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Abstract: There is a growing demand for developing image sensor systems to aid fruit and vegetable
harvesting, and crop growth prediction in precision agriculture. In this paper, we present an
end-to-end optimization approach for the simultaneous design of optical filters and green pepper
segmentation neural networks. Our optimization method modeled the optical filter as one learnable
neural network layer and attached it to the subsequent camera spectral response (CSR) layer and
segmentation neural network for green pepper segmentation. We used not only the standard red–
green–blue output from the CSR layer but also the color-ratio maps as additional cues in the visible
wavelength and to augment the feature maps as the input for segmentation. We evaluated how
well our proposed color-ratio maps enhanced optical filter design methods in our collected dataset.
We find that our proposed method can yield a better performance than both an optical filter RGB
system without color-ratio maps and a raw RGB camera (without an optical filter) system. The
proposed learning-based framework can potentially build better image sensor systems for green
pepper segmentation.

Keywords: optical filter; color-ratio map; green pepper; segmentation; deep learning; precision
agriculture

1. Introduction

Improving the quality and production efficiency of the economic crop while aiding
the management and marketing strategy is one of the critical aims of precision agriculture.
Precision agriculture can provide useful information in the early stage to enable better
decision making on the management system. In recent years, computer vision and artificial
intelligence technology have developed to meet the growing demand for fast and accurate
grain crop production [1,2]. As reviewed by a previous study [3], machine learning
techniques have been widely used for the early and precise detection of biotic stress in the
crop, specifically for the detection of weeds, plant diseases, and insect pests.

Green pepper is one of the chief crops in Kochi Prefecture, which contributes to
approximately 11% of the total production in Japan. Therefore, there is a significant need
for using the latest precision agricultural technology to improve the production efficiency
of green pepper. Developing automated green pepper harvest and growth prediction
technology is essential for farmers to enhance their carriage efficiency and to aid their
marketing strategies. However, due to the green peppers and its leaves having the same
color, there remains a need for developing robust methods to recognize and segment green
pepper. Recently, a new sensor system [4] for the detection and localization of green pepper
has been proposed by utilizing multiple camera positions and viewing angles. Li et al. [5]
proposed a novel pose estimation algorithm for sweet pepper.
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Instead of independently optimizing the optical device and relevant image segmenta-
tion algorithm, we proposed the optical filter designing method for segmentation neural
networks in which the input is enhanced by color-ratio maps. The transmittance curve (TR
curve) of the optical filter can be treated as the weight of the neural network, and we can
simultaneously optimize both an optical element and green pepper segmentation module
by back-propagation. We illustrate the overview of our proposed method in Figure 1.
Recently, Yu et al. [6] proposed an end-to-end deep learning optimization algorithm to
search for the optimal TR curve of an optical filter in the smooth and non-negative space.
However, their method did not fully utilize all of the color-ratio maps from the R, G, and
B channels captured by the RGB camera. Historically, agricultural studies investigating
color ratios and their linear combinations have shown the effectiveness of distinguishing
between fruits and vegetables [7].
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Figure 1. Our proposed computational optics framework incorporates both optics and image segmentation algorithm
designs. Rather than optimizing these two parts separately and sequentially, the whole framework was treated as one
neural network and establishes a simultaneous end-to-end optimization framework. Explicitly, the first layer of the network
corresponds to the physical optical filter, the second layer of the network is related to RGB camera spectral response,
and all subsequent layers represent the segmentation algorithm. Inspired by previous research, instead of generating
red–green–blue (RGB) channels for the segmentation module, we augment the RGB channels using color-ratio maps to
exploit useful spectral information for green pepper segmentation. All of the parameters of the framework are optimized
based on segmentation loss on our hyperspectral dataset. Once the transmittance curve is optimized, we can fabricate the
corresponding optical filter using multilayer thin-film technology. The fabricated optical filter is mounted in front of the
camera lens, and the optimized segmentation network is integrated with the whole system.

In this study, we enhanced the method by adopting the color-ratio maps as input
for the segmentation neural network. Color is an important clue of an object’s surface
properties. The benefit of color-ratio maps is that it can help us to retrieve the adequate ratio
of three chromatics in chromaticity space to derive the optimal TR curve for a specific CSR.
In our segmentation module, a U-Net-like structure network [8] is utilized for extracting
the spatial features of the RGB images captured by the optimal TR curve of our designed
optical filter. After optimization, the designed optical filter can be implemented by optical
technology and is attached in front of the camera lens. The spectral property of the incident
light is changed by our designed optical filter.

The main contributions of our study conclude as follows:

• We developed the computational optics framework for co-design of an optical filter
and segmentation algorithm that can achieve a better image sensor system for green
pepper segmentation. The whole framework simultaneously optimizes the front-end
optical device (optical filter) and the back-end green pepper segmentation algorithm.
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• We introduced the color-ratio maps as additional input feature maps to improve the
green pepper segmentation results. The experimental results demonstrate the benefits
of the improved performance by color-ratio maps.

The rest of this paper is organized as follows. Section 2 presents the research works
related to our work. Section 3 presents the details of our proposed methods. Section 4
describes our green pepper dataset and experimental results. Lastly, Section 5 conclude
our presented work and our future work.

2. Related Work
2.1. Color Space

Color space is the fundamental research topic in color image processing and has
various computer vision applications. One of the major current focuses in the advanced
driving assistant system is to find an appropriate color space for the detection of traffic
lights. In their study, various color spaces were applied for their deep learning model,
and the experimental results showed that the RGB and normalized RGB color spaces [9]
achieved the best performance. In an earlier study, Kondo et al. [7] established utilizing the
color-ratio map to search the most suitable wavelength to distinguish fruits and leaves. In
precision agriculture, Zhao et al. [10] proposed using an adaptive RB chromatic aberration
map (ARB) based on an OHTA color space [11] and the sum of absolute transformed
difference feature in RGB camera to detect immature green citrus. Recently, a novel global
image enhancement method, Neural Curve layers [12], was developed by exploiting global
image adjustment curves in three different colors spaces, e.g., CIELLab, HSV, and RGB.

2.2. Application of Optical Filter

The color filter array (CFA) or multispectral filter array [13] plays an essential role
in acquiring the color information or spectral information in the RGB camera and multi-
spectral camera. One of the early and intuitive studies of the optical filter is filter-wheel
camera [14]. A series of special optical filters are installed in the rotating filter wheel, where
each optical filter can be placed in the optical path of a monochrome camera by rotating the
filter wheel. A complete multispectral image is constructed by multiple exposures for dif-
ferent optical filters at a time. Inspired by the CFA in the RGB camera, a multispectral filter
array approach was proposed in both academic and industrial areas [15]. Lapray et al. [16]
reported a detailed study of the snapshot multispectral imaging and the analysis of spec-
tral filter array. In the real application, Nakauchi [17] proposed a data-driven selection
algorithm of a set of bandpass optical filters for ice detection using hyperspectral imaging.
They implemented their proposed optical filter by installing two bandpass filters with a
near-infrared camera. Another important application of spectral optical filter array is skin
oxygenation measurement for medical monitor and diagnosis [18]. Recently, Ono proposed
an innovative multi-spectral imaging system using a polarization camera that captures
nine bands at once [19].

2.3. Computational Optics

Computational optics, which can be interpreted as jointly optimization optics elements
(i.e., Bayer color filter, lenses, and optical filters), image processing, and computer vision
task, have generated considerable research interest [20,21]. Chang et al. [22] proposed the
end-to-end optimization paradigm by combining a differentiable optical image formation
layer and a depth estimation network for jointly optimizing both camera lens and neural
network weights. Inspired by the recent deep optics approach, A. Metzler et al. [23]
developed an end-to-end method to jointly optimize the point spread function of the custom
diffractive optical element (DOE) and the deep neural network for high-dynamic-range
imaging. Nie et al. [24] reported the relationship between the 1× 1 convolution operation
and the camera spectral response (CSR) function. They developed a data-driven method
to design a camera spectral filter array for hyperspectral reconstruction. Zou et al. [25]
proposed the CSR-Net, which can effectively design the optimal CSR to achieve high
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classification accuracy with limited image bands. A mathematical approach [26] to improve
the color measurement of the camera was developed by designing the spectral sensitivity
of an optical filter. Their study demonstrated a numerical computation method for optical
filter design based on both the Luther condition and the Vora-Value.

3. Proposed Method

In this section, we elaborate on our proposed method. We first introduce the filtered
RGB camera module. Then, we report the green pepper segmentation module. Lastly, we
describe the loss function and physical constraint.

3.1. Filtered RGB Camera Module

As illustrated in Figure 1, our proposed filtered RGB camera module consists of two
major parts: (1) a differentiable optical filter layer, in which the trained weight is the
transmittance curve of the optical filter, that can take in radiance as input and a modified
spectral radiance as output; (2) the frozen weights of a convolutional layer with three filters
representing the camera spectral response function of the Bayer color filter array.

3.1.1. Optical Filter Layer

Similar to the photographic filter (e.g., UV filter and ND filter), the designed optical
filter is mounted directly onto the camera lens. Hence, the spectral information of the
incident light at different wavelengths is selectively filtered by the TR curve of the optical
filter. We can describe the wavelength-wise product as follows:

L(x, y, λ) = R(x, y, λ) ◦ T(λ), (1)

where the R(x, y, λ) denotes the radiance data in the captured scenes, T(λ) represents the
transmittance curve of the optical filter, and the L(x, y, λ) represents the output radiance
data of the designed optical filter, respectively. The ranges of x and y are 1 ≤ x ≤W and
1 ≤ y ≤ H, where W and H represent the width and height, respectively, of the captured
image in the spatial domain. According to Equation (1), we found the similarity between
the depth-wise convolution layer without bias and the TR curve of the optical filter. The
depth-wise convolution layer was proposed in the Xeption network structure [27], in which
the purpose is to reduce the computation resources. By utilizing the depth-wise convolution
layer without bias, the TR curve of the optical filter can be regarded as one layer of the
whole neural network structure. One feature of the TR curve is the spatially invariant,
i.e., it only works in the spectral dimension and keeps the same transmittance across the
spatial dimension in the captured radiance R(x, y, λ). Due to the above feature of the TR
curve, we chose the 1× 1 as the kernel size of the depth-wise convolution kernel. Each
weight in the depth-wise convolution kernel only works on the corresponding wavelength,
which selectively transmits the input incident light. Additionally, the filter keeps the same
weights across all of the spatial domains.

3.1.2. CSR Layer

Considering the output radiance data L(x, y, λ) at position (x, y), the captured inten-
sity by a fabricated image sensor equipped with CFA is calculated by

Pk(x, y) =
∫

λ
Ck(λ)L(x, y, λ)dλ, k = R, G, B (2)

where λ denotes the wavelength and Ck is the corresponded CSR function of the CFA, where
k denotes the red, green, and blue channels. Pk(x, y) is the pixel intensity of the captured
scenes. Essentially, we can discretely formulate the above equation by the following
equation:

Pk(x, y) =
N

∑
i=1

Ck(λi)L(x, y, λi), k = R, G, B (3)
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where the CSR function is represented by the vector form of Ck(λi) = (C(λ1), C(λ2), C(λ3),
· · · , C(λN)) at different sampled wavelength and N represents the total number of the
spectral bands. As reported by previous research [24], the CSR function can be represented
by three kernels with weights of 1× 1 convolutional layer. Consequently, Pk(x, y) can be
calculated by the feature map generated by the 1× 1 convolution layer with three kernels.
In our approach, the simulated image pixel intensity is determined by three factors, i.e.,
the TR curve of the optical filter, the CSR function of specific CFA, and the radiance of
the captured scenes. To account for specular highlights and dark current in the simulated
RGB image, we normalized the simulated sensor image as the following Equation (4). The
actual values for min and max are determined from the training dataset. We add a small
number ε to avoid the division by zero in the color-ratio maps introduced in the following
subsection. In our experiment, through trial and error, we set ε = 0.01.

Pk(x, y) =
Pk(x, y)−min

max−min
+ ε k = R, G, B (4)

We presume that the camera has a linear response function, which commonly clips
the simulated image sensor RGB value to emulate sensor saturation using the following
equation.

f (c) =


0, if c < 0,
c, if 0 ≤ c ≤ 1,
1, if c > 1.

(5)

3.2. Color-Ratio Maps

Unlike previous research [6] to utilize only generated RGB images, we augment the
simulated RGB image by combing through different color-ratio maps. The simulated RGB
sensor images are determined using the three main chromatics: red (R), green (G), and blue
(B). Inspired by previous research that the color component ratio could help to distinguish
fruits and leaves [7],we utilize the color-ratio maps as additional color cues to help the
whole framework search the optimal TR curve of the optical filter. To solve the numerous
illumination condition in the green pepper grove, we utilized the normalized RGB color
maps [28] in our augment color-ratio map. The normalized RGB color-ratio maps are
expressed as d1, d2, and d3. They can be computed by the following equations:

d1 =
G

R + G + B

d2 =
R

R + G + B

d3 =
B

R + G + B

(6)

To efficiently derive the adequate transmittance curve of the optical filter, we applied
multiple color-ratio maps. Our proposed multiple color-ratio maps are shown in Equation (7).
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

d4 =
G

(G + B)

d5 =
G

(G + R)

d6 =
B

(B + R)

d7 =
B

(G + B)

d8 =
R

(G + R)

d9 =
R

(R + B)

(7)

We extract features from multiple input (RGB + color-ratio maps) to exploit valuable
information from different color ratios. Specifically, we concatenate the simulated RGB
sensor image and their color-ratio maps as a tensor. We send it to the segmentation module
that takes the RGB sensor image with the color-ratio maps as input to generate the final
segmentation result.

3.3. Segmentation Module

For green pepper segmentation, we attach the segmentation module to our filtered
RGB camera module. Note that the principal goal of our research is not to propose the
state-of-the-art neural network structure for green pepper segmentation but to explore
the relative benefit of color-ratio maps enhancement and co-design optical filter with
segmentation module. In particular, we adopt the U-Net-like structure [8] in this work
because it is commonly used for pixel-wise estimation (e.g., image segmentation and
image-to-image translation) and great generalization performance on various tasks.

Table 1 summarizes the overall structure of the segmentation module; followed by
the filtered RGB camera module and the segmentation module accepts tensors of size
H×W × 12; and lastly, yields the corresponding green pepper segmentation results of size
H ×W × 1. In the encoder part, the basic block is a convolution layer followed by a batch
normalization layer [29] and rectified linear unit activation function [30]. We can express the
building block in the segmentation module formed as follows: (Conv− BN − ReLU)× 2.
The spatial size of the feature maps in the encoder part is reduced by the max-pooling
layer. In the decoder part, the transposed convolution layer [31] is utilized to increase
the spatial size of the feature maps while reducing the number of feature maps. In the
end, a 1× 1 convolution layer handles the feature maps to generate the final green pepper
segmentation map. The skip connection design lets the feature maps in the encoder part
directly share with the decoder part to avoid losing essential spatial information. In our
experiment, the only difference for the segmentation module in each model is the number
of input channels. Unlike the color-ratio map enhancement methods, the model without
color-ratio maps only needs three channels of input.

3.4. Loss Function and Physical Constraint

As illustrated in Figure 1, we simultaneously optimize the TR curve and the segmen-
tation module via the end-to-end system. The total loss function can be described as

Ltotal = Lbce + ηLsmooth (8)

where Lbce denotes the binary cross-entropy loss for green pepper segmentation. It is
defined as

Lbce = −
(H,W)

∑
(x,y)

[G(x, y) log P(x, y) + (1− G(x, y)) log(1− P(x, y))] (9)
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where (x, y) is the pixel coordinates and (H, W) is image size: height and width. G(x, y)
and P(x, y) denote the pixel values of the ground truth and the predicted segmentation
probability map, respectively.

To aid the physical requirements of the TR curve in the optical filter fabrication, we
introduce specific physical constraints for optical filter layer. As the filtered incident light
should be positive, all of the weights in the TR curve are nonnegative. Moreover, from
the manufacturing perspective, the TR curve of the designed optical filter should avoid
arbitrary and sudden variation between adjoining wavelengths. Hence, we proposed the
physical constraint that can satisfy nonnegative and smooth features as follows:

Lsmooth = ‖GW‖2
2 s.t. W ≥ 0 (10)

where G denotes the second derivative matrix for optical filter layer and W represents the
weights of the 1× 1 depth-wise convolution layer. The parameter η controls the smoothness
of the TR curve for the optical filter. Due to the nonnegative property of the optical filter
weights, we enforced the nonnegative W ≥ 0 to the depth-wise convolution kernel of
optical filter layer in the backward training procedure. In our experimental setting, we
verified the different smoothness parameter η, e.g., η = 0.1, η = 0.01, and η = 0.001. By
explicitly modeling the TR curve of the optical filter with the specific physical constraint,
our proposed optical filter layer can represent the property of a physical device in the real
world. The actual optical filter is fabricated to have the same transmittance curve as the
learned weights in a further study.

Table 1. The “U-Net-like”-based segmentation module.

U-Net-Like Encoder U-Net-Like Decoder

Layer Details Size Layer Details Size

input R,G,B feature map+
color-ratio map

256 × 256
× 12 upsampling1 2 × 2 upsample of block5

concatenate with block4
32 × 32
× 1024

block1 {conv(3 × 3, pad = 1) + Batch Norm
ReLU} × 2

256 × 256
× 64 block6_1 {conv(3 × 3, pad = 1) + Batch Norm

ReLU} × 2
32 × 32
× 256

pool1 2 × 2 max pool; stride 2 128 × 128
× 64 upsampling2 2 × 2 upsample of block6

concatenate with block3
64 × 64
× 512

block2 {conv(3 × 3, pad = 1) + Batch Norm
ReLU} × 2

128 × 128
× 128 block7 {conv(3 × 3, pad = 1) + Batch Norm

ReLU} × 2
64 × 64
× 128

pool2 2 × 2 max pool; stride 2 64 × 64
× 128 upsampling3 2 × 2 upsample of block7

concatenate with block2
128 × 128
× 256

block3 {conv(3 × 3, pad = 1) + Batch Norm
ReLU} × 2

64 × 64
× 256 block8 {conv(3 × 3, pad = 1) + Batch Norm

ReLU}× 2
128 × 128
× 64

pool3 2 × 2 max pool; stride 2 32 × 32
× 256 upsampling4 2 × 2 upsample of block8

concatenate with block1
256 × 256
× 128

block4 {conv(3 × 3, pad = 1) + Batch Norm
ReLU} × 2

32 × 32
× 512 block9 {conv(3 × 3, pad = 1) + Batch Norm

ReLU} × 2
256 × 256
× 64

pool4 2 × 2 max pool; stride 2 16 × 16
× 512 outconv 1 × 1 × 1 256 × 256

× 1

block5 {conv(3 × 3, pad = 1) + Batch Norm
ReLU} × 2

16 × 16
× 512

4. Experimental Results and Analysis

To clearly explain our proposed method and to determine the suitable parameters
in the design space, we conduct several experiments and reports in this section. In this
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section, we report the details of our experimental results and identify the essential parts
that contribute to the overall system.

4.1. Hyperspectral Dataset

Up until now, there has been no public green pepper dataset in the research community
and on the Internet. Consequently, to construct a green pepper dataset for our research, we
collected hyperspectral images at Next Generation Green House of the Kochi University of
Technology and Kochi Agriculture Center, Kochi Prefecture, Japan. We selected a portable
push-broom hyperspectral camera (Specim IQ, Specim Ltd., Oulu, Finland) [32] as our
data acquisition device. Hyperspectral images of green pepper were collected four times
during May 2021 under sunny and cloudy weather conditions. The Specim IQ camera
was set to Default Recording Mode(without any processing). In our workflow for image
recording progress, we fixed the camera on the tripod and adjusted the camera position and
white reference plate position. After that, we manually changed the camera focus and the
integration time according to the captured scene. To accurately measure the illumination
conditions in the captured scene, we put a standard white reference plate next to our target
green pepper in the camera field of view. Sample images are illustrated in Figure 2.

Our hyperspectral camera can record 512× 512 pixels image, with 204 spectral bands
ranging from 400 nm to 1000 nm. The recording time of our hyperspectral camera for one
image is from 40 s to 2 min in the different captured scenes. Compared with the laboratory
illumination setting, natural illumination is always inconstant. On the one hand, various
factors can affect the spectral power distribution of the illumination, e.g., climate and solar
elevation [33]. On the other hand, mutual reflections between different surfaces, occlusions
also lead to illumination variation in the natural environment [34]. In the end, we rendered
the hyperspectral image to the sRGB image and made the ground truth for green pepper
segmentation using the annotation tool LabelMe [35].

(a) (b)

Figure 2. A photograph of the next-generation green house in Kochi University of Technology
(KUT), and a sample sRGB image and the ground truth. (a) The next-generation green house in KUT.
(b) Sample sRGB image and ground truth.

4.2. Experimental Settings

As mentioned above, we collected a green pepper hyperspectral dataset in our univer-
sity green house. In total, we obtained 133 hyperspectral images. We randomly selected
101 images as our training set, 16 images as our validation set and 16 images as our test
set. In our experiment, we apply the random crop 256× 256 image patch from the original
hyperspectral image and random horizontal flip to augment the dataset size of our training
dataset. As a result, we obtained 7116 training patches for our experiment. Due to the
spectral response of our camera being in the visible wavelength, we only used the hyper-
spectral image from 400 nm to 700 nm. Our experiment was conducted on an NVIDIA
Tesla V100 GPU (NVIDIA Corp., Santa Clara, CA, USA) with the deep learning framework
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PyTorch [36]. The batch size was set to 32. The Adam optimizer [37] with beginning
learning rate of 0.001 and β = 0.5, β = 0.999 was used in our experiment. We dynamic
changed the learning rate by monitoring the performance on the validation set. The total
epoch was set to 50, and the best model in the validation set was evaluated on the test
dataset. The CSR of Lucid Triton 5.0 MP Model [38] was used in our experiment.

4.3. Experimental Results

In this section, we compare the performance of different settings of our proposed
method with the optical filter (without the color-ratio map) and no optical filter. After that,
we illustrate the TR curve of the different settings of our proposed method. Lastly, we
evaluate the effectiveness of the color-ratio maps.

4.3.1. Evaluation Results

We refer to our proposed method as OF-CRM, that in Yu et al. [6] as OF(Optical Filter),
and no optical filter setting as NF(No Filter). To evaluate and compare different setting
approaches, we compute the mean intersection over union (mIoU) and F1 measure as the
following equations.

mIoU =
1

Nclass
∑

i

pii
ti + ∑j pij − pii

(11)

F1 = 2× precision× recall
precision + recall

(12)

where pij is the number of pixels of class i predicted to belong to class j, there are Nclass
different classes in total, and ti = ∑j pij is the total number of pixels of class i. In our
experiment, the number of classes is set to 2 (pepper or non-pepper). We evaluated different
settings of max value in the normalization step, which is used to simulate camera saturation,
and smoothness value η, which constraint transmittance curve smoothness. Table 2 shows
the results of different maximum values and smoothness η settings. Empirically, we find
that the proposed model with η = 0.001 and max = 4.470 achieves the best performance in
all of the settings. We also demonstrate the segmentation results in Figure 3.

Remarkably, we notice that both the color-ratio maps and smoothness have influenced
the shape of the designed TR curve. Looking at Figure 4, it is apparent that the optimal TR
curve of η = 0.1, η = 0.01 turns out to be the multiple bandpass optical filter. Intuitively,
there is a clear trend of increasing η when generating more clear bandpass wavelength with
the color-ratio map. Upon closer inspection of Figure 4, the transmittance in wavelength
around 510 nm and 650 nm is almost zero in all settings, which is not helpful for green
pepper segmentation.

Table 2. Quantitative comparison of different models. Our model outperforms the optical filter
design without color-ratio maps and no filter settings in the test dataset. The minimum value in
Equation (4) is the same in all settings (min = 0.008).

Models Smoothness Max mIoU F1

OF-CRM

η = 0.001
1.725 0.877 0.864
2.615 0.878 0.874
4.470 0.899 0.891

η = 0.01
1.725 0.884 0.875
2.615 0.866 0.853
4.470 0.887 0.869

η = 0.1
1.725 0.877 0.862
2.615 0.874 0.862
4.470 0.877 0.864
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Table 2. Cont.

Models Smoothness Max mIoU F1

OF [6]

η = 0.001
1.725 0.875 0.858
2.615 0.870 0.855
4.470 0.869 0.846

η = 0.01
1.725 0.850 0.823
2.615 0.865 0.849
4.470 0.877 0.862

η = 0.1
1.725 0.864 0.841
2.615 0.868 0.845
4.470 0.852 0.822

NF N/A
1.725 0.867 0.853
2.615 0.857 0.832
4.470 0.823 0.815

In general, most plants look green in our human eyes due to chlorophyll, which is
vital for photosynthesis. There are two types of chlorophyll in the land plants, chlorophyll
a and b. As reported in the previous study [39], they have different absorption spectrums.
For example, the absorption peak of chlorophyll b is just below 650 nm. Interestingly, we
can observe that the TR curves of all models are suppressed at wavelengths just below
650 nm. It can thus be suggested that the content of chlorophyll a and b is different in green
pepper and leaves. The present study raises the possibility that our optical filter has found
these chlorophyll ratio differences in the same green color. This difference appears in the
red channel, and it has been proven to play an essential role in distinguishing green pepper
and leaves, as we review in the following subsection. However, until now, we have not
yet found related studies to support this hypothesis, which supports the chlorophyll ratio
difference between green pepper and leaves. A further study with more focus on the ratio
of chlorophyll a and b is therefore suggested.

4.3.2. Effectiveness of Color-Ratio Maps

To empirically analyze how our proposed color-ratio maps work, we demonstrate the
color-ratio maps on the test data. As shown in Figure 5, it is apparent that, in the color-ratio
map of d5 and d8, the green pepper is more distinguished. In the color-ratio map d5, the
green pepper is highlighted. On the contrary, in d8, the green pepper looks dark than other
parts of that color-ratio map. However, some of leaves also look dark, which is similar to
the green pepper.
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(a) (b) (c) (d) (e)

Figure 3. Segmentation results of each model in the test dataset. We only illustrate the best perfor-
mance of each setting. Each columns show (a) Test RGB images. (b) Corresponding label. (c) The
best model in OF-CRM with smoothness η = 0.001 and max value max = 4.470. (d) The best model
in OF with smoothness η = 0.001 and max value max = 1.725. (e) The best model in the NF setting
with max value max = 1.725.
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Figure 4. The TR curves of each model is illustrated in the above image. The top row shows the proposed model (with CRM), and the bottom row shows the optical filter design without
CRM. In each η setting, we only demonstrate the best model among different max values. (a) OF-CRM with smoothness η = 0.1 and max value max = 4.470. (b) OF-CRM with smoothness
η = 0.01 and max value max = 1.725. (c) OF-CRM with smoothness η = 0.01 and max value max = 1.725. (d) OF with smoothness η = 0.1 and max value max = 2.615. (e) OF with
smoothness η = 0.01 and max value max = 4.470. (f) OF with smoothness η = 0.001 and max value max = 1.725.
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Figure 5. The above figures illustrate color-ratio maps of each test data. The first column shows five
different RGB images. The second column to the tenth column shows the different color-ratio maps
defined in Equations (6) and (7) for each RGB image in the same row. All color-ratio maps are shown
in the same range [0, 1].

To analyze the importance of each input feature, especially color-ratio maps, we adopted
the idea of the sum of absolute values of kernels used in filter pruning [40]. In Figure 6a,
the distribution of each input feature is demonstrated by the boxplot. As can be seen from
the figure, the distribution of the green channel and its corresponding color-ratio maps have
slightly larger values than the other channels. However, since the differences are small, we
introduced the sum of the absolute values of the kernels into the analysis to interpret the
importance of each input feature. Figure 6b illustrates the sum of the absolute values of all
kernels for input features, including R, G, B, and all color ratio maps. It seems that the red
channel, d2, d6, and d9 are essential inputs for the segmentation module. It turns out that
the ratio of the red channel to other channels can provide more meaningful information than
other color-ratio maps. A critical hypothesis that emerged from the figure is the red channel is
vital for green pepper segmentation. These results provide further support for the hypothesis
that the red channel is vital for green pepper segmentation as mentioned in the previous
part. We also illustrate the sum of the absolute value of each kernel for each input feature in
Figure 7. As we know, each kernel in the convolutional layer pays attention to different input
features. The fact that some kernels show large weights for CRM features indicates that the
CRM features play an important role in distinguishing green peppers from leaves.

R G B d1 d2 d3 d4 d5 d6 d7 d8 d9

input feature
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Figure 6. (a) The boxplot of the distribution of the input tensor of test dataset for OF-CRM (η = 0.001, 4.470). (b) Sum of
absolute value of all kernels for the input features of a segmentation module in OF-CRM (η = 0.001, 4.470). R channel and
d2 = R/(R + G + B), d6 = B/(B + R), and d9 = R/(B + R) are more important than the other features and channels.
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Figure 7. The sum of the absolute values of each input channel for each kernel. The horizontal axis represents the different
input features of the segmentation module, R, G, B, d1, d2, d3, d4, d5, d6, d7, d8, and d9 from left to right. The vertical axis of
all subfigures are shown in the same range [0, 0.5]. The graph above shows that the color-ratio maps play an essential role,
with some kernels showing larger in the color-ratio maps than in the RGB feature map.

5. Conclusions

In this paper, we present an end-to-end optimization approach for the simultaneous
design of optical filters and green pepper segmentation neural networks. We aim to
leverage an end-to-end deep learning framework to find the optimal TR curve for green
pepper segmentation. To accomplish this purpose, we model the critical components inside
our end-to-end framework, including the TR curve of the optical filter, CSR of the RGB
camera, and our proposed color-ratio maps. Throughout our experiments, we demonstrate
the proposed method achieved the best performance in the mIoU and F1 measure.

As opposed to any deep learning-based methods that operate directly on a hyperspec-
tral image or an RGB image, our proposed approach has the ability to optimize both the
TR curve of an optical element and the weight of the segmentation module simultaneously.
Particularly, the design of TR curve of an optical element is enhanced by the color-ratio
maps, which is useful for exploiting the spectral information. This study has been one of
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the first attempts to thoroughly examine the enhancement of color-ratio maps for optical
filter optimization. Our future study fabricates the optical filter according to the designed
weights and evaluates its performance in a real application scenario.
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