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Abstract

Background: In head and neck cancer little is known about the kinetics of osteopontin (OPN) expression after
tumor resection. In this study we evaluated the time course of OPN plasma levels before and after surgery.

Methods: Between 2011 and 2013 41 consecutive head and neck cancer patients were enrolled in a prospective
study (group A). At different time points plasma samples were collected: T0) before, T1) 1 day, T2) 1 week and T3)
4 weeks after surgery. Osteopontin and TGFβ1 plasma concentrations were measured with a commercial ELISA
system. Data were compared to 131 head and neck cancer patients treated with primary (n = 42) or postoperative
radiotherapy (n = 89; group B1 and B2).

Results: A significant OPN increase was seen as early as 1 day after surgery (T0 to T1, p < 0.01). OPN levels decreased to
base line 3-4 weeks after surgery. OPN values were correlated with postoperative TGFβ1 expression suggesting a relation
to wound healing. Survival analysis showed a significant benefit for patients with lower OPN levels both in the primary
and postoperative radiotherapy group (B1: 33 vs 11.5 months, p = 0.017, B2: median not reached vs 33.4, p = 0.031). TGFβ1
was also of prognostic significance in group B1 (33.0 vs 10.7 months, p = 0.003).

Conclusions: Patients with head and neck cancer showed an increase in osteopontin plasma levels directly after surgery.
Four weeks later OPN concentration decreased to pre-surgery levels. This long lasting increase was presumably associated
to wound healing. Both pretherapeutic osteopontin and TGFβ1 had prognostic impact.
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Background
Head and neck cancer is one of the leading causes of
cancer-related death with almost 60.000 new cases
and 12.000 deaths per year in the US [1]. Standard
treatment consists of primary surgery and adjuvant
radiotherapy in locally advanced tumors. Concomitant
chemo-radiotherapy is an alternative to surgery as a
definitive treatment option [2]. Despite combined
multimodality treatment survival rates at 5 years are
still about 20–50% for stage III/IV tumors [3–5].

Modern treatment strategies try to elucidate specific
molecular patterns and address these with novel
therapeutics like EGFR directed antibodies or small
molecules against growth factor receptors [6–8].
Identifying and targeting prognostic and predictive
biomarkers is an attractive approach for the develop-
ment of new treatment strategies.
One of these biomarkers is osteopontin (OPN). It is an

actively secreted protein which can be detected in body
fluids like blood or urine. Additionally it is overexpressed
in many cancer types [9] and plays an important role in
tumor progression [10]. Furthermore, it was shown that
elevated plasma levels are associated with an unfavorable
outcome in cancer [11–16]. High OPN levels are also
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correlated with tumor hypoxia which is a main resistance
factor to radiation treatment [17, 18].
Originally we compared OPN plasma levels in patients

with head and neck cancer treated with definitive or
postoperative radiotherapy. Surprisingly, there was no
difference between both groups at the start of radiation
treatment (data published as abstract) [19]. Therefore
the osteopontin time course after primary surgery was
analyzed in an additional cohort of head and neck
cancer patients and data on prognostic significance have
been updated. Expression patterns of TGFβ1 were
studied in parallel to address the possible correlation of
OPN plasma levels immediately after surgery with
wound healing (see Fig. 1).

Methods
Patients and samples
Patients with newly diagnosed squamous cell carcinoma
of the head and neck (HNSCC) were consecutively en-
rolled in two prospective trials (A and B1, 2). In group
A we included patients with locally confined tumors
which were eligible for primary resection. After giving
their written informed consent, blood samples were
taken at different time points: T0) before surgery, T1)
1 day after surgery, T2) 1 week and T3) 3 to 4 weeks
after surgery. Blood samples were immediately centri-
fuged and plasma was stored at -80 °C. Group B1
consisted of patients who were medically or technically
not eligible for surgical interventions or who refused
surgery. In group B2 we recruited patients who were
treated by primary surgery and were referred to adju-
vant treatment according to their final tumor stage.
Clinico-pathological patient characteristics are summa-
rized in Table 1. Patients in group A were treated with
primary surgery. According to national guidelines these
patients received adjuvant treatment when appropriate.
No adjuvant treatment was started before time point
T3. In group B plasma samples of patients were
analyzed before and during radio-(chemo) therapy

(definitive treatment n = 41 (B1), postoperative treatment
n = 89 (B2)). Patients from group B were enrolled be-
fore the start of the second trial (group A). The study
was approved by the local clinical ethics committee.
For a better understanding of the trial a scheme is
shown in Fig. 1.

Blood samples
Blood was anticoagulated with EDTA and subse-
quently centrifuged (4000 rpm) at room temperature
for 10 min. Plasma was removed, aliquoted and
stored at -80 °C until use. For comparison of OPN
we used archived plasma samples collected from
group B which had been prepared in the same way.
These samples were collected just before the start of
radiotherapy (T0).

ELISA-OPN
Aliquots of each sample were analyzed in duplicate
using the Human Osteopontin Assay Kit-IBL (Immuno-
Biological Laboratories Co., Ltd., Japan) according to the
manufacturer’s instructions.

ELISA TGFβ1
The same aliquots were analysed in duplicate using a
commercially available kit (ELISA Pro Kit for Human
Latent TGFβ1, Mabtech, Sweden) according to the
manufacturer’s instructions. Absolute plasma concentra-
tions for osteopontin and TGFβ1 are given in ng/ml.

Statistics
All statistical analyses were done with SPSS for
Windows version 23.0 (IBM SPSS, Inc.). Statistical
significance was set at p < 0.05. All reported p values
were two-sided. For comparison of patient characteris-
tics Fischer’s Exact test was used. Student’s t-test was
used for comparison of plasma concentrations between
groups. To test for correlations between plasma
osteopontin and TGFβ1 we used Pearson product-

Fig. 1 Scheme of the three patient groups treated by A) surgery, B1) definite radio-chemotherapy and B2) surgery followed by postoperative
radiotherapy. Time points for blood samples are marked as T0 to T3 (T0, before surgery (group A) or before start of radiotherapy (group B1 and B2),
T1, 1 day after surgery, T2, 1 week and T3, 3 to 4 weeks after surgery). S, surgery; RT, radiotherapy
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moment correlation coefficient. Analysis of variance
(ANOVA) was used for evaluation of OPN and TGFβ1
distribution among the different clinical parameters. For
comparison of OPN and TGFβ1 values at different time
points we employed a general linear model for repeated
measures for each plasma marker. Kaplan-Meier analysis
using log-rank statistics were used for comparing overall
survival. As done in the DAHANCA 5 OPN sub-study
[18] and TROG 02.02 study [20] groups were divided ac-
cording to tertiles and median values of OPN and
TGFβ1 concentrations.

Results
Patient characteristics
Table 1 describes the patient groups. Age and gender
were comparable. Control patients were significantly
younger. Patients from group B1 had more advanced
tumor stages compared to group A and B2.

Correlation of osteopontin and TGFβ1 with
clinico-pathologic parameters
There was no association of OPN and TGFβ1 with clinical
tumor parameters (e.g., histology, TNM- or UICC stage;
data not shown).

Osteopontin and TGFβ1 plasma levels
Mean (±SD) osteopontin plasma concentration (ng/ml)
was higher in patient groups compared to healthy
controls (group A: 630.8 ± 353.0 ng/ml, group B1:
811.5 ± 365.1 ng/ml, group B2: 734.7 ± 310.1 ng/ml,
controls: 478.9 ± 155.0 ng/ml; p = 0.028, p = 0.008 and
p = 0.04 for group A, B1 and B2 vs controls, respect-
ively, Fig. 2a). TGFβ1 plasma levels differed signifi-
cantly between group A (15.23 ± 11.6 ng/ml) and
group B1 (25.5 ± 11.8 ng/ml), p = 0.002 and between
group B1 and controls (18.2 ± 10.1 ng/ml), p = 0.046
(Fig. 2b).

Table 1 Patient characteristics

Group A:
surgery

Group B1:
primary RT

Group B2:
postoperative RT

Controls p-value

Number 41 42 89 16

Time frame 08/11–09/13 07/07–06/09 09/07

Follow-Up (median, months) 24.6 17.3 49.3a <0.01

Gender m/f 34/7 37/5 70/19 8/8 n.s.

Age (mean) 62,3 61,0 59,9 41,6a n.s.

T-stage

1 9 0 27 < 0.01

2 15 1 28

3 12 6 16

4 4 34 17

N-stage

0 15 7 39 < 0,01

1 6 0 13

2 20 29 35

3 0 4 2

UICC-stage

I/II 5 1 31 < 0,01

III 14 1 12

IV 22 40 46

Tumor site

Oropharynx 17 18 28 0,004

Larynx 10 11 18

Hypopharynx 7 7 4

Oral cavity 6 3 31

CUP 1 3 8

Abbreviations: UICC International union against cancer, CUP Cancer of unknown primary tumor. P-values according to student’s t-test and Fisher’s exact test
aAge was significantly lower in controls compared to patient groups

Polat et al. BMC Cancer  (2017) 17:6 Page 3 of 8



Changes in osteopontin and TGFβ1 plasma
concentrations over time after surgery
Mean osteopontin plasma concentrations (ng/ml) for the
different time points T0 to T3 (mean ± SD) was 631 ± 353,
1363 ± 660, 936 ± 526 and 649 ± 374, p < 0.01 (Fig. 3a).
The most prominent difference was seen directly after
surgery between time points T0 and T1. Three to four
weeks after surgery OPN concentration reached base line
levels again (T0 and T3). Patients with higher OPN
concentrations (> median) at the time of surgery
showed also higher values 3–4 weeks postoperatively
(Fig. 3c, p < 0.05).

No significant changes were observed in the time course
of TGFβ1 concentrations (Fig. 3b) with the highest TGFβ1
values at time points T2 and T3 (as we would expect it in
wound healing).

Correlation between osteopontin and TGFβ1
Pretherapeutic plasma concentrations of osteopontin
and TGFβ1 values were analysed by the Pearson
correlation coefficient test. We observed a significant
positive correlation between both parameters, R =
0.619, p = 0.001 (Fig. 4).

Fig. 2 Box and whisker plots demonstrate the distribution plasma levels of a) OPN and b) TGFβ1 in the different patient groups and healthy
controls at time point T0 before treatment. Bars indicate statistical significant differences with p < 0.05

Fig. 3 Time course of OPN plasma levels for group A with a) OPN and b) TGFβ1 (T0, before surgery, T1, 1 day after surgery, T2, 1 week and T3, 3
to 4 weeks after surgery). Bars indicate statistical significant differences with p < 0.05. c shows OPN time course for patients with OPN levels
above or below median indicating that patients in both groups return to their pre-surgery status
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Survival
Both osteopontin and TGFβ1 at the start of treatment
correlated with patient overall survival (Figs. 5a-d).
Higher OPN values were associated with a shorter over-
all survival. Median survival times were 11.5 and
33.0 months, p = 0.017 in patients with definitive
radiochemotherapy (group B1). Median survival was
33.4 months for patients with higher OPN values and
was not reached for lower OPN values (p = 0.031) in
patients treated with postoperative RT (group B2). In
group A (patients with earlier tumor stage partly with
no adjuvant treatment) survival was also worse for the
high OPN group but the difference was not statistically
significant (survival at 3 years was 76 and 95%, p = 0.13).
Patients with TGFβ1 values in the upper tertile showed a
worse outcome with median survival times of 10.7 and
33.0 months, p = 0.003 (group B1).Fig. 4 Positive correlation between TGFβ1 and OPN plasma levels at

time point T0. Pearson correlation coefficient R = 0.619, p = 0.001

Fig. 5 Kaplan-Meier curves show overall survival for patients in group a (perioperative, A), group B1 (primary radiotherapy, b) and group B2
(postoperative RT, c) according to OPN at time point T0. When dichotomized by median or tertiles, patients with lower OPN had an improved overall
survival. For TGFβ1 a difference in survival was seen in patients from group B1, showing a better survival for patients in the lower two tertiles (d)
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Discussion
To our knowledge this is the first study presenting short
term osteopontin expression after surgery in head and
neck cancer patients. Blasberg and coworkers reported
on OPN time course after tumor resection in lung
cancer patients [21]. They described a similar pattern
with decreasing OPN plasma values in the longer
follow-up but did not study OPN changes within the
first days and weeks after surgery.
Our results suggest that both tumor mass (related

microenvironment) and the postsurgical situation can
result in significantly elevated OPN levels. Instead of an
anticipated immediate postoperative decrease we observed
a doubling of OPN within 1 day and a return to preopera-
tive values 3 to 4 weeks thereafter. Values at this time
point seemed to mirror the situation before surgery. Adju-
vant radiotherapy typically starts 4 weeks after surgery.
Under the assumption that OPN is prognostic for malig-
nant behavior and influences radiation response [22], this
may explain that OPN before radiotherapy was prognostic
both in primary and postoperative treatments.

OPN and TGFβ1 in wound healing
We propose the hypothesis that the transitory rise in
OPN plasma levels in the postoperative setting is
associated with wound healing and not caused by OPN
secretion or expression from cancer cells since its in-
crease was seen within 24 h. It is well known that OPN
is not a tumor specific protein and can also originate
from immune cells like macrophages or from endothelial
cells [23, 24]. In wound healing there is a wide range of
cells and cytokines which are differentially expressed
[25]. Therefore we chose TGFβ1 as a representative
marker and looked for changes in its expression pat-
terns. We observed an increase of its plasma concentra-
tion peaking at 1 week after surgery which is in line with
data from the literature [26, 27]. Changes of OPN and
TGFβ1 levels were correlated (R = 0.62). From preclin-
ical studies there is good evidence for an OPN mediated
TGFβ1 expression [28–30]. This is in agreement with
the kinetics observed in this study, peak concentration
of TGFβ1 lagged behind.

TGFβ1 and OPN as prognostic factors
Transforming growth factor beta 1 is both expressed by
tumor cells and adjacent stroma [31–33]. Prognostic
impact of plasma levels is therefore controversial [34–38].
In this patient cohort we observed a significant negative
correlation of pre-therapeutic TGFβ1 with overall survival.
The prognostic significance of osteopontin in head and

neck cancer has been reported in patients treated by defin-
ite radiotherapy [15, 16, 18, 39] and is thought to relate to
an association with tumor hypoxia and malignant pheno-
type. A hypoxic sensitizer (nimorazole) was of benefit in

the high osteopontin tertile in the Dahanca 5 study. In con-
trast, data from TROG 02.02 did not find an association
with survival parameters [20] and no predictive correlation
with tirapazamine treatment.
Our data support a role of OPN as a prognostic

biomarker for inoperable patients (treated with definite
radiochemotherapy) and extend this observation to
patients with combined surgery and radiotherapy.
Limitations of this and other single center studies are

caused by the limited sample size. Furthermore, despite
the fact that there is a large body of data on OPN detec-
tion there is still not a generally validated and certified
test, making cross study comparisons more difficult. Most
groups have been using an ELISA based system. But still
there is also no standard ELISA kit, which would make at
least these data more comparable. As shown by Vorder-
mark et al. OPN values differed significantly when differ-
ent ELISA systems were applied [40]. Also different OPN
values are generated when using plasma or serum
samples. For TGFβ1 the described ELISA system can only
detect the total latent form and not the functionally active
form of TGFβ1 which could also lead to some bias.

Conclusion
In conclusion, patients with head and neck cancer
showed a rise in osteopontin plasma levels as short as
24 h after surgery. Four weeks after tumor resection
OPN concentration decreased to baseline levels mirror-
ing the pre-treatment situation. This long lasting OPN
increase was presumably associated with wound healing.
Both osteopontin and TGFβ1 base line levels had prog-
nostic impact on patient survival. Confirmation, espe-
cially for the postoperative setting as well as correlation
with tumor gene signatures seems worthwhile.
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