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Abstract: Recently, tissue engineering and regenerative medicine studies have evaluated smart
biomaterials as implantable scaffolds and their interaction with cells for biomedical applications.
Porous materials have been used in tissue engineering as synthetic extracellular matrices,
promoting the attachment and migration of host cells to induce the in vitro regeneration of
different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues,
modulating the extracellular environment through mechanical, electrical, and biochemical stimulation
of cells, driving their molecular reprogramming. In this review, first we outline the main advantages
of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing
pathways to obtain the adequate textural properties, allowing the integration and attachment of cells.
The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing
the effect of their mechanical properties and the modification with conducting polymers in the
cell response. The use and influence of polysaccharide-based porous materials as drug delivery
systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are
proposed as an effective strategy to improve in vitro tissue regeneration and future research directions
of modified polysaccharide-based materials in the biomedical field are suggested.

Keywords: biomaterials; porous materials; biomimetic; multi-stimulation; tissue engineering;
conductive polymers

1. Introduction

The number of publications related to the tissue engineering field has increased dramatically in
recent years, referring to the potential regenerative methods and strategies for almost every tissue and
organ of the human body. Progress has been reached by the integration of interdisciplinary research
from cell biology, biomaterial sciences, and medical fields [1]. Specifically, tissue engineering involves
the design and synthesis of three-dimensional (3D) matrices from biomaterials to provide a structural
framework and to facilitate the attachment and migration of host cells, inducing a successful in vitro
andin vivo regeneration of tissues [2–4]. Biomimetic 3D scaffolds may allow the control and application
of a multi-stimulus to cells, including mechanical, electrical, and biochemical stimulations, in order to
trigger specific responses, such as cell differentiation and tissue repair [5–8].
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Tissue regeneration is naturally mediated by molecular processes, which direct gene expression
to control renewal, restoration, and cell proliferation [9]. Nevertheless, normal regeneration is affected
by aging, diseases, or accidents [10,11]. Thus, the increasing incidence of skin, muscle, and bone disorders,
suffered by many people around the world, has prompted a critical need to develop engineered
strategies to improve the replacement and regeneration of biological materials [11–13]. While many
repair techniques have been proposed over recent decades, most of the surgical interventions have
been directed toward the treatment of clinical symptoms but none have successfully repaired damaged
tissues [14]. Consequently, in recent years, tissue engineering and regenerative medicine studies
are focused on using the regenerative abilities of cells, in combination with engineered biomaterials,
to create implantable scaffolds for tissue regeneration and reparation [1,10].

Porous materials from polysaccharides have been used as extracellular matrices (ECM) in tissue
engineering in order to generate diverse types of cell lineages, promoting regeneration [15,16],
for instance, in stem cells [17], osteoblasts [18], skeletal muscle cells [19], and endothelial
cells [20]. In the biomedical field, aerogels from different sources have found applications as
implantable devices, dressings for wound healing, synthetic bone grafts, carriers for different drugs,
biosensing, and biomedical imaging [6,21].

Since they were first fabricated in 1932, aerogels have become the subject of great interest for different
application fields [22]. Most common aerogel sources are from inorganic or petrochemical-based materials,
such as those used to produce silica and graphene aerogels [23,24]. Recently, large efforts have been
dedicated to produce aerogels using polysaccharides as raw materials. Relating them with inorganic
starting materials and those derived from fossil oil, natural polysaccharides are more sustainable,
green, non-toxic [25], biodegradable [26] and they have more abundant natural sources [27].
Several examples of engineering porous materials from polysaccharides have been developed.
Starch and alginate aerogels [28,29], starch microspheres [30], and cellulose nanowhiskers [31] are
among the different examples found in the literature. From a basic science perspective, the capacity to
modulate the biomaterial properties to convey unique material characteristics allows their application
in different fields, with biomedical being the most important, from our point of view.

Numerous strategies have been reported to obtain polysaccharide-based aerogels to guide
functional restoration to the site of injury. Control of the size and porosity in the scaffold mediates
cellular infiltration [32] and facilitates the transport of nutrients [33], oxygen [34], and waste
products [35]. Porosity also regulates the vascularization by angiogenesis and cell attachment [30,36].
Mechanical properties of biomaterials, such as stiffness, structure, and topography, are also
considered during ECM synthesis, mainly because they can alter the local tissue microenvironments
through intracellular and intercellular signaling [7,9,37]. Besides, one of the most relevant
applications of polysaccharide-based aerogels is the capability of releasing drugs as controlled
delivery systems. The synthetic scaffold acts as a carrier for drug molecules, in order to release
them specifically to target cells or tissues and improve their differentiation and regeneration [6,38,39].
Specifically, the combination of polysaccharide-based porous materials with biomolecules is known as a
polymer bioconjugate and is a novel strategy used for the fixation of amino acids, nuclei acids, peptides,
and carbohydrates to different polymers, in order to improve their application as therapeutics [40].
Alternatively, conductive polymers have been proposed in combination with aerogels as a system for
electrical stimulation of cells and tissues in regenerative medicine [5,41].

Our review summarizes the current status of smart 3D scaffold systems based on polysaccharides
regarding their production, properties, and potential applications in the biomedical field. Although those
topics have been extensively reviewed in the past, our approach will focus on the potential development of
biomimetic 3D scaffold systems including the physical, mechanical, electrical, and biochemical properties
of modified polysaccharide-based aerogels and cryogels. Moreover, novel research directions of these
smart materials, including strategies for the impregnation of drugs and their subsequent release from
porous materials, and modification with conductive polymers were covered to be applied in the
biomedical field.
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2. Overview: Polysaccharide-Based Porous Materials

Aerogels are solid, lightweight, and high specific surface area materials with interconnected
networks of particles obtained from a wet gel during a process where their liquid phase is removed
and replaced with gas without the collapsing of the solid structure [6,22].

Through time, aerogels have been obtained by structuring both organic and inorganic materials.
Silica [24,42,43], silica/pre-polymerized vinyl trimethoxy silane (VTMS) composites [44], and graphene-based
aerogels [23,45] are among the most used inorganic materials reported for aerogel production.
However, despite several relevant features found for inorganic aerogels, biopolymer-based aerogels
have been the object of much research lately due to their mechanical properties [46], non-toxicity [25],
and biocompatibility [21], all desirable properties in systems to be used in biomedical field [47].

Polysaccharide-based aerogels were reported first by Kistler [22], using cellulose, nitrocellulose,
gelatin, agar, and egg albumin. More recent research has reported the obtention of aerogels from
polysaccharides such as chitosan [48], chitosan/alginate [49], cellulose [50], starch [13,30,51–53],
starch/κ-carrageenan (κC) [53], and pectin [27].

Considering that polysaccharides possess abundant natural sources from which they can be
obtained [27], along with renewability and non-toxicity, they are excellent raw material candidates
for aerogel processing regarding circular economy principles, relying on renewable raw material or
energy sources [25,54].

2.1. Processing Strategies for Polysaccharide-Based Aerogels

Diverse strategies have been used to obtain polysaccharide-based aerogels. The sol-gel method is
commonly reported as an initial step in the processing pathways for organic or inorganic materials [28].
In the sol-gel process, a hydrogel formation is induced by crosslinking of the base material. Once the
hydrogel is formed, it is necessary to select the drying method to be used; materials obtained from
supercritical drying are commonly known as aerogels, whereas materials dried by freeze drying
(lyophilization) are known as cryogels [21]. Figure 1 illustrates the scheme for supercritical drying and
freeze drying, the most widely used methods in processing porous materials [21].

Molecules 2020, 25, x FOR PEER REVIEW 3 of 22 

 

impregnation of drugs and their subsequent release from porous materials, and modification with 
conductive polymers were covered to be applied in the biomedical field. 

2. Overview: Polysaccharide-Based Porous Materials  

Aerogels are solid, lightweight, and high specific surface area materials with interconnected 
networks of particles obtained from a wet gel during a process where their liquid phase is removed 
and replaced with gas without the collapsing of the solid structure [6,22].  

Through time, aerogels have been obtained by structuring both organic and inorganic 
materials. Silica [24,42,43], silica/pre-polymerized vinyl trimethoxy silane (VTMS) composites [44], 
and graphene-based aerogels [23,45] are among the most used inorganic materials reported for aerogel 
production. However, despite several relevant features found for inorganic aerogels, 
biopolymer-based aerogels have been the object of much research lately due to their mechanical 
properties [46], non-toxicity [25], and biocompatibility [21], all desirable properties in systems to be 
used in biomedical field [47].  

Polysaccharide-based aerogels were reported first by Kistler [22], using cellulose, nitrocellulose, 
gelatin, agar, and egg albumin. More recent research has reported the obtention of aerogels from 
polysaccharides such as chitosan [48], chitosan/alginate [49], cellulose [50], starch [13,30,51–53], 
starch/κ-carrageenan (κC) [53], and pectin [27].  

Considering that polysaccharides possess abundant natural sources from which they can be 
obtained [27], along with renewability and non-toxicity, they are excellent raw material candidates 
for aerogel processing regarding circular economy principles, relying on renewable raw material or 
energy sources [25,54].  

2.1. Processing Strategies for Polysaccharide-Based Aerogels 

Diverse strategies have been used to obtain polysaccharide-based aerogels. The sol-gel method is 
commonly reported as an initial step in the processing pathways for organic or inorganic materials [28]. 
In the sol-gel process, a hydrogel formation is induced by crosslinking of the base material. Once the 
hydrogel is formed, it is necessary to select the drying method to be used; materials obtained from 
supercritical drying are commonly known as aerogels, whereas materials dried by freeze drying 
(lyophilization) are known as cryogels [21]. Figure 1 illustrates the scheme for supercritical drying 
and freeze drying, the most widely used methods in processing porous materials [21].  

 
Figure 1. Pathway for porous materials produced by supercritical drying as well as freeze drying. 
Modified from [55] under Creative Commons attribution license. 

2.1.1. Processing Using Supercritical Fluid Technology 

The usage of supercritical fluid technology allows the material design with different 
composition, morphology, porosity, and linear architecture [56]. In addition, processing with 
supercritical fluids (SCFs) leads to a solvent-free end-product with high purity. This 
environmentally friendly feature has been noted by other studies. In fact, SCFs have been regarded 
as “the green solvents for the future” since they compress different ecological benefits, an emphasis 
is made on their low energy consumption [21,57].  
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2.1.1. Processing Using Supercritical Fluid Technology

The usage of supercritical fluid technology allows the material design with different composition,
morphology, porosity, and linear architecture [56]. In addition, processing with supercritical fluids
(SCFs) leads to a solvent-free end-product with high purity. This environmentally friendly feature
has been noted by other studies. In fact, SCFs have been regarded as “the green solvents for
the future” since they compress different ecological benefits, an emphasis is made on their low energy
consumption [21,57].

Carbon dioxide (CO2) is the most widely used supercritical fluid, in part due to the mild
operating conditions, 7.38 MPa and 304 K [56]. Supercritical drying (SCD) avoids the formation of the
vapor–liquid interface that occurs upon solvent evaporation. When evaporation of the solvent occurs,
the capillary pressure gradient on the pore walls may reach up to 100–200 MPa [28]. Aerogels processed
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by means of SCD tend to show a mesoporous structure (pores of a 2–50 nm diameter) and thus require
a templating technique for inducing the formation of macropores [56]. Finally, SCF technology has
been applied not only to obtain porous materials but also as a strategy for the sterilization of polymeric
scaffolds from aerogels [13].

2.1.2. Cryogels Obtained by Freeze Drying

Freeze drying (FD), or lyophilization, is a drying process in which the solvent or the medium of
suspension is crystallized at low temperatures and is thereafter sublimated from the solid state directly
into the vapor state [58]. It is reported as a simple, environmentally friendly and economic technique
for producing highly porous cryogels with reduced shrinkage [21].

Significant advantages of using FD during cryogel synthesis are that the whole conversion of raw
materials and the recycling of water without pollution or volatile organic compounds problems are
achieved [59]. High safety derived from its straightforward operation is an important feature that has
been remarked in the literature [27]. Nevertheless, one important drawback reported for freeze drying
is that the process takes several hours to be completed [23]. In addition, freeze-dried materials tend to
have larger macroporosity (pores >50 nm diameter) than SCD-processed materials [21].

Freeze drying requires freezing the hydrogels, transforming all the liquid that fills the
interconnected 3D structure, to solid. Then, at low pressures, the sublimation of the solid solvent
is promoted, avoiding the formation of the vapor–liquid interface [51,59]. The morphology of the
porous structure is determined by the nucleation and ice crystal growth process of the gel solution [27],
producing cryogel pores due to sublimation of the ice crystals [60]. Large ice crystals are obtained
with low nucleation rates; this is reached by using small subcooling temperatures, as close to the
equilibrium state as possible, between solution and ice crystals (0 ◦C) [58].

Two important steps are found for the crystallization process: nucleation and ice crystal growth [27].
Since pores are formed due to the sublimation of the ice crystals [60], the crystal morphology has a
direct effect on the final pore morphology of the cryogel. The crystal morphology can be related to
the freezing or and pre-freezing conditions (temperature and rate), additives, suspended solids [60],
or the initial material concentration [27]. In addition, increasing the pressure at the freezing phase can
shorten the cooling time and form small regular ice crystals [27].

Direct comparison between the porous materials obtained by SCD or by FD results in an important
specific surface area decrement for the freeze-dried cryogels [51]. However, cryogels have shown
porosity values equal to or higher than SCD aerogels, with an important macropore fraction that
may be suitable for different applications where macroporosity is required. See detailed information
in Table 1.
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Table 1. Properties reported in different research studies for porous materials from biopolymers.

Raw Material Fabrication Method Specific Surface Area (m2/g) Porosity (%) Reference

Corn starch

scCO2 130–183 80–89 [13]
scCO2 102–274 N.R. [61]
scCO2 221–234 85–90 [62]
scCO2 79–87 N.R. [52]
scCO2 183–197 61–73 [51]

FD 0.6–7.7 >80 [51]
scCO2 223–247 87 [53]
scCO2 313–362 N.R. [63]
scCO2 254 N.R. [64]
scCO2 370 N.R. [65]

Wheat starch
scCO2 52.6–57.9 N.R. [66]
scCO2 34.7–60.9 91–93 [66]

Pea starch
scCO2 204–230 84–92 [62]
scCO2 221 N.R. [64]

Potato starch
scCO2 42–70 N.R. [67]
scCO2 85–88 N.R. [64]

Starch/κ-carrageenan scCO2 194–231 78–85 [53]

κ-carrageenan scCO2 ≈ 230 N.R. [68]

Chitosan scCO2 >250 >96 [48]

Cellulose
scCO2 287–303 92–96 [50]

FD 297 96.4 [50]
scCO2 20–246 91–99 [69]

Alginate/chitosan scCO2 127.4–192.3 N.R. [49]

Alginate composites scCO2 200–800 N.R. [70]

Whey protein isolate scCO2 14–447 N.R. [71]
FD <5 N.R. [71]

Poly (ε-caprolactone) scCO2 N.R. 54–58.8 [72]

N.R.: Not reported; scCO2: Supercritical CO2; FD: Freeze Drying.

3. Polysaccharide-Based Porous Materials for Tissue Engineering

In recent years, tissue engineering and regenerative medicine studies have been based on the
combination of specific types of cells and 3D porous scaffolds to induce a successful in vitro regeneration
of diverse tissues [2–4].

The main efforts on engineered ECM in the biomedical field have been focused on the use and
stimulation of pluripotent stem cells, which are special cells that have the ability to perpetuate themselves
through a mechanism of self-renewal and to generate diverse types of cells through differentiation
processes [15–17]. Nevertheless, osteoblasts [18], skeletal muscle cells [18], and endothelial cells [20]
have been also studied.

3.1. Polysaccharide-Based Porous Materials as Extracellular Matrices

An extracellular matrix is an organized network composed by a mixture of cellular and
non-cellular components. It plays an important role in tissue and organ morphogenesis, cell function,
and structure maintenance. The biochemical and mechanical stimulus that cells receive from the matrix
influences their growth, migration, differentiation, survival, and homeostasis [73].

Aerogels, as porous 3D matrices, possess a nanostructure that is able to mimic the extracellular
matrix of the natural tissue, providing a favorable environment for the regeneration of tissues and
organs [6,74]. Coupled with high porosity, low densities, and high inner surface areas, porous materials
can provide appropriate morphology engineering, opening the possibility for their application as
synthetic scaffolds for tissue engineering [52].

A scaffold acts as a template for new tissue formation [75] and its 3D structure guides the
proliferation and colonization of cells, promoting tissue growth [56]. An ideal synthetic ECM should
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exhibit a highly open and uniform porosity, over 80%, with micro- and mesopores that enable cell
attachment and macropores for proper vascularization [56]. The configuration of the scaffold topology
is critical in controlling cellular function, it should match the endogenous topology of the cell membrane
in order to enhance signaling and function [36].

Nowadays, regenerative medicine is focused on the evaluation of novel skeletal muscle
regeneration strategies, which involve the prefabrication of muscle tissues in vitro by differentiation
and maturing of muscle precursor cells on a scaffold, providing the required environment for myogenic
differentiation of the cultured cells [76]. Researchers are studying the incorporation of products
obtained from cellular metabolism in synthetic ECMs. These materials are mainly constituted of
glycosaminoglycans, a group of polysaccharides that can modulate cell activity by mimicking aspects
of the in vivo extracellular environment, providing important roles in cell signaling, proliferation,
and differentiation through their ability to interact with ECM proteins and growth factors [77–81].
Hyaluronic acid, heparan sulfate, and heparin are the most used glycosaminoglycans in synthetic ECMs,
mainly to direct the differentiation on mesenchymal stem cells (MSC) [82,83].

The synthesis of alginate hydrogels for platelet-rich plasma encapsulation as a coating for
polylactic acid porous devices is another strategy used to improve cellular responses on synthetic ECM,
the hydrogel system allows for better cellular integration and influences the vascularization into
the membrane after skin implantation of the device, and the access to nutrients and growth factors
was also improved with the engineered hydrogel. Platelet-rich plasma hydrogels could also support
oxygenation of cells, avoiding hypoxia immediately post-transplantation [84,85]. In a similar study,
calcium peroxide (CPO) was used during the synthesis of a gelatin methacryloyl bioprinted scaffold to
achieve improved cellular oxygenation and increase fibroblast viability under hypoxia conditions [86].

The spatial arrangement, porosity, biocompatibility, and proper scale of the ECM are some of the
most important features that must be adjusted for use in nervous tissue, skin, bone, and muscle [76].
Nevertheless, several other factors, such as mechanical properties and chemical modification
of scaffolds, significantly influence cellular behavior [5,87]. For example, recent studies have shown
that the cell nucleus works as a fast mechanical respondent in cell contractility events because
of the three-dimensional extracellular matrix restriction environment, inducing deformation and
the movement of cells through the activation of cytosolic phospholipase A2 and arachidonic acid,
which regulate myosin activity [88,89] (Figure 2).
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Figure 2. Schematic representation of nuclear deformation and stretching of the nuclear envelope after
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production (2), for the regulation of actomyosin (3) and the increasing of cell migratory capacity through
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3.2. Influence of the Mechanical Properties of the Scaffold in Cells and Tissues Behavior

The main goal of tissue engineering and regenerative medicine is to create strategies for replacing
defective tissue. The use of polymeric scaffolds as extracellular matrices tries to mimic the in vivo host
conditions to restore or improve the regeneration of damaged tissues. An extracellular matrix requires
not only pore size control to induce cell adhesion and the ingress of nutrients and oxygen but also
the incorporation of signal molecules, such as growth and differentiation factors, as well as a proper
matrix architecture and mechanical properties to keep the implanted cells alive [46,90–94].

The mechanical characteristics of a scaffold for in vitro or in vivo cell studies may ultimately
impact how the hosted tissue responds to the scaffold [87]. In this regard, the architecture,
chemistry, topography, and physical properties of the employed scaffold as an ECM influence the
structure and function of the surrounding tissue. Cells are constantly subjected to physical forces
from their microenvironment. Mechanical properties of the porous materials are indispensable to
determine the viability of a tissue and play a crucial role in cellular phenotype and homeostasis [95].
There are several types of cells that respond to a mechanical stimulus. The mechanoresponsive cells
include chondrocytes [88], cardiomyocytes [94], osteoblasts [96], muscle cells [97], endothelial cells [98],
stem cells [7], and other tissue connective cells.

Atomic force microscopy (AFM) analysis, magnetic resonance elastography (MRE), shear rheometry,
micropipette aspiration, and microindentation are some techniques commonly used to determine
systematic cell responses, induced by mechanical properties of scaffold [95]. These methods cause
the compression, bending, twisting, and stretching of the scaffold [99–101], inducing specific
cellular responses.

Cells may sense physical cues, such as osmotic pressure, shear force, and compression loading, as
well as architecture, rigidity, and other several properties of the ECM, through a process known as
mechanotransduction [95]. Thus, mechanotransduction corresponds to the cell capacity to transform a
mechanical stimulus into biochemical signals. There are surface proteins in cell membranes which
detect a force differential and then amplify and propagate this mechanical signal to elicit a change in
cell behavior [37,95].

Compression and shear stress, caused by the synthetic ECM in a cell culture, transfer mechanical
stimulation to the cells and enhance their biochemical signaling. The upregulation of gene
expression and the changes in cellular metabolism during mechanical stimulation are regulated
by mechanically sensitive surface receptors on cell membranes. There are several proteins related with
the mechanotransduction to biochemical events, integrins, specifically β1 and α5β1 integrins, are the
best proteins studied so far [37].

Scaffold stiffness has been shown to have a significant impact on numerous cells and their fate, such
as cell adhesion, cytoskeleton rearrangement, cell migration, stem cell differentiation, and muscle cell
contractility [87]. The stiffness of an ECM in 2D cell cultures may influence the differentiation pattern of
a same cell type; it has been reported that a soft matrix (0.1–1 kPa) promotes neurogenic differentiation,
matrices with a medium stiffness (8–17 kPa) promote myogenic differentiation, and matrices with
high stiffness (25–40 kPa) promote the osteogenic differentiation of mesenchymal stem cells [9].
Several authors have reported that the stiffness of a synthetic ECM induces mechanical stimulation of
cells and the subsequent expression of cellular differentiation markers [93], tissue organization [97],
causes the synthesis of extracellular matrix components [93], changes cell morphology, and improves
their adhesion to synthetic scaffolds [93,98]. Additionally, the positive inotropic and chronotropic
responses to both ion concentration (i.e., calcium, Ca2+) and temperature after mechanical stimulation
of cardiomyocytes are also reported [94].

Complexity of the mechanotransduction induced by integrins is multifaceted as the proteins
can form 24 possible functional distinct dimers and each dimer forms diverse complexes with
multiple intracellular adaptor proteins to dictate the interplay between biochemical and cytoskeletal
elements to determine their contribution to cellular mechanoresponses [37,93]. Nevertheless, it is
well known that efficient force transfer and associated cytoskeleton changes are correlated with
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focal adhesion formation, as defined by the recruitment of talin, vinculin, and α-actinin to the
stimulated integrin; these focal adhesion proteins form the molecular bridge that physically interlinks
integrins with actin microfilaments [9,92,102].

Cytoskeletal changes caused by mechanical stimulation of cells are influenced by several
biochemical pathways. It has been reported that maturation of focal adhesions causes activation
of focal adhesion kinase (FAK); the scaffold protein, associated with adhesion plaque, triggered the
Rho-associated protein kinase cascade (ROCK), which enhanced cellular tension through engagement
of actomyosin contractility [95,103]. ROCK protein involves several downstream signals,
including extracellular signal-regulated kinases (ERKs) and the hippo pathway, which is related
with yes-associated protein 1 (YAP1); both biochemical pathways translocate some activated proteins
to the nucleus and associated with transcriptional factors to regulate cell proliferation, tissue growth,
and differentiation, as well as cell migration [89,104,105]. The chronical cellular tension reinforces these
downstream signaling pathways to potentiate the production of ECM and ECM remodeling proteins
that stiffen the local microenvironment and reinforce mechanosignaling [95].

Experiments related with the mechanical stimulation of cells have been carried out since 1938,
when Glücksmann studied endosteal cells from embryonic chick tibiae [106]. Cells were grown on
substrates of explanted intercostal muscle, to which pairs of neighboring ribs were left attached [106].
After several days, cells were compressed when the ribs were drawn near toward one another as the
muscle tissue degenerated. Table 2 summarizes the main strategies to induce mechanical stimulation
of synthetic ECM and their effect in cultured cells.

The study of mechanical properties of extracellular matrices is important to ensure resistance
of cultivated cells to in vivo stress were the matrix is used to replace damaged tissue [110,111].
Cellular responses depend on the magnitude and duration of the stimulus and high pressures may
cause damage to the cell membrane and nucleus, followed by inflammatory reactions due to tissue
breakdown in vivo [101]. Additionally, stiffness, roughness, and viscoelasticity are important in
directing the immune response of cells. There are several T cell receptors that act as mechanical sensors,
enabling the T cells to discriminate between a wide range of stiffness found in the body and respond
accordingly [9]. Thus, hydrogels with higher stiffness stimulate the production of both pro- and
anti-inflammatory cytokines, in contrast with low stiffness hydrogels, where the inflammatory response
is suppressed and results in an overall lower foreign-body reaction in vivo [9]. The effect of the
substrate mechanical properties on the in vitro response of macrophages has been also studied
using poly(ethylene glycol) hydrogels (PEG) [87]. Results showed that stiffness did not impact the
macrophage attachment; nevertheless, it elicited differences in their morphology.

The mechanical characteristics of scaffolds can be adjusted using adequate dynamic biomaterials
in order to create matrices with an appropriate stiffness to direct specific cellular responses.
Mechanical properties of synthetic scaffolds are also used to design stimulation protocols to induce the
controlled release of responsive drugs potentially used for tissue regeneration.

3.3. Polysaccharide-Based Porous Materials as Scaffolds for Electrical Stimulation of Cells

Another research field of interest is focused on the preparation of electrical systems to induce
specific cellular responses. Diverse tissues (e.g., nerve, muscle, and glandular) make use of endogenous
electric fields (EF) to transmit electrical signals. The endogenously-generated EF exists in both
the cytoplasm and extracellular space [112]. Ionic currents and EFs in living cells play critical
roles in important biological processes as they generate electromotive force, maintain a required
electric potential, and allow some cellular functions [113,114]. These bioelectric signals are generated
by gap junctional connections and ion channels or pumps moving ions, mainly potassium (K+) and
chloride (Cl−), across the membrane [113,115], and the regulation in cellular physiology is induced by
pH gradients, specific ion flows, and changes in transmembrane potential [116].
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Table 2. Used methods to induce mechanical stimulation of cells in synthetic extracellular matrices (ECM).

Raw Material Mechanical Test Result Reference

Gelatin/nanohydro-
xiapatite cryogels

Compressive mechanical
stimulation of cryogels for 14

days in a bioreactor containing
150 mL of cultured medium at

30% compression strain.

Mesenchymal stem cells were
attached to the scaffold and a higher
extent of osteogenic differentiation
was obtained after compression.

[7]

Self-assembled peptide
hydrogel (arginine, leucine,
aspartic acid, and alanine)

The hydrogel containing cells
was placed into a hand-control

stretch device for 120 h.

Smooth muscle cells resulting in a
tight adhesion in the porous structure

and a lineal cell proliferation rate
were reported.

[46]

Poly(lactic-co-glycolic acid)
fiber coated with

polypyrrole

The electrical stimulation of the
matrix induced their volume

modification, causing changes in
the mechanical strain.

The direct dual electrical and
mechanical stimulation of the

pluripotent stem cells cultured in the
scaffold caused a faster expression of
cardiomyocytes genes, important for

myocardial regeneration.

[107]

Collagen matrix reinforced
with rings of electrospun silk

fi-broin mat

Dynamic stimulation with
pulsatile or laminar flow.

Pulsatile flow was induced with
a gear pump which supply a
steady flow (75 mL/min) in

series with a pulsatile manifold.
Laminar flow was carried out of

steady flow of 75 mL/min.

Chondrogenic differentiation of MSCs
was observed in the presence of

chondrogenic supplements in laminar
flow cultures. Pulsatile flow resulted

in preferential cellular orientation,
as dictated by dynamic

circumferential strain, and induced
MSC contractile

phenotype expression.

[108]

Silicon tubes with inner
surfaces modified with

collagen type I solutions

Cells cultured on
collagen-coated silicon tubes

were exposed for 24 hours to the
shear stress created when

culture medium passes through
the tube.

Mechanical stimulation caused by
shear stress on adipose-derived

mesenchymal stem cells depicted
significantly higher gene expression

of osteoblasts and adipogenic lineages.
Moreover, mechanical stimulus

induced endothelial differentiation
after the addition of VEGF on

cultured medium.

[98]

Microcracked
hydroxyapatite substrates

Bending the top surface of the
cracked substrate in a

piezoelectric actuator using a
force of 50 N at 5 Hz for 150 s.

Flexoelectricity caused by mechanical
stimulation on a hydroxyapatite

substrate induced apoptotic responses
on osteoblasts and osteocytes.
Apoptosis was followed by

proliferation of the cells adjacent to
the crack, better attachment on the

substrate, and an increased expression
of osteocytes markers.

[109]

Currently, exogenous electrical stimulation of cells is a widely used method to improve their
biological functions. Many authors have reported the use of nerve [117], bone [118], muscle [119],
and neural stem cells [120], because their extensively recognized piezoelectric characteristics make
them attractive for research on the role of exogenous electrical stimulation.

Coupling of an electromagnetic field with a live cell can occur via field interaction with charged
molecules and proteins in the cell membrane [114]. The application of an electrical stimulus to induce
cellular responses depends mainly on the level and nature of the electric potential or current applied,
the frequency of the stimulus, and the type of cell studied [113]. It is reported that the application of the
EF in a culture medium affects the migration [121], orientation [122], proliferation, and differentiation
of cells [123,124]. Nevertheless, in most cases, it is used specifically to revive damaged or disabled
tissues in the neuromuscular system as well as to accelerate the healing of injured musculoskeletal
tissues, such as bone, ligament, and articular cartilage [112].

In this regard, biomaterials may receive considerable attention for their influence on cellular behaviors,
ability to mimic biological functions, and, more recently, as electronic conductive systems with a potential
use as tissue engineering scaffolds [5,125].

Some electroactive materials, such as conductive polymers (CPs) (e.g., poly(3,4-ethylenedioxythiophene)
(PEDOT)), which are a special class of polymeric materials that present electric and ionic conductivity,
are currently being studied in combination with aerogels or cryogels as a promising field in regenerative
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medicine (Figure 3). Nevertheless, in the past, research studies have extensively used this kind of
polymer to create organic conductive interfaces, neuroprosthetic devices, neural probes, and controlled
drug-delivery systems [5,41,126].Molecules 2020, 25, x FOR PEER REVIEW 11 of 22 
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Conductive polymers can be structured with porous systems using different techniques [127–129].
Starch and starch/κ-carrageenan aerogels have been used as templates for the obtention of nanoporous
conductive materials [52,53]. In the biomedical field, conductive nanoporous materials have been
applied not only as physical support but also as a medium to provide electrical stimulation of a
cell culture. Electrical stimulation in neural cells has shown great potential for function restoring and
wound healing [130].

On the other hand, the incorporation of anionic drugs and κ-carrageenan on the structure of starch
porous materials is particularly interesting since both compounds may act as dopant agents for the
conductive matrix, as it was shown recently [39,53,131]. Dexamethasone, a well-known glucocorticoid
anionic drug, has recently been the object of research from an electrochemical point of view, regarding
its doping properties on conductive matrices [132] and for its ability to be released by electrochemical
stimulation from a PEDOT/κ-carrageenan film [39]. The above opens the possibility to create scaffolds
from conductive porous materials and the incorporation of specific drugs in their structure to be
applied as stimulation systems in tissue engineering.

3.4. Polysaccharide-Based Porous Materials as Drug-Delivery Systems

One of the main approaches and most relevant applications of biopolymer-based aerogels is their
use as drug-delivery systems [6,38]. The application of these materials as controlled drug-release
matrices has gained interest in the last years due to aerogel properties, such as its high surface area,
high porosity, and biocompatibility [38]. Aerogels can act as a carrier for bioactive compounds,
showing high loading capacity, enhanced stability upon storage, and accelerated drug release,
if required [48]. Along with the high loading capacity, biopolymer-based aerogels also show an
improved dissolution rate of poorly water-soluble drugs [6].

The biocompatibility of natural polymers along with the outstanding performance of aerogels
as carriers for active compounds, such as drugs, have promoted the systems as scaffolds in body
implants to accelerate tissue formation by providing a suitable porous structure that promotes cell
colonization [62,133]. Diverse authors have also studied the incorporation of drugs and growth
factors to promote the attachment, proliferation, and differentiation of cells, in order to provide both
substitutes for damaged tissues and therapeutic schemes that reduce post-implantation inflammation
and infections [12,133–135].

Controllable drug-release systems may be categorized as mechanical methods, which are
mainly in vivo implantable pump delivery systems built from biocompatible nanomaterials [136,137],
and as polymeric drug delivery systems. The last one makes use of biopolymers, in which the
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delivery of drugs is mainly dominated via diffusion and recently by electrochemical methods [137].
Hence, the incorporation of drugs within these kinds of porous scaffolds has been studied previously
for osteogenic differentiation, bone repair activity, and the stimulation of neural tissues [126,133].

3.4.1. Diffusive Phenomena on the Controlled Release of Drugs on Polysaccharide-Based Aerogels

Different methods for drug impregnation or loading can be found in literature regarding porous
materials from polysaccharides. Supercritical technology employing scCO2 has been defined as
the most innovative technique for producing polymer/drug composite systems for pharmaceutical
applications [138]. By means of supercritical fluid technology, the impregnation of aerogel particles
with drugs such as ketoprofen was achieved [62]. This process consists of placing aerogel particles and
ketoprofen in a closed autoclave under agitation; the ketoprofen was dissolved in scCO2 and adsorbed
in the aerogel matrix [62]. The same procedure was reproduced for obtaining poly(ε-Caprolactone)
(PCL) scaffolds loaded with ketoprofen [72] and for alginate-based aerogel microparticles for mucosal
drug-delivery [38]. In addition, maize starch aerogels and calcium alginate aerogels were impregnated
with different non-steroidal anti-inflammatory drugs, such as nimesulide, ketoprofen, and diclefenac
sodium [138].

Supercritical CO2 was also applied in the impregnation of starch and sodium alginate aerogels
with five different active compounds, namely loratadine, ibuprofen, rifabutin, dihydroquercetin,
and artemisinin, showing enhanced releasing times as well as double bioavailability in some
drug–aerogel systems [139]. In addition, this research concludes that the affinity between the
aerogel and the active substance must be high so that the active compound loading will be high enough
to provide an increase in the dissolution rate and bioavailability [139].

Another method for loading aerogel particles was reported by mixing the active compound
(Vancomycin) with a chitosan solution in different weight ratios, thus obtaining vancomycin-loaded
chitosan aerogel particles, which are proposed as a system for fast local administration of the antibiotic
for wound dressings [48]. A similar procedure was performed by [67], where mesoporous starch
aerogels were loaded with celecoxib by adsorption during the solvent exchange steps.

Three steps are considered for the diffusion model: first, the film diffusion; the second step is
the slowest, thus controlling the kinetics of the phenomenon, and it is called intraparticle diffusion;
finally, the last step is the adsorbate release on adsorbent active sites [140]. Several works have been
published regarding the release of drugs by means of diffusion phenomena [38,48,62,71,72,139,141].
The first mechanism when a drug-loaded polymeric material meets an aqueous solution is the filling
of the pores near the surface; then, drug diffusion is initiated by the dissolution of the solute in the
water-filled pores and the continuous diffusion in water [142]. Through time, the polymeric network
starts swelling, inducing several structural changes that are affected by the cross-linking density and
the degree of crystallinity of the 3D network. From the swelling of the polymer, a new diffusion starts
through the swelled polymer structure [142]. By analyzing the release profile of drugs, conclusions can
be obtained on whether the kinetics follow a Fickian or non-Fickian diffusion profile [143,144].

Innovative drug delivery systems are not only studied to improve cellular responses in different
tissues but as a strategy that develops platforms and nano-scale devices for selective delivery
of therapeutic small drug molecules to the cells or tissues of interest, for the maintenance of
appropriate doses, and to improve individual therapy. To meet this demand, many drugs have
been reformulated in new drug delivery systems to provide enhanced efficiency and more beneficial
therapies [136,137].

3.4.2. Controlled Drug Release by Electrical Stimulation Employing Conductive Porous Materials

In order to prevent the negative effects resulting from exposure to high dosages of drugs,
local electronically-controlled release of pharmaceutical compounds from implantable devices appears
as a promising option [145]. Drugs anchored inside the conductive materials have been reported using
supercritical technology and electropolymerization [126,146].
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Electrochemical methods involve the use of conductive polymers, which are electrochemically
oxidized during the polymerization processes, generating charge carriers, and, thus, allowing ionic drugs’
impregnation based on electrostatic interactions [147]. There are two main electrochemical methods to
induce the immobilization of drugs. In the first one, an ionic drug (preferably anionic) acts as a doping
agent and its anchoring proceeds simultaneously with the process of matrix formation, commonly named
one-step immobilization or in situ immobilization [146,148,149]. Drug fixation is the result of the
ion-exchange processes during polymer oxidation. Ionic drugs can serve as counter-ions for the positively
charged centers in the growing polymer chain [149]. Anti-cancer drugs, anti-inflammatory compounds,
and hormones have been fixed on conductive materials using one-step immobilization, mainly for the
development of neural devices [150–152].

The second method corresponds to the two-step or ex situ immobilization. The incorporation of
the drug is carried out after the synthesis of the matrix, through ion exchange processes taking place at
their surface. First, the polymer film is synthesized from a solution consisting of the monomer and
a small ionic molecule as doping agent, without the drug. The obtained film is later reduced and
oxidized by an electrical stimulus [148,149]. Reduction induces the removal of the dopant from the film;
meanwhile, the drug, which acts as the second doping agent, is incorporated during the process of
matrix oxidation [149]. This approach allows to prevent the interference of drugs during the growth of
polymer matrix and their subsequent release does not have much impact on their physicochemical
properties [148,149].

Related with the above, some strategies of drug fixation on conductive polymers using two
different doping agents have been reported [39,149,153]. The anti-inflammatory drugs dexamethasone
and κ-carrageenan were anchored simultaneously during PEDOT film formation, using in situ
immobilization. After film oxidation, κC was maintained on the matrix, granting the film greater
stability and integrity even after drug release [39].

Drug delivery is caused by electrochemical stimulation of the conductive matrix, which induces the
oxidation and/or reduction of the film. By applying a negative potential, the polymeric matrix is reduced
and the cationic charge of the polymer backbone is neutralized, causing the release of the anionic
drug by electrostatic mechanisms [148]. In a similar procedure, applying negative and positive cyclic
potentials induces the reduction and oxidation of the polymeric film, respectively; meanwhile, the matrix
experiments expansion and contraction, which force the release of the drug. Although cyclic stimulation
allows a greater amount of drug release in comparison with other methods, some authors have reported
that the application of the stimulus may cause delamination, cracks, and breakdowns of the matrix,
mainly in one-step immobilization systems [126,154,155].

The controlled release of drugs using electrical stimulation from conductive polymer
films [39,126,151] opens the door for a different approach regarding the application of polysaccharide
aerogels on drug delivery. Since these materials can be coated with an electrically conductive material
while incorporating active compounds, those composites may be used in the controlled release of
bioactive molecules by electrical stimulation [156,157]. These biochemical release systems are the
main focus of several research groups and further investigations should follow this path in order to
promote smart scaffolds that merge mechanical, electrical, and biochemical stimulation processes,
mimicking the in vivo ECM conditions, in order to promote specific cell behavior, as shown in Figure 4.
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Figure 4. (1) Flexoelectricity induced by mechanical stimulation (A) plays an important role
in bone repair and remodeling by inducing osteoblasts migration (B) and mineralization (C).
Reproduced from [109] under Creative Commons Attribution License. (2) Electrical communication and
redox-triggered interaction between neurons and (PEDOT) matrices functionalized with hydroquinone
electroswitches and phosphorylcholine zwitterions. (3) Schematic representation of the active
drug-delivery triggered by an electrical stimulus (A) and passive drug-release induced by diffusion
processes from a conductive polymeric matrix (B). Reproduced from [151,158] under Elsevier Copyright
Clearance Center (CCC) licenses.

4. Conclusions

The current status of biomimetic scaffold systems based on polysaccharides has been reviewed
regarding multi-stimulation, mechanical, electrical, and biochemical, in order to trigger specific
responses in cells during growth and differentiation, specifically in the biomedical field. Some details of
their production and properties have been summarized, including modification with conductive
polymers and strategies for controlled drug release from porous materials, such as aerogels.
Therefore, future studies of modified polysaccharide-based aerogels for tissue engineering could
consider promoting physical, mechanical, electrical, and biochemical multi-stimulation with the aim to
mimic in vivo conditions.
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