
done in the current case-control study because study site was a matching criterion.

Interestingly, our work suggests that ARV use during pregnancy significantly alters
the nature of breast milk IgA responses, eliminating the deficiency in mucosal IgA
typically observed in HIV-infected women (26–28). In women treated with ARVs in
pregnancy and at low risk of transmission postpartum due to optimal prophylaxis,
antibody responses and viral replication may be strongly correlated and thus antibody
responses may not independently affect transmission risk. Our prior observation that
maternal humoral immune responses in breast milk are associated with protection
against postnatal HIV transmission was not confirmed in this small cohort of low-risk
transmitters, yet it merits further study. As highly active ART is the standard of care
worldwide, investigating immune correlates of protection in cohorts of well-treated
women is critical to the design of strategies to augment infant protection and achieve
complete elimination of MTCT.

MATERIALS AND METHODS
Study design and participants. The 1077BF protocol of the IMPAACT PROMISE study enrolled

HIV-infected, postpartum women who intended to breastfeed and had CD4� T cell counts of �350 cells/
mm3 between June 2011 and October 2014 (5). Mothers were followed until the trial ended, and their
infants were followed through 24 months of age. For this analysis, study participants came from 3
components of the 1077BF protocol, antepartum (AP), postpartum (PP), and late presenters (LP) (Fig. S1).

In the AP component, HIV-infected mothers (n � 3,543) were randomized during pregnancy at
�14 weeks of gestation to receive triple ART (lopinavir-ritonavir [LPV/r], zidovudine [ZDV], and lamivu-
dine or LPV/r plus tenofovir-emtricitabine [TDF/FTC]), or ZDV with a single dose of nevirapine (NVP) and
TDF/FTC tail. In the LP component, participants (n � 204) were identified as HIV infected in labor or
immediately postpartum (up to 5 days). LP participants were assigned to treatments based on their time
of registration and previous treatment use. Participants who remained in LP instead of transitioning to
PP after delivery were followed for 6 weeks. Finally, both the AP and LP component participants were
able to enroll into the PP component if eligible. PP participants were randomized at 6 to 14 days
postpartum to maternal ART or infant NVP prophylaxis, continuing through 18 months after delivery or
until cessation of breastfeeding or infant HIV-1 infection. Infants in the maternal ART arm also received
6 weeks of NVP. A total of 2,431 mother-infant pairs were enrolled in the PP component (n � 1,220 for
maternal ART and n � 1,211 for infant NVP); 95% were recruited from the AP component and 5% from
the LP component.

In our study, cases were defined as children who tested positive for HIV during the breastfeeding
period and had a minimum breast milk sample volume required for testing from the transmitting mother
prior to infection (n � 26). The time of transmission was defined as the first of two consecutive positive
infant HIV nucleic acid tests. Twenty-six cases were identified at 9 sites across 6 countries (India [1 site],
Malawi [2], South Africa [1], Tanzania [1], Uganda [1], and Zimbabwe [3]). Seven of the 26 transmission
cases had unavailable samples. The 19 postnatal transmission cases with available samples were
matched to uninfected infants (controls) in a 3:1 ratio for a total of 57 controls. Cases and controls were
matched on the following criteria: adequate sample volumes required for planned assays, nontransmit-
ting mothers whose infants were uninfected at the same study week as the transmission occurred in the
cases, availability of samples at the same study week or within 3 months prior to the sample time point
for the transmitting mother, and clinical site. The maternal prophylaxis regimens during pregnancy and
the postpartum period are detailed in Fig. S1.

Ethics statement. Approval for the PROMISE 1077BF Protocol was obtained from all local institu-
tional review boards and regulatory authorities. All women who participated in the trial provided written
informed consent. The National Institute of Allergy and Infectious Diseases Division of AIDS Multinational
Data and Safety Monitoring Board reviewed the study every 6 months. This immune-correlate laboratory
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analysis of the PROMISE 1077BF study was deemed exempt from human subject review by the Duke
University institutional review board (Pro00030437).

ADCC assay. Plasma and delipidized breast milk (33) were evaluated for antibody-dependent cell
cytotoxicity (ADCC) activity using a luciferase-based assay as previously described (23, 34). CEM.NKRCCR5

(35) target cells were infected with an infectious molecular clone virus that encodes the HIV-1 subtype
C envelope from the breast milk transmitted/founder virus isolate 4403BMC5 (36) in the NL4-3 isogenic
backbone, which contains a Renilla luciferase reporter gene (37). The frequency of cells expressing
intracellular p24 was used to confirm and monitor infections, and greater than 70% of target cells were
p24 positive in all assays. Cryopreserved human peripheral blood mononuclear cells (PBMCs) from an
HIV-seronegative donor homozygous for the low-affinity single nucleotide polymorphism variant of Fc�

receptor IIIa (158F) were used as a source of effector cells at an effector-to-target cell ratio of 30:1 (38,
39). Plasma and breast milk samples were tested after 5-fold serial dilutions starting at 1:50 and 1:10,
respectively, in duplicate. Percent specific killing was measured after a 6-h incubation at 37°C and 5% CO2

and was determined by reduction in luminescence (ViviRen assay; Promega) compared to that of control
wells containing target and effector cells in the absence of plasma or breast milk according to the
following formula: percent specific killing � [(number of RLU of target and effector well � number of RLU
of test well)/number of RLU of target and effector well] � 100. The ADCC endpoint titers were
determined by interpolating the dilutions of plasma or breast milk that intersected the positive threshold
for killing (20% specific killing) and are reported as reciprocal dilutions.

BAMA. HIV-1 Env-specific IgG, IgA, and sIgA responses against a panel of HIV-1 antigens were
detected by binding antibody multiplex assay (BAMA), as previously described (33, 40). Carboxylated
fluorescent beads (Bio-Rad Laboratories, Inc.) coupled with HIV-1 antigens (Table S2) were incubated with
diluted plasma or breast milk for 30 min at 20°C. Plasma was IgG depleted prior to measuring Env-specific
IgA and sIgA, as previously described (25, 33). HIV Env-specific IgG and IgA were detected with
phycoerythrin (PE)-conjugated mouse anti-human IgG (Southern Biotech) and PE-conjugated goat
anti-human IgA (Jackson ImmunoResearch Laboratories), respectively. Env-specific sIgA was detected
with mouse anti-human secretory component (Sigma-Aldrich) followed by goat anti-mouse IgG-PE
(Southern Biotech). Beads were washed and acquired on a Bio-Plex 200 system (Bio-Rad Laboratories,
Inc.).

To determine the optimal sample dilution for each antigen, optimization assays with serial dilutions
of a subset of plasma and breast milk samples were performed. All samples were analyzed at the same
dilution for each antigen (Table S2). Blank beads were used to account for nonspecific binding, and HIV
immunoglobulin (HIVIG) was used as a positive control. Mean fluorescence intensity (MFI) values were
background adjusted by subtracting the MFI values of coupled beads without sample. For IgA assays, MFI
values were also blank-bead subtracted to account for nonspecific binding at the low sample dilutions
used. A positive HIV-1 Env-specific antibody response was an MFI of �100. All assays tracked the 50%
effective concentration and maximum MFI of HIVIG by Levey-Jennings charts to ensure interassay
consistency.

ELISA. For enzyme-linked immunosorbent assay (ELISA), 384-well plates (Corning Life Sciences) were
coated at 30 ng/well with B.con env03 gp140, incubated at 4°C overnight, and blocked with phosphate-
buffered saline (PBS) containing 4% whey protein, 15% normal goat serum, and 0.5% Tween 20. Serially
diluted breast milk or IgG-depleted plasma samples were added. IgA was detected with goat anti-human
IgA horseradish peroxidase (HRP; Southern Biotech), and sIgA was detected with mouse anti-human
secretory component (Sigma-Aldrich), followed by goat anti-mouse IgG HRP (Southern Biotech). Plates
were developed with SureBlue Reserve substrate and stop solution (VWR) and read at 450 nm on a
SpectraMax Plus 384 microplate reader (Molecular Devices). The standard for IgA measurement was
VRC01 monomeric IgA. The standard for sIgA assays was CH31 sIgA, prepared by complexing CH31
dimeric IgA with human secretory component (Abcam) in a 1:1 molar ratio (41). A five-parameter curve
was used to calculate IgA/sIgA concentrations relative to the respective standard (SoftMax Pro 6.3;
Molecular Devices).

Statistical analysis. Maternal and infant characteristics were summarized by case-control status
using the minimum, maximum, mean (standard deviation [SD]), and median (Q1, Q3) for continuous

TABLE 6 Primary and secondary immune variables used in conditional logistic regression models to assess associations with postnatal
HIV-1 transmission

Variable type Immune response Assay

Primary immune variables Breast milk total IgA against HIV-1 B.con env03 gp140, measured by AUC ELISA
Breast milk sIgA against HIV-1 B.con env03 gp140, measured by AUC ELISA
Breast milk ADCC antibody titer (above and below detection) ADCC-Luc

Secondary immune variables Plasma total IgA against HIV-1 B.con env03 gp140, measured by AUC ELISA
Plasma ADCC antibody titer (above and below detection) ADCC-Luc
Breast milk ADCC potency (maximum % specific killing) ADCC-Luc
Plasma ADCC potency (maximum % specific killing) ADCC-Luc
Plasma Env-specific IgG (against a panel of HIV-1 antigens) BAMA
Breast milk Env-specific IgG (against a panel of HIV-1 antigens) BAMA
Breast milk total IgA (against a panel of HIV-1 antigens) BAMA
Plasma total IgA (against a panel of HIV-1 antigens) BAMA
Breast milk sIgA (against a panel of HIV-1 antigens) BAMA
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variables and number (percent) for categorical variables (Table 1). The distribution of values for breast
milk and plasma immune responses were summarized by the minimum, maximum, mean (SD), and
median (Q1, Q3) (Table S3). If any immune response had �30% of the values below the lower limit of
detection (LLD), a dichotomous measure of the immune response was used, with categories of below
LLD and above LLD (Table S3). Correlations were investigated with Spearman correlation coefficients, and
their respective P values, for cases and controls combined, between each immune response in plasma
and breast milk, between immune responses and maternal plasma viral load, and between ADCC
potency and plasma Env-specific IgG. Conditional logistic regression models were fit to estimate the odds
of postnatal HIV-1 transmission for a 1-unit change in breast milk and plasma immune responses as
measured by the ADCC assay, ELISA, and BAMA (Table 6). Odds ratios and 95% confidence intervals were
generated. Adjusted logistic regression models were fit separately with each of the following variables
identified a priori as potential confounders: maternal viral load (at baseline and closest measure to breast
milk sample collection), maternal peripheral CD4� T cell count (at baseline, and closest measure to breast
milk sample collection), AP/PP component randomization, infant age at sample collection, and maternal
parity. A potential confounder was included in the final model if it was associated with the outcome and
altered the effect estimates, which was only the case for maternal plasma viral load.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00716-19.
FIG S1, TIF file, 1.1 MB.
TABLE S1, DOCX file, 0.02 MB.
TABLE S2, DOCX file, 0.02 MB.
TABLE S3, DOCX file, 0.01 MB.
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