
RESEARCH ARTICLE

Privacy-preserving aggregation of personal

health data streams

Jong Wook KimID
1*, Beakcheol Jang1, Hoon Yoo2*

1 Department of Computer Science, Sangmyung University, Seoul, Korea, 2 Department of Electronic

Engineering, Sangmyung University, Seoul, Korea

* jkim@smu.ac.kr (JWK); hunie@smu.ac.kr (HY)

Abstract

Recently, as the paradigm of medical services has shifted from treatment to prevention,

there is a growing interest in smart healthcare that can provide users with healthcare ser-

vices anywhere, at any time, using information and communications technologies. With the

development of the smart healthcare industry, there is a growing need for collecting large-

scale personal health data to exploit the knowledge obtained through analyzing them for

improving the smart healthcare services. Although such a considerable amount of health

data can be a valuable asset to the smart healthcare fields, they may cause serious privacy

problems if sensitive information of an individual user is leaked to outside users. Therefore,

most individuals are reluctant to provide their health data to smart healthcare service provid-

ers for data analysis and utilization purpose, which is the biggest challenge in smart health-

care fields. Thus, in this paper, we develop a novel mechanism for privacy-preserving

collection of personal health data streams that is characterized as temporal data collected at

fixed intervals by leveraging local differential privacy (LDP). In particular, with the proposed

approach, a data contributor uses a given privacy budget of LDP to report a small amount

of salient data, which are extracted from an entire health data stream, to a data collector.

Then, a data collector can effectively reconstruct a health data stream based on the noisy

salient data received from a data contributor. Experimental results demonstrate that the pro-

posed approach provides significant accuracy gains over straightforward solutions to this

problem.

Introduction

In recent years, with the development of information and communications technologies,

smart healthcare services, focused on disease prevention and health promotion by continu-

ously monitoring users’ health and providing real-time customized service, are receiving sig-

nificant attention. The basic structure of smart healthcare is that service providers collect data

generated by individual users in their daily lives and by medical institutions about patients

and then provide customized advice and treatment to users based on the knowledge obtained

through analyzing a large amount of collected data. With a rapidly aging society, increased

medical burden due to chronic illnesses and increased interest in health due to abnormal
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climate conditions around the world, the demand for smart healthcare service is expected to

continue to increase in the future.

Along with the development of the internet of things (IoT) technology, wearable devices

based on IoT are being actively developed and used. In particular, the technology develop-

ment of wearable devices that can continuously monitor human activity and bio-signals

using sensors has played a major role in the development of the smart healthcare industry.

For example, with the wide spread use of wearable devices having various bio sensors, it is

possible to easily measure and monitor diverse health data such as blood glucose levels,

blood pressure, oxygen saturation, heart rate, and body temperature of individuals. This, in

turn, makes it possible to provide an alarm service, notifying in advance the risk of disease

outbreak to users by collecting and analyzing vast amount of health data based on individual

activities of daily living.

The development of the smart healthcare industry brings forth a need for collecting large-

scale personal health data in order to leverage the knowledge obtained through analyzing such

data for improving smart healthcare services. For example, Apple Health [1], Google Fit [2],

and Samsung S-Health [3] aggregate vast amounts of health-related data using smartphones

and wearable devices such as a smartwatch and smartband. A telecare medicine information

system, which is widely used to provide remote medical care to a patient [4], continuously

monitors and collects the patient’s health data through various physiological signal monitoring

systems.

Serious concerns of data privacy have been raised in many areas over the past few years.

One of the most representative areas is that of privacy in a cloud environment. In this environ-

ment, user data are typically stored on cloud servers, which are often outside of a trusted

domain [5]. Even though a large collection of health data is a valuable asset to the smart health-

care field, similar data privacy concerns are raised. That is, indiscriminate collection of per-

sonal health data can cause significant privacy issues; sensitive information of individual users

can be deduced by tracking and analyzing health data. Hence, most users do not agree to their

health data being collected for the purposes of data analysis and utilization. This presents a

major obstacle for the development of smart healthcare services.

Fig 1 illustrates the motivational scenario of this research where a smart healthcare service

provider wants to collect and analyze a large volume of health data to obtain heart rate changes

of individuals with desk jobs with the aim of enhancing the quality of healthcare service cus-

tomized for them. However, considering that individual are reluctant to provide their sensitive

health data, to support such a service provider’s requirement, it is essential to develop methods

capable of collecting individuals’ health data, while preserving their privacy.

The goal in this paper is to develop a novel mechanism for privacy-preserving collection of

individual health data streams generated from smart healthcare sensors by leveraging local dif-

ferential privacy (LDP). LDP is a state-of-the-art approach that is used to protect individual

privacy during the process of data collection [6]. The basic idea of the LDP is that a data con-

tributor adds carefully designed random noises to the original data and sends the noisy data to

a data collector, guaranteeing that the data contributor’s original data is not leaked during the

data collection process. With the growing popularity of LDP, there have been extensive studies

to leverage LDP for collecting individuals’ sensitive data, generated in diverse application

domains, in a privacy-preserving manner [7–16]. However, these existing approaches focus on

the collection of individual data represented as bit-strings where each bit corresponds to either

0 or 1, and thus they are not applicable for collecting individual health data that is usually rep-

resented as a stream (or time series). Thus, in this paper, we propose a novel mechanism for

collecting individual health data, which is characterized as temporal data collected at fixed

intervals, by leveraging LDP.

Privacy-preserving aggregation of personal health data streams
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Related work

Recently, LDP has begun to attract attention as a promising way of guaranteeing individual

privacy in the process of data collection. RAPPOR, which is one of the most representative

data collection mechanisms based on LDA, was implemented in Google Chrome to collect

user data [6]. Fanti et al. introduced a new algorithm to estimate the joint distribution between

unknown variables by extending RAPPOR [7]. Apple has also leveraged LDP to collect user

data, including new words, emojis, deeplinks, and lookup hints inside notes [8]. Recently, the

differential privacy team in Apple introduced details of LDP deployment, which enabled the

collection of large scale user data, including emojis, health data, and media playback prefer-

ences [9]. Ding et al. presented new LDP mechanisms for the repeated collection of counter

data, which has been deloyed with Microsoft Windows Insiders [10]. LDP can be used for

diverse application domains to collect user data while preserving privacy. [11–13] proposed a

method for estimating heavy hitters over set-valued data. The proposed method in [12] con-

sists of two phases: a candidate set selection phase that uses a portion of the privacy budget,

and a refining phase that selects heavy hitters from the candidate set by leveraging the remain-

ing privacy budget. In [13], LDP protocols to find out heavy hitters in a large domain was pre-

sented, where user are divided into groups, and each group reports a prefix of her value. [14]

proposed the optimized local hashing protocol that can provides better accuracy than RAP-

POR. Harmony, an advanced data analytics tool, based on LDP, supports the collection and

analysis of user data in Samsung smartphones [15]. Kim et al. presented a method to estimate

the density of a specific location in an indoor space by leveraging LDP [16]. [17] introduced a

new technique for LDP to collect and track evolving local data, making it possible to maintain

up-to-date statistics over time. In [18], the method for releasing low-order (2-way and 3-way)

marginal statistic on population under LDP was developed.

With a growing need to share big data containing information regarding an individual

entity, privacy-preserving data publishing (PPDP) has been extensively studied to share big

data containing personal information for public use, while preserving the privacy of the indi-

vidual. Various privacy models have been studied, including k-anonymity [19], l-diversity

[20], and t-closeness [21]. Accordingly, research on privacy preserving data publishing meth-

ods for electronic health data has been actively conducted during the past decade. Kim et al.
presented a delay-free method for publishing electronic health data streams, while preserving

the privacy [22]. In [23], a utility-preserving anonymization method for PPDP was proposed.

Fig 1. A motivational example.

https://doi.org/10.1371/journal.pone.0207639.g001
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The proposed method in [23] preserves the utility of health data by inserting counterfeit record

and creating catalog of the counterfeit records in the process of data anonymization. [24] pre-

sented the cost model that quantifies the trade-off between privacy and data utility in health

data publishing. A comprehensive survey of privacy-preserving health data publishing can be

found in [25].

Background: Local differential privacy

Unlike differential privacy (DP) which was designed for the data-sharing purpose [26–33],

LDP is the state-of-the-art approach to protect individual privacy in the process of data collec-

tion. The basic concept of LDP is that a data contributor adds carefully designed noises to her/

his original data and sends the noisy data to a data collector, guaranteeing that the data con-

tributor’s original data is not exposed to the outside of the data contributor devices. LDP is for-

mally defined as follows: A randomized algorithm A satisfies �-differential privacy, if and only

if for (1) all pairs of data contributor’s data vi and vj, and (2) any output O of A, the following

equation holds [6]:

Pr½AðviÞ ¼ O�
Pr½AðvjÞ ¼ O�

� e�

That is, regardless of the data that a data collector receives from a data contributor, the collec-

tor is not possible to speculate with high confidence whether the contributor has sent vi or vj.
The privacy budget, �, controls the level of privacy such that smaller values of � enforce a

stronger privacy guarantee, adding larger noises to the original data, while larger values of �

provide a weaker privacy guarantee, adding smaller noises to the original data. LDP follows

the sequential composition property of differential privacy [12]. That is, given an available pri-

vacy budget �, the data contributor can partition it into w smaller privacy budgets, �1, �2, � � �,

�w, such that � ¼
Pw

i¼1
�i and use each smaller privacy budget to report his/her local data to a

data collector.

Problem definition and straightforward solution

Health data generated from wearable health devices are generally characterized as temporal

data collected at fixed intervals. For example, the blue plot in Fig 2 represents the heart rate

data of a person collected at fixed intervals over a certain period of time. Formally, let U = {u1,

u2, � � �, uw} be the set of users (i.e., data contributors). Here, w corresponds to the total number

of users. Then, the health data stream of the i-th user, ui, can be represented as a sequence (or

time series) si = ((t1, x1), (t2, x2), � � �, (tn, xn)) of length n. Here, (td, xd) represents the d-th point

in the stream where xd denotes the value measured by the wearable health device at timestamp,

Fig 2. An example of salient points extracted from a given sequence. The blue curve represents the sequence of original health data. The point at which each red line

parallel to the y-axis intersects the blue curve corresponds to a salient point.

https://doi.org/10.1371/journal.pone.0207639.g002
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td. We further assume that xd, which is measured by the specific sensor in a wearable health

device, is within the predefined range [xmin, xmax].

In this paper, we focus on the scenario of collecting health data streams measured at the

same fixed intervals during the same period (e.g., collecting heart rates measured every minute

during business hours) using LDP. In this case, a straightforward solution is that each user,

ui 2 U, partitions the privacy budget, �, into n smaller privacy budgets, �n, and uses each smaller

privacy budget to generate a noisy sequence s0i ¼ ððt1; x
0
1
Þ; ðt2; x02Þ; � � � ; ðtn; x

0
nÞÞ. Here, x0d is

obtained using the Laplace mechanism as follows:

x0d ¼ xd þ Lapð
Ds
�=n
Þ:

Note that Δs corresponds to the predefined sensitivity that is computed as Δs = xmax − xmin.

Let S ¼ fs0
1
; s0

2
; � � � s0wg be a set of (noisy) sequences received from w users. Once the data

collector received the noisy sequences from all the users, she/he can estimate the average value

of xd at timestamp, td, by averaging all the noisy values of xd in S:

AVGestðxdÞ ¼
1

w
�
X

s0i2S

x0d:

The expected error incurred by this estimation is known as Oð n
�
ffiffi
w
p Þ [15], which is linearly pro-

portional to the sequence length n. Thus, this scheme is not suitable when the sequence length,

n, is large. Considering that the length of the sequence of a health data stream is typically large,

this straightforward scheme is not suitable for our problem, owing to the high expected error.

Proposed approach

In this section, we describe the proposed scheme for collecting health data streams using LDP.

As pointed earlier, the straightforward scheme may have an excessively high expected error,

when the sequence length is large. To overcome this problem, in this paper, we propose a

novel mechanism for collecting health data streams by leveraging LDP. Fig 3 shows an over-

view of the proposed approach that consists of the data contributor’s device-side and the data

collection server-side processing.

Fig 3. An overview of the proposed approach. The proposed approach can avoid a high expected error caused by the large

sequence length by selecting and reporting a small amount of salient points to a data collector.

https://doi.org/10.1371/journal.pone.0207639.g003
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• Data contributor’s device: The proposed method first identifies a small number of salient

points from the sequence of a given health data stream, and then perturbs those points

under LDP and reports noisy salient points to a data collection server.

• Data collection server: The proposed method reconstructs the sequence based on the noisy

salient points received from the data contributor and stores it into a database for later use.

We note that the proposed approach avoids a high expected error caused by the large

sequence length by selecting a small number of salient points from the health data stream and

applying the LDP mechanism to those points alone. We now explain and describe each of

these steps in detail.

Data contributor’s device-side processing

Searching for salient points. Health data monitored by sensors in a wearable device

are generally characterized as either remaining nearly constant or gradually increasing (or

decreasing). For example, heart rate, oxygen saturation, and blood pressure of human beings

remain nearly unchanged over long time periods of normal daily activities but gradually

increase during unstable periods and then slowly decrease afterwards. Thus, given the

sequence of health data, the objective of the first phase is to search for salient points where

changes in the trends start.

Given the sequence of the health data stream of the i-th user, si = ((t1, x1), (t2, x2), � � �,

(tn, xn)), let dsi = ((t1, dx1), (t2, dx2), � � �, (tn, dxn)) be a corresponding sequence of the same

length, obtained by taking a first-order derivative on si. That is, dxh (where 1� h� n) is the

first-order derivative of the sequence si at timestamp th. By taking the first-order derivative of

the sequence, we can differentiate points belonging to increasing or decreasing periods (i.e.,

dxh< 0 or dxh> 0) from the ones that are in constant periods (i.e., dxh = 0).

As the objective of this phase is to search for salient points in the given sequence, we are

interested in the case of dxh 6¼ 0 where 1� h� n. However, given a sequence si of the length n,

the number of points that satisfy the above condition can still be large. For example, Fig 2 illus-

trates the example of salient points extracted from a sequence of length 5,000. Here, the blue

curve represents the sequence of original health data, si. In the figure, the point at which each

red line parallel to the y-axis intersects the blue curve corresponds to a salient point. Note that

in Fig 2(a), salient points are simply obtained by searching for points that satisfy the condition,

dxh 6¼ 0 (where 1� h� n), after taking a first-order derivative on si. As can be seen in this fig-

ure, the number of salient points identified using this scheme is still large.

Thus, the next step minimizes the number of salient points by iteratively merging time

intervals belonging to the same trend (i.e, either an increasing or a decreasing trend), which is

presented in Fig 4. The algorithm starts with the sequence dsi. In the initialization step, the

algorithm sequentially scans each point in the sequence dsi and inserts it into the list Clist, if the

first-order derivative at that point is not zero (lines 1-7). Note that the points in Clist is sorted

by timestamp in ascending order because points in dsi are scanned in timestamp order in the

initialization step.

Given two adjacent points, (th, dxh) and (th+1, dxh+1), in Clist, the corresponding time inter-

val between these two point is defined as |th+1 − th|. The main idea of the algorithm in Fig 4 is

to iteratively find and merge two adjacent time intervals belonging to the same trend (i.e,

either an increasing or a decreasing trend), the summation of which is the shortest (lines 9-

25). The iteration is terminated if the algorithm cannot find any two adjacent time intervals

belonging to the same trend (lines 22-23). Finally, the algorithm returns the list, Clist, that con-

tains salient points. Fig 2(b) shows salient points obtained by further merging time intervals

Privacy-preserving aggregation of personal health data streams
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belonging to the same trend using the algorithm in Fig 4. As can be seen in the figure, the

number of salient points can be significantly reduced by the method described in Fig 4.

Reporting noisy salient points. Once the salient points are identified, the next step is

to add random noise to each salient point based on the LDP mechanism, and then send the

noisy salient points to the data collection server. Let SPi ¼ fðts1 ; xs1Þ; ðts2 ; xs2Þ; � � � ; ðtsr ; xsrÞg
be the set of salient points extracted from the sequence si as explained in the previous

phase. Let further assume that the timestamp of salient points in SP satisfies the condition,

ts1 < ts2 < � � � < tsr . Then, this phase first partitions the privacy budget, �, into r smaller pri-

vacy budgets, such as �1, �2, � � �, �r, and then adds random noise, sampled from the Laplace

distribution, to each salient point by consuming each partitioned privacy budget. As the

probability density function of the Laplace distribution from which random noises are

sampled is dependent on each privacy budget, �h (where 1� h� r), in this paper, we intro-

duce two different privacy budget partition schemes: uniform- and adaptive privacy budget

partition.

• Uniform privacy budget partition: Given a privacy budget, �, and a set of salient points

SPi ¼ fðts1 ; xs1Þ; ðts2 ; xs2Þ; � � � ; ðtsr ; xsrÞg, this scheme uniformly partitions the privacy budget

Fig 4. Pseudo-code for searching salient points in a given sequence.

https://doi.org/10.1371/journal.pone.0207639.g004
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into �1, �2, � � �, �r such that the following condition holds:

�1 ¼ �2 ¼ � � � ¼ �r ¼
�

r
:

• Adaptive privacy budget partition: Unlike uniform privacy budget partition, this scheme

adaptively partitions a privacy budget based on the temporal scale of each salient point. As

can be seen in Fig 2, each salient point covers a different temporal range. Let us consider

three consecutive salient points, ðtsh� 1
; xsh� 1

Þ, ðtsh ; xshÞ, and ðtshþ1
; xshþ1

Þ. Then, the temporal

scale, μh, of the h-th salient point, ðtsh ; xshÞ, is computed as

mh ¼
jtsh � tsh� 1

j þ jtsh � tshþ1
j

2

� �a

:

Here, α is a predefined system parameter. Let further assume that μsum is the summation of

the temporal scale of each salient point in SPi (i.e., μsum = ∑1�h�r μh). Then, this scheme par-

titions the privacy budget into �1, �2, � � �, �r as following:

�h ¼ ��
mh

msum
:

Here, it is obvious that � = ∑1�h�r �h. The intuition of this scheme is that larger the temporal

scale of a salient point, more the privacy budget it is assigned to.

Once the privacy is partitioned into r smaller privacy budgets, next we use each smaller pri-

vacy budget to generate the set of noisy salient points, SP0i ¼ fðts1 ; x
0
s1
Þ; ðts2 ; x

0
s2
Þ; � � � ; ðtsr ; x

0
sr
Þg.

Here, x0sh is obtained using the Laplace mechanism as follows:

x0sh ¼ xsh þ Lapð
Ds
�h
Þ:

That is, x0sh is computed by adding a random noise sampled from a Laplace distribution with

mean μ = 0 and scale b ¼ Ds
�h

to the original value of xsh . Note that as explained earlier, Δs corre-

sponds to the predefined sensitivity that is computed as Δs = xmax − xmin.

Note that in the case of uniform privacy budget partition, the same probability density func-

tion of the Laplace distribution is used for adding a random noise to each salient point, owing

to the condition, �1 = �2 = � � � = �r. On the other hands, in the case of adaptive privacy budget

partition, different probability density functions of the Laplace distribution are used for each

salient point because the privacy budgets allocated for perturbing each salient point are differ-

ent from each other. As the Laplace scale factor b ¼ Ds
�h

decreases (increases), which corre-

sponds to the case where the privacy budget �h increases (decreases), the magnitude of the

noise drawn from the Laplace distribution tends to decrease (increase). Thus, the adaptive pri-

vacy budget partition scheme ensures that smaller noises are added to more important salient

points having larger temporal scales. However, less important salient points whose temporal

scale is small are perturbed with larger noises.

Finally, the set of noisy salient points, SP0i ¼ fðts1 ; x
0
s1
Þ; ðts2 ; x

0
s2
Þ; � � � ; ðtsr ; x

0
sr
Þg, is directly

sent to a data collection server, guaranteeing that the original data of the data contributor is

not exposed to outside users. In this paper, we assume that the set of noisy salient points is

transmitted through secure channels established between the data contributor’s device and the

data collection server. We also note that sending noisy salient points to a data collection server

may raise a possible privacy issue in certain applications. That is, by observing the reported
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timestamps, the adversary may infer certain information about the pattern of the data contrib-

utor’s health data stream. One possible solution to such privacy concerns is to add dummy

salient points to the set of noisy salient points, and thus, the adversary cannot differentiate

between real and dummy salient points.

Data collection server-side processing

Upon receiving the set of noisy salient points, SP0i ¼ fðts1 ; x
0
s1
Þ; ðts2 ; x

0
s2
Þ; � � � ; ðtsr ; x

0
sr
Þg from the

i-th user, ui, the first step of a data collection server-side processing is to reconstruct the health

data stream based on the received salient points. In this subsection, we present two different

methods to rebuild the health data stream: linear and nonlinear estimation.

• Linear estimation: The first scheme is to use a straight line connecting two adjacent salient

points to rebuild the data stream. Let us consider the case of two adjacent salient points,

ðtsh ; x
0
sh
Þ 2 SP0i, and ðtshþ1

; x0shþ1
Þ 2 SP0i. Then, the slope, a, and the y-intercept, b, of the straight

line connecting these saline points are respectively computed as

a ¼
x0shþ1
� x0sh

tshþ1
� tsh

; b ¼ x0sh � a� tsh :

Then, a stream segment between tsh and tshþ1
is estimated with the line connecting these two

adjacent salient points.

• Nonlinear estimation: Unlike the first method, the second approach exploits prior information

regarding the privacy budget partition of the data contributor’s device-side processing. Given

two adjacent salient points, psh
¼ ðtsh ; x

0
sh
Þ and pshþ1

¼ ðtshþ1
; x0shþ1

Þ, the ratio of time scale of

these two points is computed as mratio ¼
msh
mshþ1

. In the case of adaptive privacy budget partition

scheme, if μratio is greater than 1, it is likely that the gap between x0sh and the corresponding orig-

inal value (i.e, xsh) is smaller than the gap between x0shþ1
and the corresponding original value

(i.e, xshþ1
). This is because more privacy budget is used for adding random noise to xsh than to

xshþ1
. In such scenarios, a more reasonable solution to rebuild a stream segment between tsh

and tshþ1
is to leverage a nonlinear curve biased to xsh . The case where μratio< 1 is similarly

explained. If μratio = 1, then the linear estimation scheme is used to rebuild a stream segment.

Based on the above intuition, we use the following logistic function, f(t), and its symmetric

function, f 0(t) (Fig 5(a)):

f ðtÞ ¼
L

1þ e� bt
; f 0ðtÞ ¼ L �

L
1þ e� bt

;

where the curve’s maximum value, L, is defined as 2� jx0sh � x0shþ1
j and the steepness of the

curve, β, is a predefined system parameter. Then, as can be seen in Fig 5(a), given two func-

tions, f(t) and f 0(t), the entire space is divided into four subspaces, generating four different

biased curves that are used to rebuild the stream segment between tsh and tshþ1
, depending on

the values of μratio and ðx0sh � x0shþ1
Þ. For example, if μratio is greater than 1, the nonlinear curve

biased to x0sh is used to rebuild the stream segment between tsh and tshþ1
, which corresponds to

the top-left and bottom-left cases in Fig 5(b). On the other hands, if μratio is less than 1, the non-

linear curve biased to x0shþ1
is used to rebuild the stream segment between tsh and tshþ1

which

corresponds to the top-right and bottom-right cases in the figure.
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Then, the i-th data contributor’s reconstructed health data stream, s0i ¼ ððt1; x
0
1
Þ; ðt2; x02Þ; � � � ;

ðtn; x0nÞÞ, is stored into a database. Let S ¼ fs0
1
; s0

2
; � � � s0wg be the set of sequences stored in the

database. Then, the average value of xd at the timestamp, td, is estimated as

AVGestðxdÞ ¼
1

w
�
X

s0i2S

x0d:

We note that unlike the straightforward solution, the proposed approach avoids high expected

errors caused by large sequence lengths, as such the data contributor reports a small number of

salient points to a data collector who then estimates the original health data stream based on the

salient points received from the data contributor.

Experiment

In this section, we describe the experiments we carried out to evaluate the effectiveness of the

proposed approach. First we describe the experimental setup and thereafter we discuss the

results.

Experimental setup

We evaluated the proposed approach with the PAMAP2 physical activity monitoring dataset

[34] that contains the set of sensory data from nine subjects wearing three inertial measure-

ment units and a heart rate monitor. We note that the PAMAP2 dataset contains a heart rate

monitoring dataset that is collected using sensors, which is well suited for our experiments.

We first extracted eight heart rate data streams whose length is 3,000 from the PAMAP2 data-

sets. To investigate the effect of the collected data size on the performance, we generated large

synthetic data sets using these eight real heart rate data streams. Given a real heart rate data

stream, a synthetic data stream was generated by adding a random noise, which was sampled

from a Laplace distribution with mean μ = 0 and scale b = 1, to each point in the real heart rate

Fig 5. (a) Logistic curve and its symmetric curve for two salient points, psh ¼ ðtsh ; x
0
sh
Þ and pshþ1

¼ ðtshþ1
; x0shþ1

Þ, and (b) four different curves that are

used to rebuild a stream segment depending on the values of μratio and ðx0sh � x0shþ1
Þ.

https://doi.org/10.1371/journal.pone.0207639.g005
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data stream. For experiments in this section, we generated four different sizes of data sets: 80K,

160K, 320K, and 640K.

In the experiments, we report results for the following alternatives:

• ldp_full corresponds to the straightforward solution that reports all points in a health data

stream.

• ldp_ul is the proposed approach of using the uniform privacy budget partition scheme (data

contributor’s device-side) and linear estimation method (data collection server-side).

• ldp_al is the proposed approach of using the adaptive privacy budget partition scheme and

linear estimation method.

• ldp_an is the proposed approach of using the adaptive privacy budget partition scheme and

nonlinear estimation method.

• ldp_rl corresponds to a method based on randomly selected salient points and the linear esti-

mation method. That is, unlike ldp_ul, ldp_al, and ldp_an, in which salient points are identi-

fied by the proposed algorithm shown in Fig 4, given the number of salient points (spnum),

ldp_rl randomly (but uniformly) selects spnum points from a health data stream and uses

these randomly selected points as salient points. Here, spnum, is determined by averaging the

number of salient points identified from each health data stream used in the experiment

using the proposed algorithm shown in Fig 4. Note that the purpose of reporting the results

of ldp_rl is to experimentally evaluate the usefulness of the proposed salient point searching

algorithm.

To compare the five schemes, we use an error rate, e:

e ¼
1

n
�
Xn

d¼1

jAVGactualðxdÞ � AVGestðxdÞj
AVGactualðxdÞ

:

Here, AVGest(xd) and AVGactual(xd) is the estimated- and the actual average value of xd at the

timestamp, td, respectively, and n denotes the sequence length. The parameters, α, and β, are

set to 0.5, which provides considerably good estimation performances. We run each experi-

ment three times and the error rates reported in the experiment are the averages of all runs.

Results and discussion

We first compare the error rate of two different categories of methods: ldp_full that uses a pri-

vacy budget to report all points in a health data stream under LDP and ldp_ul and ldp_rl that

consume a privacy budget to report only salient points (or randomly selected points) under

LDP. To compare these three schemes, in Fig 6, we use the relative error ratio:

error rate of ldp full
error rate of ldp ul ðor ldp rlÞ

:

The relative error ratio being greater than 1 means that the approach reporting only salient

points (or randomly selected points) outperforms the method reporting all points. In Fig 6(a),

the privacy budget, �, varies from 0.25 to 2.0, while the data size is set to 640K. On the other

hands, in Fig 6(b), the data size varies from 80K to 640K, while the privacy budget is fixed at

0.5. As can be seen from the figure, both ldp_ul and ldp_rl significantly outperform ldp_full.
In particular, with the proposed ldp_ul, performance gains from 60X to 90X are possible. The

experiment results in Fig 6 verify that when collecting health data streams, characterized as

long in length, under LDP, it is much more effective for reporting only small number of points
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than reporting all points in the stream. The experimental results in Fig 6 further show that the

proposed ldp_ul outperforms ldp_rl, at all privacy budgets and data sizes. This verifies that

given a health data stream, it is more effective to report carefully selected salient points using

the method presented in this paper than randomly selected points.

Fig 7 shows the error rate for varying (a) privacy budget, �, and (b) data size for three differ-

ent schemes, ldp_ul, ldp_al, and ldp_an, proposed in the paper. The data size is set to 640K in

Fig 7(a) and the privacy budget is fixed to 0.5 in Fig 7(b). Key observations based on Fig 7 can

be summarized as follows:

• As expected, the error rate decreases, as the data size increases, which indicates that the pro-

posed approach well exploits the collected data.

• As the privacy budget, �, increases, the error rate decreases. This is because, as the privacy

budget increases, noises added by the data contributor’s device-side decrease, and thus the

level of privacy decreases. This, in turn, results in increased estimation accuracy at the data

collection server-side.

• Among three different schemes, ldp_an, which is based on the adaptive privacy budget parti-

tion scheme and nonlinear estimation method, produces slightly better results than the

other approaches, ldp_ul and ldp_al, which implies that ldp_an is suitable for applications

that require high level of estimation accuracy.

To further investigate the effects of collected data size on the estimation accuracy, we plot

the stream of average heart rates for varying data sizes in Fig 8. In this experiment, data size

Fig 6. Relative error ratio for varying privacy budget � and data size.

https://doi.org/10.1371/journal.pone.0207639.g006

Fig 7. Error rate for varying privacy budget � and data size.

https://doi.org/10.1371/journal.pone.0207639.g007
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varies from 160K to 640K, while the value of � is fixed to 1.0. In this experiment, the estimated

stream is obtained using ldp_an. As the collected data size increases, the estimated stream

(orange plot in Fig 8) obtained with ldp_an becomes similar to the actual one (blue plot in Fig

8). With a 160K collected data set, a good estimation cannot be achieved because the collected

data size is insufficient. However, with a 640K collected data set, the proposed approach in this

paper produces a fairly good estimation. This experiment result indicates that the proposed

method well exploits the collected data set.

Conclusion and future work

In this study, we developed a novel mechanism to collect individual health data streams gener-

ated from various smart healthcare sensors in a privacy-preserving manner using LDP. Our

proposed approach first identifies a small number of salient data points from an entire health

data stream of a data contributor, perturbs these identified salient data points under LDP, and

then reports the perturbed salient data to a data collector, instead of reporting all the data in

the stream. Furthermore, we presented an effective method that enables a data collector to

reconstruct the health data stream from the perturbed data set received from the data contrib-

utor. Experiments demonstrated that the proposed method provides a significant improve-

ment in results when compared with the straightforward solutions to this problem. In a future

work, we are planning to extend the proposed data collection framework such that it is possible

to compute marginal statistics with multiple types of health data streams.
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