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Abstract

In this study, we introduce a hierarchical and modular computational model to explain how

the CNS (Central Nervous System) controls arm reaching movement (ARM) in the frontal

plane and under different conditions. The proposed hierarchical organization was estab-

lished at three levels: 1) motor planning, 2) command production, and 3) motor execution.

Since in this work we are not discussing motion learning, no learning procedure was consid-

ered in the model. Previous models mainly assume that the motor planning level produces

the desired trajectories of the joints and feeds it to the next level to be tracked. In the pro-

posed model, the motion control is described based on a regulatory control policy, that is,

the output of the motor planning level is a step function defining the initial and final desired

position of the hand. For the command production level, a nonlinear predictive model was

developed to explain how the time-invariant muscle synergies (MSs) are recruited. We used

the same computational model to explain the arm reaching motion for a combined ARM

task. The combined ARM is defined as two successive ARM such that it starts from point A

and reaches to point C via point B. To develop the model, kinematic and kinetic data from

six subjects were recorded and analyzed during ARM task performance. The subjects used

a robotic manipulator while moving their hand in the frontal plane. The EMG data of 15 mus-

cles were also recorded. The MSs used in the model were extracted from the recorded

EMG data. The proposed model explains two aspects of the motor control system by a

novel computational approach: 1) the CNS reduces the dimension of the control space

using the notion of MSs and thereby, avoids immense computational loads; 2) at the level of

motor planning, the CNS generates the desired position of the hand at the starting, via and

the final points, and this amounts to a regulatory and non-tracking structure.
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Introduction

It is well-known that every joint is controlled by several muscles, each one having a specified

role in motion generation at that joint. Therefore, the degrees of freedom (DoF) in the internal

or muscular space of the human body is far more than the mechanical DoF that is used in the

external or joint space; the latter is limited by the mechanical and anatomical constraints of the

limb. Thus, on the one hand, the CNS benefits from an abundancy of possibilities in the inter-

nal space, which has to be structured and controlled. On the other hand, performance of any

given movement in the external space is accomplished under several mechanical and anatomi-

cal constraints [1]. Therefore, Bernstein suggested that a hierarchical and modular organiza-

tion does exist for realizing any movement properly [2]. Based on this picture, some

researchers suggested that at the highest level of this hierarchical structure motor planning is

performed, and then, at a lower level, the corresponding motor command is produced, and

finally, at the lowest level, according to the musculoskeletal system of the limbs, the movement

is executed [3,4]. Here, the key question is whether a computational model for controlling

Arm Reaching Movements (ARMs) in the vertical (frontal) plane with the above hierarchical

organization can be developed that employs modular structure based on recruitment of Mus-

cle Synergies (MSs).

Many previous studies attempted to represent these three different levels in the computa-

tional models of motion control [5–13]. The first point we would like to take into consider-

ation in these works is that all of these models are based on a tracking approach, that is at the

level of command generation the desired motion trajectories, planned by the motor planning

level, are tracked continuously. In this type of modeling approach, at the motion planning

level, the desired trajectories that define the motion, e.g., trajectories of the joint angles, are

determined through optimization procedures [9–15]. However, there are observations indicat-

ing that the control of ARMs has no tracking nature [16,17]. At least, based on these observa-

tions, we believe the CNS does not apply a continuous tracking control to execute ARMs.

Since the musculoskeletal system of ARMs has a complex and nonlinear characteristics but

its performance is robust, it is believed that the CNS uses control methods at the command

production level that are more matching to the above features. Different approaches were used

to model the behavior of the CNS at this level: [18,19] used the impedance control, while

[20,21] suggested an adaptive control strategy, [22,23] applied predictive control method, and

[24,25] used optimal control methods in their computational models.

Another important question in this field is the question of control variables or motor com-

mands: what is the variable used by the command generation level and send to the execution

level. In previous studies, motor commands of computational models were produced at differ-

ent levels, they could be joint torques [12,19], muscle forces [26,27], muscle activities [28,29]

or even recruitment coefficients (RCs) of the motor primitives [30,31]. Since changes in the

joint torques stem actually from changes in muscle forces, so we believe that computational

models in which the motor command is produced at the muscle space can represent perfor-

mance of the CNS more clearly. The concept of MS solves the problem of large amounts of

computations, which is resulted from abundancy of the control variables, technically by reduc-

ing the dimension of control space through a modular organization [32–35]. Physiological evi-

dences also confirmed the existence of MSs and suggested that at the motor execution level the

effort to recruit MSs is minimized rather than the effort for controlling the individual muscles

[36]. In this relation, different researches have suggested that it is possible to reconstruct pat-

terns of muscles activities in ARM using the concept of MSs; for example following reconstruc-

tion approaches have been proposed and investigated: a combination of time-varying MSs

[37,38], time-invariant MSs [34,39], or extraction of MSs based on co-contraction and
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reciprocal activities of the muscles involved in the task [40]. The important thing to note is

that in all of these cases, although the dimension of control space has been reduced due to the

use of MSs, the motor execution of ARM has been carried out as a tracking problem in the

joint space.

In this study, a new computational model is introduced to explain how the CNS controls

ARMs using the idea of MSs. The proposed model introduces a hierarchical nonlinear predic-

tive control organization for controlling ARMs under various constraints and in the frontal

plane with the following features. First, it is developed based on a hierarchical and modular

organization with three levels of motor planning, command production, and motor execution.

Second, at the level of motor planning, the arm reaching movement is defined as a step func-

tion describing transition from the initial position to the final desired position. This corre-

sponds to an input for a regulatory controller. This approach is generalized and used in the

implementation and control of combined ARM. Third, at the motor command level, a nonlin-

ear predictive controller (NPC) is used to recruit MS modules in a modular organization. As

we assume a regulatory nature for the command production level, the control variables of the

model are the RCs of the time-invariant MSs, which are determined by the nonlinear predic-

tive controller. Finally, at the level of motor execution, the upper limb with three DoF in the

shoulder joint and one DoF in the elbow joint (four DoF in the joint space) and 15 muscles (15

DoF in the control variable space) involved in the vertical ARM (corresponding to the hand

movement on the frontal plane) are modeled in the musculoskeletal system. Fig 1A shows the

general structure of the proposed hierarchical and modular model. The block diagram of the

nonlinear predictive controller which is used to describe the recruitment of MSs is shown in

Fig 1B. Three levels of motor planning, command production, and motor execution are well

represented in this figure. The model is used to describe motor control of simple and com-

bined ARMs in the presence and absence of external disturbances.

We also conducted a set of experiments to determine the kinematic and kinetic characteris-

tics of simple and combined ARMs in the frontal plane. The participants interacted with a

robotic manipulator designed in the Human Motor Control and Computational Neuroscience

laboratory at the University of Tehran [41]. Then, MS modules were extracted from recorded

EMG data. These synergies were used in the model.

Fig 1. The proposed hierarchical and modular organization based on MS recruitment in ARM. A) hierarchical

organization of three levels. B) the block diagram of the proposed computational model based on nonlinear predictive

recruitment of MSs.

https://doi.org/10.1371/journal.pone.0228726.g001
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Therefore, the structure of the paper is as follows. In the materials and method section, first

we explain briefly the ARM experiments we performed, and then, the procedure to identify

the corresponding MSs. Then the model of the motor execution level is introduced. It is con-

sisted of the augmented musculoskeletal model together with the MS block. Next, the com-

mand production level is described. In this section, we explain how an NPC generates RCs of

the MSs. Then, using the results of the experiments we show how the motor planning level

generates the inputs of a regulatory control system for combined and uncombined ARMs.

Finally, the performance of the proposed model is statistically analyzed and compared with the

results of the experiments in the result section. We use the information of the hand position

and the RCs of the MSs to do the comparison. In the last section we will discuss our results

and validate the model.

Materials and methods

Experiments

Experiments have been conducted to investigate MSs in simple and combined ARMs in the

presence and absence of external disturbances. Eight points on a circle with a radius of 20 cm

in the frontal plane were considered, where movements from these points to the center or vice

versa were defined as “simple: sim” motions (Fig 2A). If the movement started from a point on

the circle, then went to another point on the circle while passing through the 2 cm neighbor-

hood of the center point, this combined movement was defined as “via-point: via” motion (Fig

2B). Also, if the points at the start and end of via-point motion were the same, this combined

movement was defined as “reversal: rev” motion (Fig 2B). If in the middle of simple ARM, the

hand of a person is moved unexpectedly out of his way in a perpendicular direction with an

external unpredictable disturbance applied by the robot, this motion is defined as “disturbed:

dis” motion (Fig 2C). Based on the protocol of the experiments with disturbances, during the

implementation of a simple ARM, as soon as the hand position reaches a distance of 2 cm

from the midpoint, the robot deviates the subject’s hand perpendicular to the direction of

motion to a distance of 6 centimeters from the midpoint (as shown in Fig 2C). The midpoint

is defined as the middle of the line connecting the start and stop points.

Fig 2. The reaching points on the frontal plane. A) simple motions, B) combined motions (dashed line: via-point

motion, solid line: reversal motion), C) red arrow show direction of the applied disturbance force in the disturbed

motions, D) A participant is standing in front of the robot and the EMG electrodes are attached on the 15 relevant

muscles.

https://doi.org/10.1371/journal.pone.0228726.g002
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Each movement is evaluated by the robot according to the items in the Table 1. If these are

not approved, the movement will be repeated again. Movement duration definition is

described in the S1 File.

In all tests, the wrist joint is fixed with a splint, and the person can only use three DoF in

the shoulder joint and one DoF in his elbow by keeping the handle of the robot (Fig 2D). The

start, via and target points are announced through the audible message from the examiner to

the subject. Six healthy male volunteer subjects in the age range of 25.7 ± 1.3 years, with no his-

tory of musculoskeletal and neuromuscular diseases participated in these experiments. The

height of the participants was 175.8 ± 3.1 cm and their weight was 76.17 ± 8.37 kg. All subjects

were right-handed, and they were asked to perform ARMs with their right hand. Subjects ran-

domly repeat each possible type of ARMs (16 sim, 16 dis, 56 via and 8 rev) for five times. The

subject was instructed to rest for one minute after each single trial (movement) to recover

from tentative muscle fatigue during motion execution. The experimental protocol was

approved by the Human Research Ethics Review Committee from Iran University of Medical

Science. Also, a verbal type of informed consent was obtained from the subjects.

Identification of the MSs

As the proposed computational model utilizes a modular organization based on MSs, it is

required to identify MSs. For this purpose, kinematic and muscular activity data of combined

and uncombined ARMs has been measured in the presence and absence of external distur-

bances during experiments. In this study we used time-invariant MSs. These time-invariant

modules (which are also named spatial synergies) are muscles activated in synchrony with

fixed relative gains as reported in [42,43]. Thus by recruitment of a few spatial MSs, the coordi-

nated spatiotemporal muscle activation patterns observed during ARM could be reproduced.

Here, the nonnegative matrix factorization (NMF) algorithm was used to extract MSs as time-

invariant modules [44,45] for each subject. The experiment protocol is described in S1 File

and showed in S1 Fig. The Variance Accounted For (VAF) criterion with a threshold level of

90% has been used to determine the number of MSs [37,45–52]. Acording to the results of our

experiments, the number of MS vectors to reconstruct the muscle activities with a VAF value

of 90% for each subject is represented in Table 2.

The similarity index of Correlation Degree Measure (CDM) is used to compare MSs

recruited in different types of ARMs (Eq 1). Thus, if the set W1 consists of n1 MSs, and the set

W2 has n2 MSs, then, the CDM similarity index between these two sets of MSs is given as fol-

lows:

CDM : S W1;W2ð Þ ¼
1

n1

Pn1

i¼1
max½rðW1i;W2jÞj

n2

j¼1
� ð1Þ

Table 1. Items evaluated by the robot to consider a trial as acceptable. When the constraints were not met, the trial was rejected and the subject had to repeat the trial.

Motion type Movement duration deployment at End point Accepted neighborhood for

Strat point Via point End point Mid-point

via < 800 ms > 1s < 1.5 cm < 2 cm < 1.5 cm -

sim < 400 ms > 1s < 1.5 cm - < 1.5 cm -

dis < 400 ms > 1s < 1.5 cm - < 1.5 cm < 2 cm

https://doi.org/10.1371/journal.pone.0228726.t001

Table 2. The number of MSs’ vectors to reconstruct muscle activity with a VAF value of 90% for each subject.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Number of MSs 5 7 3 7 5 9

https://doi.org/10.1371/journal.pone.0228726.t002
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Where ρ is the Pearson correlation coefficient. We extracted the MSs (VAF>90%) of each

type of movement (simple, via, disturbed trials) for each subject separately. Then, for each sub-

ject the similarity index (CDM) among the tasks, under different conditions, were evaluated.

The average value of CDM among the tasks for each subject is presented in Table 3. In this

case, the CDM of the extracted MSs over the six subjects (average of the data in Table 3) is

0.92 ± 0.02. Our experimental results show that similar MSs are employed in radial movements

under various constraints, that is, the MSs extracted in simple motions are similar to those in

disturbance and via-point motions.

The experimental results showed that the extracted time-invariant MSs in performing vari-

ous simple movements (Ws) were similar to those MSs extracted in combined movements

(Wc) and in the presence of external perturbation (Wd) for all subjects (Table 4).

Thus, with respect to Table 3 and Table 4 in the proposed model, the MSs in the implemen-

tation of combined and disturbed movements is considered as the MSs extracted from simple

ARMs.

Motor execution model based on MSs

Based on conducted experiments, and at the motor execution level of the hierarchical organi-

zation of the proposed model, it is necessary to consider a musculoskeletal structure for the

upper extremity with four joint angles. In the proposed model, two DoF in the wrist and supi-

nation/pronation motions of the elbow joint were assumed fixed. Thus, the structure of the

arm can be expressed using four joint angles (Fig 3) via the following equation:

q≔ðy; Z; z; �ÞT 2 Q ð2Þ

In this equation q indicates four DoF in the upper extremity. Where θ is the elevation angle,

η is the azimuthal angle and z represents the humeral angle of the shoulder joint, and finally, ϕ
represents the flexion of the elbow joint. In general, the dynamic equations of the upper

extremity can be written with these four joint angles as follows:

IðqÞ€q þ Vðq: _qÞ þ JTFext ¼ τ ! €q ¼ IðqÞ� 1
fτ � Vðq: _qÞ � JTFextg ð3Þ

In the above equation, I is the inertial matrix, Vðq: _qÞ is the summation matrix of two Cori-

olis and gravitational torques, J is the jacobian of the arm, Fext is the external force of the envi-

ronment, and τ is the torque produced in the joints.

The robot used in our experiments is a 5 link parallel robot designed and evaluated in the

human motion control lab of the school of the electrical and computer engineering at the Uni-

versity of Tehran [41] to assess the movements of the upper limb. A control system is used to

compensate its load (or more precisely, its dynamics) when interacting with the subjects. For

Table 3. Evaluation of the similarity index (CDM) in extracted MSs of different conditions for each subject.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

CDM 0.94±0.02 0.93±0.01 0.91±0.04 0.94±0.03 0.93±0.05 0.91±0.02

https://doi.org/10.1371/journal.pone.0228726.t003

Table 4. CDM of MSs for different types of movements for all subjects.

SWs,Wc SWs,Wd

Mean 0.9330 0.9458

STD 0.0063 0.0335

https://doi.org/10.1371/journal.pone.0228726.t004
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this reason, we assumed that the external force of the robot on the subject’s hand in simple and

combined ARMs is zero.

According to [53], the elements of the above matrices are calculated based on the anthropo-

morphic characteristics of each individual. To simulate the proposed model, we used the MSs

extracted for each subject individually; in other words, we ran the simulation for each subject

separately. However, for the sake of briefness, only the results of one typical subject are

reported, although similar results have been obtained for other subjects and for the simulation

of other motion directions. The model proposed in this research has been computed for sub-

ject 5 with the following anthropomorphic characteristics (Table 5).

The parameters mi, Ii,x, Ii,y, Ii,z, Li, ri, (i = u, f) denote mass, principal moments of inertia

around the x-, y-, and z-axes of the body-fixed coordinate systems, length, and distance to the

center of mass of the upper and forearm, respectively [54]. It was assumed that the (transver-

sal) x and y components of the moment of inertia for the upper arm and forearm, respectively,

are the same; i.e., Iu,x = Iu,y and If,x = If,y.

According to the conducted experiments, 15 upper extremity muscles are considered in the

introduced model. To generate the desired torque to change the three joint angles in the shoul-

der and one joint angle in the elbow, it is necessary to determine the moment arm of each

muscle during movement. The moment arm value for each of these 15 muscles, has been

defined as a polynomial function of appropriate joint angles leading to its movement (details

have been described in S2 File). It is worth noting that providing the moment arms of these 15

muscles in an integrated way is one of the innovations of this research. Using the Marm matrix

and having the force of each muscle (Fm), the torque generated at each joint can be calculated

Fig 3. Joint angles of human arm with three joint angles in shoulder and one joint angle in elbow.

https://doi.org/10.1371/journal.pone.0228726.g003

Table 5. Anthropomorphic characteristics of subject 5 based on [54].

mi (Kg) Ii,x (Kg m2

s2 ) Ii,y (Kg m2

s2 ) Ii,z (Kg m2

s2 ) Li (m) ri (m)

i = u: upper arm 1.56 0.0079 0.0079 0.0029 0.3013 0.1216

i = f: forearm 1.52 0.0299 0.0299 0.0013 0.4082 0.4082

https://doi.org/10.1371/journal.pone.0228726.t005
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as follows.

τ ¼ Marm � Fm ! €q ¼ IðqÞ� 1
fMarm � Fm � Vðq: _qÞg ð4Þ

The muscle forces are considered as a result of multiplication of MSs in the matrix of RC.

Matrix decomposition based on the NMF method is used to extract MSs of muscle force data

(as described in the S1 File). Thus, the force of muscles involved in the motion can be shown

by employing weighted recruitment of k MS vectors. In this case, the MS vectors are placed in

the W matrix (of ch = 15 channels) and the time-variant matrix C(t) represents the RC of these

MS vectors.

Fm ¼Wðch�kÞ � CðtÞ
ðk�samplesÞ ! €q ¼ IðqÞ� 1

fMarm � ðW � CÞ � Vðq: _qÞg ð5Þ

Applied perturbation

Based on the protocol of the experiments with disturbance, during the implementation of a

simple ARM, as soon as the hand position reaches a distance of 2 cm from the midpoint, the

robot deviates subject’s hand perpendicular to the direction of motion to a distance of 6 centi-

meters from the midpoint (as shown in Fig 2C). We implemented exactly the same procedure

in our model and after introducing the disturbance, we deviated hand position 6 cm in a direc-

tion perpendicular to its movement direction. We defined this 6 cm deviation, as the distur-

bance intervened by the robot.

Nonlinear predictive approach in recruitment of the MSs

It is suggested that in performing fast and skillful movements, a proper motor command is pro-

duced according to the internal model prediction in the cerebellum [55,56]. The musculoskele-

tal system, in general, has complex nonlinear dynamics. Therefore, we think that a nonlinear

predictive method (similar to what is proposed in [57]) can describe more appropriately the

behavior of the CNS when producing motor commands. In order to implement this method

computationally, it is necessary to determine the state variables of the musculoskeletal system.

X1 ¼ q ¼

y

Z

z

�

2

6
6
6
6
4

3

7
7
7
7
5
;X2 ¼

_X1 ¼

_y

_Z

_z

_�

2

6
6
6
6
4

3

7
7
7
7
5
! X ¼

X1

X2

" #

¼

y

Z

z

�

_y

_Z

_z

_�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð6Þ

The state space equations of this nonlinear musculoskeletal system is as follows.

_X1 ¼ X2 ¼ f1ðXÞ ¼ q ð7Þ

_X2 ¼
€X1 ¼ f2ðXÞ þ B2ðXÞu ¼ � IðqÞ

� 1
fVðq: _qÞg þ IðqÞ� 1

fMarm �Wgu ð8Þ

y ¼ HðXÞ ð9Þ

Where y, the hand position, is calculated using H as a function of joint angles according to
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[48]. Subsequently, the NPC attempts to minimize the amount of effort and the position error

for the nonlinear musculoskeletal system along the prediction horizon of h, by using Lie deriva-

tives. The NPC cost function is as follows.

J uðtÞ½ � ¼
1

2
½yðt þ hÞ � ydðt þ hÞ�TQ yðt þ hÞ � ydðt þ hÞ½ � þ

1

2
uðtÞTRu tð Þ ð10Þ

Where u(t) is the NPC’s output that determines the RCs of MSs. Also, yd(t+h) represents the

desired hand position for h moments later. Q and R are the diagonal matrices as two design

parameters for weighting the position error and the amount of input effort, respectively. Since

in the NMF method the decomposed MSs and their coefficients were assumed to be non-nega-

tive, here the command generated by the NPC is constrained to be non-negative, too. The mini-

mization of the constrained cost function leads to the production of a motor command of the

RCs of MSs.

NPC parameter setting

According to references [58,59], if a large value is chosen for the lower limit of the prediction

horizon (h), it means that the error is not important in the early times and this will slow down

the transient response. On the other hand, this limit has no effect on the optimization proce-

dure if it is less than the system delay. In stable systems, the open loop system settling time is

considered to be the upper limit of h. The reference [60] states that the value of h must be cho-

sen to be large enough such that its magnification does not affect the control signal. Based on

these facts, the prediction horizon for the proposed model is chosen to be 10 time samples (10

mili seconds). The time interval of the simulation was 400 mili seconds, too.

Weighting matrices (Q & R) are the most influential parameters in the criterion of stability,

performance, and robustness of the closed loop system [61]. Weighting matrices play role in

scaling prediction errors and control signal variations, preventing ill-conditions in calculating

control signal integrals, and limiting control signals. In the proposed model, the values for the

weighting matrices in the cost function are determined based on the analysis of variance of the

measured values of the hand position and the amount of muscle activity in the experiments

coefficient [62]. Thus, the non-zero elements of Q and R matrices were 108 and 1, respectively.

In the proposed model we used the concept of time-invariant MSs’ recruitment in a hierar-

chical and modular structure while applying a nonlinear predictive procedure, hence, we

assumed that there is no physiological sensory feedback delay. Therefore, one of the questions

that will be the subject of our future research is the effect of sensory feedback delay on the per-

formance of the model.

ARM regulatory motor planning

In the production of motor command by NPC, it is necessary to minimize the error of the

hand position at each moment from the final desired position. What is considered in the sim-

ple ARM implementation (Fig 2A), is moving from one starting position to the final position.

In the model presented in this study and with respect to the starting and final points of the

movement, the regulatory nature of the motor planning is described by applying a step input

which causes movement from the initial position to the desired position. We used the result of

our data analysis to develop the input (generated by the motor planning level) to the command

production level for combined ARMs. According to our observations, to perform via-point or

the combined movements, the hand changed its direction toward the second point (the final

goal) when it laid in a neighborhood of the via-point with radius of 2 cm. On the other hand,

according to the results of the experiments, whenever the start and stop points of the combined
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movements were closer to each other than to the via-point, the tangential velocity at the via-

point was closer to zero when passing through the 2 cm neighborhood of the via-point (Fig

4A). This shows that in the implementation of the combined ARM, the tangential velocity of

the subject’s hand when passing through the via-point depends on how the start and stop

points are positioned relative to each other. Therefore, at the level of motor planning of the

proposed model, the time for changing the desired regulatory input is determined according

to three parameters: 1) the hand position, 2) the amount of proximity to the via-point, and 3)

the tangential velocity of the individual’s hands (Fig 4B).

Statistical analysis to validate the model

Here, the regression analysis has been used as a powerful statistical method to examine the

relationship between the simulated hand trajectories and the distribution of the experimental

trajectories. The regression equation tries to find the best fit line for the simulated hand trajec-

tory with the help of the experimental one as follows [63].

Pexp ¼ Psim þ ε ð11Þ

Where, Pexp and Psim represent the experimental and simulated hand trajectories, respec-

tively. Also, ε represents the regression residue. The mean squared residue is identified as the

statistical p-values of regression analysis to determine whether the relationships that we

observe in the experiments also do expressed by the simulated model. Therefore, if the p-value

is less than the significance level (which is chosen 0.05), then we conclude that the behavior of

the proposed model fits the experimental data properly.

In order to compare the RCs of MSs, their time- and frequency-domain features have been

used. Therefore, Mean Absolute Value (MAV), Modified Mean Absolute Value 1 (MMAV1),

Modified Mean Absolute Value 2 (MMAV2), Mean Absolute Value Slope (MAVS), Root

Mean Square (RMS), Variance of RCs (VAR), Waveform Length (WL), Zero Crossing (ZC),

Slope Sign Change (SSC), Willison Amplitude (WAMP), and Simple Square Integral (SSI)

have been used as 11 time-domain features. Also, Median Frequency (FMD), Mean Frequency

(FMN), Modified Median Frequency (MFMD), Modified Mean Frequency (MFMN), Fre-

quency Ratio (FR) were used as five frequency-domain features. All of the above features had

been defined in reference [64]. Then, each RC was divided into 10 windows, and the values of

16 features were calculated at each interval. Finally, the feature matrix for each of RCs is a

matrix with 16 rows and 10 columns. Those columns represent the feature values for ten

Fig 4. The effect of kinematic information on the motor planning level. A) The tangential velocity of the hand while

approaching the center is closer to zero when moving from point 4 to points 3 and 5, and the tangential velocity is not

zero in the movements with the final points 1, 2, 6 and 7. In addition, the tangential velocity at the center in reversal

movement from point 4 to point 4 is exactly zero. B) the block diagram of decision for states of the desired input for

ARMs in all directions.

https://doi.org/10.1371/journal.pone.0228726.g004
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intervals. It is worth mentioning that all features were normalized before checking similarities.

The two-dimensional correlation criterion (corr2) has been used to compare these feature

matrices.

Results

Since the implementation of different types of ARM is considered in this research, it is neces-

sary to evaluate the performance of the proposed model in the execution of these movements.

The simulation result of the proposed model in the implementation of a simple ARM from the

center to point 4 has been presented in Fig 5A. Simulated hand trajectory from the center to all

eight points with respect to the range of variations of hand trajectory in repeated trials of

experiments has been shown in Fig 5B. Also, simulated combined ARM from point 2 to point

4 by passing the center has been illustrated in Fig 6A. Simulated reversal motion from point 2

to the center and returning back to point 2 has been shown in Fig 6B.

According to the experimental results, MSs in the presence of disturbances were the same

as MSs used in the implementation of non-disturbed movements. Unpredictable disturbance

in the model is applied according to the protocol of the experiments. Thus, to simulate any

ARM with disturbance, during the implementation of a simple ARM when the hand is in a dis-

tance of 2 cm from the midpoint, a force perpendicular to the direction of motion of the sub-

ject’s hand is applied to deviate it to a distance of 6 centimeters from the midpoint. For

implementing the disturbance in simulation, we changed the hand position to the perturbed

position indicated in Fig 2C with the red arrow as soon as the hand position reaches a distance

of 2 cm from the midpoint. The performance of the proposed model against unpredictable dis-

turbances in the midpoint of simple ARM from the center to point 4 is presented in Fig 7.

In order to compare the output of the model with the experimental data, or in other words

to validate the behavior of the model, the simulated hand trajectories are statistically compared

with the distribution of the experimental trajectories using regression analysis of Eq 11. The

results are represented in Table 6.

In addition to hand trajectories, it is necessary to compare the RCs of MSs with the values

obtained from the experimental measurements, in order to evaluate the computational model’s

performance. Given that in the experiments, every ARM is repeated five times randomly, the

simulated RCs can be compared with RCs obtained from experiments. For example, four fea-

tures (RMS, VAR, FMD and FMN) of the RCs of MSs in all eight center-out simple ARMs and

the range of their variations in five repetitions of the same movements in the experiments is

Fig 5. Simulated hand position in simple movement. A) X and Z coordinates in simple movement from the center to

point 4 in the frontal plane. B) Hand trajectory in the simulated model with NPC (solid lines), the range of changes in

hand trajectories in experimens (dashed line).

https://doi.org/10.1371/journal.pone.0228726.g005
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shown in Fig 8. The mean and standard deviation are made across the five different repetitions

of the same task in the experiments. Given that every movement is repeated five times ran-

domly, the mean value and standard deviation of feature matrices correlation in various repeti-

tions for all eight center-out ARMs without disturbances are shown in Fig 9A as the solid line.

Also, the Feature Correlation (FC) of RCs obtained from the simulation is indicated as the

dashed line in Fig 9A.

The FC value of RCs in all combined motions that contains simple ARM from the center to

point 2 as their first part of the motion with respect to their variations measured in the experi-

ments is shown in Fig 9B.

In order to compare the RCs derived from simulation of the model with the mean value of

RCs of different iterations of the same motion in the experiment, the correlation of their fea-

ture matrices is calculated. The percentage of the similarity for the above comparison for all

subjects is presented in Table 7.

As illustrated in Table 4, the similarity index of feature matrices of RCs, for the simulation

and experiments for all motions and all subjects, is 85.88±1.86% (P-value < 0.05).

Discussion

The results of the simulations (Figs 5 and 6) show that the hierarchical and modular organiza-

tion of the recruitment of MSs based on NPC can properly generate the hand position within

the range of variations of the measured experiments. According to Table 6, the p-value of the

regression analysis of the simulated hand trajectory were lower than the acceptance threshold

(p-value < 0.05). Therefore, it is reasonable to hypothesize that the simulated hand trajectories

are statistically similar to the experimental trajectories of all subjects.

Fig 6. Simulated hand trajectory in combined motions. A) via-point motion from point 2 to point 4 in frontal plane,

B) reversal motion from point 2 to point 2 in frontal plane.

https://doi.org/10.1371/journal.pone.0228726.g006

Fig 7. Simulated hand trajectory in simple disturbed motion from the center to point 4 in frontal plane. Dashed

line: desired regulatory state, dot line: without disturbance, solid line: disturbed simulated motion. A) X and Z

coordinates. B) hand trajectory.

https://doi.org/10.1371/journal.pone.0228726.g007
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On the other hand, RCs of MSs derived from the simulation were in the range of changes

obtained from the experiments (and 9). The statistical analysis reported in Table 7, shows that

the RCs resulted from the proposed model are similar to the RCs derived from the experimen-

tal data with a similarity value of 85.88±1.85%. These suggest the proper performance of the

proposed computational model in the implementation of simple, combined, and reversal

ARMs in the external (hand position) and internal (muscle force) spaces with respect to the

experiments.

In the presence of disturbance, the CNS attempts to perform ARM in a way to correct hand

trajectory so that it can reach the target point more accurately while minimizing the effort of

MSs’ recruitment. Therefore, after applying the disturbance, the controller must correct the

hand position so that it continues toward the target. As shown in Fig 7, by applying the distur-

bance, the hand trajectory has actually changed, and the controller corrected the position of

the hand that went out of the normal trajectory by returning it to the nearest point of the

movement trajectory. This is consistent with the results of the experiments carried out in this

study (Table 6).

As our results indicate the behaviors of the proposed model in many different aspects are

similar to the motor behaviors of our participants during ARM experiments. In this section,

we also compare the behavior and structure of the proposed model (at three levels) with those

of other models developed previously; and finally, we discus physiological evidence for the

proposed model.

Motor planning

Previous studies have suggested different cost functions in the optimization process when gen-

eration the desired motor behavior (input of the motor command production). Some of these

cost functions to be mentioned are: maximization of task achievement [14], minimization of

the jerk [9] or variance of the final position [10], minimization of torque changes [11] or com-

manded torque changes [15], and a combination of the above criteria [12,13,65,66]. Some

scholars have discussed how to implement these cost functions in biological networks [67]. It

is important to note that in these works, the control process (command production) is per-

formed according to a tracking format in the joint space, and the form of movement is pre-

planned according to the optimization criterion and the dynamic equations of the motor sys-

tem. The only model we found that has considered the effect of sensory feedback in the pres-

ence of noise on the shape of the arm reaching velocity was presented by Todorov and Jordan

[25]; otherwise, in other models developed based on optimization methods, the effect of the

environment or the sensory feedback on the desired movements are not considered.

As mentioned before, there are observations indicating that arm reaching movement is

controlled based on a regulatory strategy [16,17]. Therefore, we stayed at this finding and used

a simple step function for simple ARM cases to describe the input of the second level or in

other words to show the desire for changing the state or position of hand from its initial state

to the final one.

Table 6. Regression analysis performed to compare the simulated hand trajectories and the experimental trajectories for each subject separately. Statistical signifi-

cance is considered at the level of P-value<0.05.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Simple 0.013 0.018 0.015 0.026 0.011 0.012

Disturbed 0.021 0.021 0.024 0.011 0.020 0.036

Via-point 0.015 0.016 0.026 0.026 0.018 0.016

Reversal 0.019 0.015 0.016 0.011 0.021 0.021

https://doi.org/10.1371/journal.pone.0228726.t006
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Fig 8. Four features of simulated RC of MSs in all eight center-out ARMs with respect to the RCs’ feature variations in experiments. As

the subject #5 had five MSs, there exists five RCs (C1 to C5). The Features are Root Mean Square (RMS), Variance (VAR), Median Frequency

(FMD), and Mean Frequency (FMN) of RCs.

https://doi.org/10.1371/journal.pone.0228726.g008
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Furthermore, in combined movements, the desired regulatory input is planned based on

the position of the start, stop and via points, and hand tangential velocity. Also, this desired

regulatory state is corrected according to the sensory information of the movement. For this

purpose, it is necessary to allocate weights to each of the two decision criteria, which are the

distance from the via-point and the tangential velocity of the hand at this point. Then, accord-

ing to these weights, the motor planning level can make the right decision about the time

when the regulatory input of the second level changes its value from the value indicating the

via point to the value indicating the final state (Fig 4B).

Motor command production

On the other hand, due to the abundance of DoF in the internal space at the motor command

production level, that is the abundancy in the number of muscles compared to the DoF at the

joints, the production of motor commands using individual muscles makes the control process

complex and costly. Some researchers stated that the CNS would probably try to simplify the

control process and computations by reducing the dimension of controlled variables using a

modular organization [68–72]. In these frameworks, the introduced modules were composed

Fig 9. The variation of FC of RCs in the experiments (solid line) with respect to FC of simulated RC and average

RC A) in all eight center-out simple ARMs, B) in all combined ARMs in frontal plane that start from point 2.

https://doi.org/10.1371/journal.pone.0228726.g009

Table 7. The percentage of the mean similarity for the feature matrices of simulated RCs and the mean value of RCs of different iterations of the same motion in

the experiments.

Motion Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 All subjects

Simple 87.29 89.94 89.68 89.51 90.3 84.94 88.61±1.91

Disturbed 85.73 85.47 80.31 85.66 79.64 83.54 83.39±2.53

Via-point 85.27 84.64 85.57 85.61 85.89 86.29 85.54±0.51

Reversal 87.1 84.64 85.57 89.61 85.89 83.05 85.97±2.04

Mean 86.34±0.86 86.17±2.20 85.28±3.32 87.59±1.96 85.43±3.79 84.45±1.26

P-value 0.03 0.02 0.04 0.03 0.03 0.04

https://doi.org/10.1371/journal.pone.0228726.t007
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of internal models in the mosaic structure [66], dynamic responses [73], internal models in

each phase of the movement [7], eigen movements in the joint space [74], time-varying MSs

[37,38], time-invariant MSs [34,39], or extraction of MSs based on co-contraction and recipro-

cal activities of the muscles involved in the task [40]. In all of the mentioned studies, although

using modular organizations has reduced the complexity of movement control, it is still per-

formed in the framework of tracking the desired joint trajectory.

Some researchers have implemented a recurrent neural model of the spatiotemporal MSs

using the interaction of three core synergistic systems: a response generation system (R), a

selector system (S) and a control system (C) to generate movement [75]. Although they intro-

duced a hierarchical modular structure, they have used a simple 2- jointed arm model with 6

muscles. Also, they have modeled the spatiotemporal MSs with recurrent neural networks, and

controlled human arm movement by activating three pairs of agonist/antagonist muscles.

Another group of researchers [76] used iterative linear quadratic regulator (iLQR) method

to calculate optimal muscle activation required for a 2-link 6-muscle human arm moving in

the horizontal plane. They used a variant of NMF developed by d’Avella et al. [77] to extract

spatiotemporal synergies of the matrix of optimal activation level computed by the iLQR for a

given task. Although their model was 10-dimentional (2 joint angle, 2 joint velocity, 6 activa-

tion), they extracted 6 MSs (equal to the number of involved muscles), and stated that optimal

movements can be planned in a relatively low-dimensional space by time-shifting and linearly

combining a small number of synergies.

In this work we used time-invariant MSs to control ARMs. Therefore, the MSs constitute the

modular organization of the computational model. Here, the required motor command is pro-

duced by the NPC with respect to the present and future states of the system. These commands

are the RCs of MSs. Since in this work we are not concerned with the learning procedure, there-

fore, the structure of MSs does not change during the movements. Five pre-determined MSs

together with their RCs generate 15 muscular forces needed to perform the movement. This

shows how using the modular structure developed based on the idea of MSs can reduce the

DoF in the control space and simplifies the control process for the CNS. These results are in

agreement with [33,70,72,78]. Furthermore, the hand position in the frontal plane will change

due to the changes in the joint angles through applying the force of the muscles.

Motor execution

In fact, there are researches about ARMs in the horizontal plane under the constraints that

both the shoulder and elbow joints has only one DoF [26,79,80]. Therefore, 6 to 8 muscles are

involved in these studies. However, in a reaching activity in which 3 DoF of the shoulder joint

is use, at least 15 muscles are involved. In these studies, a support usually is used to compensate

for the arm weight. Therefore, in such cases the complexities in arm motion control due to

weight compensation and overcoming the torque caused by the gravity are not present.

Whereas in the presented model, the arm moves in the three dimensional space while the

hand is moving on the frontal plane (horizontal as well as vertical directions). Obviously, this

type of movement is more in conformity with arm motions during daily activities. Also, due to

the authors’ best of knowledge there has been no integrated model for calculating the moment

arm of these 15 muscles. While in the presented model, the above mentioned features have

been considered as the other innovations of this research.

Physiological evidence of the proposed model

It was shown that CNS assigns different values to different options and for the stimuli it

receives from the environment [81,82]. That is, the CNS executes motion with the highest
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accuracy and the lowest metabolic cost in terms of rewards and costs. Previous studies showed

that in the execution of movements what is minimized by the CNS is not the amount of effort

required by each muscle, but more exactly, it minimizes the amount of effort exerted by MSs

during movement [36]. This fact is well seen in the cost function equation of the NPC (Eq 10)

in the proposed model.

It is known that in ARM the subject tries to move his hand so that the distance to the target

point is minimized. Since ARM in daily activities is carried out as a ballistic and skillful move-

ment, the execution of these movements with tracking the desired trajectory leads to slow

motions (due to the continuous use of feedback data). Inspired by the equilibrium point

hypothesis, the time profile of set-points may be referred to as the equilibrium trajectory of the

system [83]. The regulatory motor planning of the proposed model by specifying some states

of the trajectory provides an elegant explanation of postural regulation, reported in [84].

Therefore, it is not required to track any information about the joint trajectory fed into the

controller as the desired input, and also the complex trajectory planning process can be

avoided.

Evidence showed that in the implementation of ARMS, neural activity in the primary

motor cortex (M1) encodes the movement parameters of direction [85–87], hand position,

velocity [88], acceleration [89] and reaching distance [90]. In addition, since proprioceptive

feedback is significantly delayed compared to visual feedback, human visual feedback plays an

important role in sensory feedback while performing fast ARM [5]. In the proposed model,

the regulatory nature of motor planning is based on visual feedback from the hand’s position.

In previous researches, movements were planned without considering the environmental

effects and sensory feedback, and only by optimizing a cost function [9–15,65,66]. As an (or

another) innovation in this study, and in agreement with evidence reported in [5,85–90], regu-

latory state of ARM is corrected considering the sensory information of the movement.

Recently, it has been shown that the computational mechanism in M1 can be justified due

to the optimal feedback control [91,92]. In this study, at the motor command production level,

the NPC uses the nature of the feedback control by minimizing output error and MSs’ effort

(Eq 10). Thus, the motor command is produced in the motor cortex and applied to the lower

levels for implementation. On the other hand, the cerebellum seems to monitor the movement

commands and adjusts the motor command to improve the accuracy of the movement [93].

Some researchers have shown that there are some internal models in the cerebellum, which are

used in the control of motion [56,94]. Thus, the states of the system can be predicted by con-

sidering motor command in a feedforward model and using state variables in the present and

the past time. This is completely consistent with the nonlinear predictive nature of the pro-

posed model in this study.

Conclusion

In this study, we introduced a novel computational model with a hierarchical and modular

organization, which is based on recruitment of MSs, for controlling ARM in the frontal planes.

To the best of authors’ knowledge this is the first computational model with these features that

interacts with the environment, i.e., it describes how the CNS rejects disturbances and controls

a combined task based on the control strategy applied for a simple task. The modular organiza-

tion is used to describe the recruitment of MSs. This organization can explain how the CNS

reduces the dimension of the control space in order to simplify motor control procedure.

Moreover, inspired by [3,4], we used a hierarchical organization with three levels of motor

planning, command production, and motor execution. However, we modified the function of

the planning level. In fact, we believe that for the ARM the CNS applies a regulatory and goal-
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directed approach, and therefore, at the level of motor planning it defines only the desired

body or limb states at the starting and final positions while the limb is interacting with the

environment (Fig 1A). This is a feature that distinguishes this model from other computational

models. Therefore, in this model the CNS tracks no desired and predefined trajectory in the

joint space. In other words, the joint trajectories during the movement are generated as a result

of the natural dynamics of the musculoskeletal system and therefore, the complex trajectory

planning procedure is avoided. Since there is no trajectory tracking, it is also possible to exe-

cute fast arm reaching motions. On the other hand, for the combined movements, the regula-

tory input is generated based on the visual and kinematic information in interaction with the

environment. At the motor command production level, an NPC determines the RCs of the

MSs, while it takes into account the nonlinear nature of the upper limb including the 15

muscles.

At the level of motor execution, a nonlinear model of the upper limb composed of 15 mus-

cles and three DoF in the shoulder joint and one DoF in the elbow joint with moment arms of

each muscle is considered in order to represent the performance of the ARMs in the frontal

plane, for the first time.

Using this proposed hierarchical and modular computational model, only five RCs of MSs

were controlled rather than controlling the 15 muscles individually. This models suggests that

possibly the CNS simplifies the control process by reducing the dimension of the control

space.

As the next step in our future works, we would like to modify this model and introduce the

learning procedure to it. Then, the augmented model will be used to understand the patterns

of synergy formation and recruitment during new task learning or re-learning (e.g., during

rehabilitation after stroke).
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