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Aims Augmenting echocardiography with artificial intelligence would allow for automated assessment of routine parameters and 
identification of disease patterns not easily recognized otherwise. View classification is an essential first step before deep 
learning can be applied to the echocardiogram.

Methods 
and results

We trained two- and three-dimensional convolutional neural networks (CNNs) using transthoracic echocardiographic (TTE) 
studies obtained from 909 patients to classify nine view categories (10 269 videos). Transthoracic echocardiographic studies 
from 229 patients were used in internal validation (2582 videos). Convolutional neural networks were tested on 100 patients 
with comprehensive TTE studies (where the two examples chosen by CNNs as most likely to represent a view were eval-
uated) and 408 patients with five view categories obtained via point-of-care ultrasound (POCUS). The overall accuracy of 
the two-dimensional CNN was 96.8%, and the averaged area under the curve (AUC) was 0.997 on the comprehensive 
TTE testing set; these numbers were 98.4% and 0.998, respectively, on the POCUS set. For the three-dimensional CNN, 
the accuracy and AUC were 96.3% and 0.998 for full TTE studies and 95.0% and 0.996 on POCUS videos, respectively. 
The positive predictive value, which defined correctly identified predicted views, was higher with two-dimensional rather 
than three-dimensional networks, exceeding 93% in apical, short-axis aortic valve, and parasternal long-axis left ventricle views.

Conclusion An automated view classifier utilizing CNNs was able to classify cardiac views obtained using TTE and POCUS with high 
accuracy. The view classifier will facilitate the application of deep learning to echocardiography.
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Introduction
Artificial intelligence (AI) has shown promise in various fields in medi-
cine.1–3 Through recognition of complex patterns not easily identifiable 
by the human eye, not only has deep learning boosted radiological diagno-
sis of diseases,4,5 but it has also expanded the utility of inexpensive tests, 
such as the electrocardiogram (ECG), to detect diseases not otherwise 
routinely recognized as in the identification of paroxysmal atrial fibrillation 
during an ECG in sinus rhythm.6 Transthoracic echocardiography (TTE), 

on the other hand, gives extensive information on the structure and func-
tion of the heart and is widely available, making it the initial imaging mo-
dality for patients presenting with suspected cardiovascular disease. 
Augmenting echocardiography with AI would not only allow for auto-
mated measurement of routine echocardiographic parameters such as 
the ejection fraction and improved daily efficiency,7–9 but it might also fa-
cilitate identification of diseases not easily recognized by echocardiog-
raphy such as cardiac amyloidosis.10 Furthermore, as point-of-care 
ultrasound (POCUS) imaging is being increasingly utilized to evaluate 
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cardiac structure and function in various clinical settings, ranging from pri-
mary care clinics to the intensive care units, enhancing POCUS with AI can 
improve the assessment accuracy of relevant cardiac parameters that can 
affect management strategies in these settings.

There are multiple challenges to the application of deep learning to the 
echocardiogram. First, a TTE study has different views, each providing dif-
ferent information; these views can be obtained in different order, and 
each view may be obtained multiple times depending on the sonographer 
and situation. This makes it different from a computed tomography or 
magnetic resonance imaging study, where the acquisition of videos is 
more standardized and the order and content of the videos incorporating 
each study can be predicted. Thus, deep learning cannot be applied imme-
diately to a TTE study when specific views are required. Second, the qual-
ity of echocardiographic videos is dependent on the operator, the patient 
(e.g. body habitus, lung disease, and patient positioning), and the ultra-
sound probe and machine and can vary significantly between different 
TTE studies. This second challenge is even more pronounced in 
POCUS since images can be obtained in less optimal settings and by 
less experienced operators and the portable ultrasound machines are 
less sophisticated. While the latter challenge is mostly non-modifiable, 
the first challenge can be overcome by using an automated view classifier 
that can identify specific views of interest in each echocardiographic study. 

There have been multiple automated TTE view classifiers developed pre-
viously.11–15 A limitation in many of those view classifiers was that the 
testing sets contained pre-selected views of interest and did not necessar-
ily cover all the potential views included in a routine TTE study. Therefore, 
the real-world performance of those view classifiers is unknown. 
Furthermore, none of the previous studies evaluated performance on 
echocardiographic views obtained using POCUS, which could have signifi-
cant implications in clinical practice (e.g. early identification of cardiac dis-
ease and referral to cardiology in primary care clinics).

In this study, we set forth to (i) develop an automated convolutional 
neural network (CNN)-based view classifier that can identify major TTE 
views from real-life, full echocardiographic studies and (ii) evaluate the per-
formance of the view classifier on cardiac videos obtained using POCUS.

Methods
Study population and design
Consent
The study was approved by the Institutional Review Board, which waived 
informed consent requirements. Only patients who had previously agreed 

Figure 1 Overview of study design. 2D, two-dimensional; 3D, three-dimensional; A2C, apical two-chamber; A3C, apical three-chamber; A4C, apical 
four-chamber; PLAX-LV, parasternal long-axis left ventricle; POCUS, point-of-care ultrasound; PSAX-AV, parasternal short-axis aortic valve; TTE, 
transthoracic echocardiography.
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to allow access to their records for research were included. The data are 
available from the corresponding author upon a reasonable request.

Training and internal validation
The design of the study is illustrated in Figure 1. The TTEs of all adult patients 
who had a resting TTE study at Mayo Clinic, Rochester between 2003 and 
2020 were identified (544 378 TTEs; the resting TTE cohort). Subsequently, 
a random sample of TTEs of ∼45 unique patients per year was selected 
from this cohort for a total of 820 TTEs. Of those, 651 patients were 
used in training and 169 in internal validation in approximately a 4:1 ratio. 
To increase generalizability, all stress echocardiograms at Mayo Clinic, 
Rochester between 2004 and 2018 were also identified (97 141 studies; 
the stress echocardiography cohort). A simple random sample of 318 stud-
ies was then chosen. Of these, 258 TTEs were used in training and 60 in in-
ternal validation (approximately 4:1 ratio). Only one echocardiographic 
study for each patient was included in the combined cohort.

Testing
Testing using full transthoracic echocardiographic studies
A random sample of five to six TTEs per year (total of 100 patients) was 
chosen randomly from all adult patients with a TTE between 2003 and 
2020 who were not selected for training or internal validation; no more 
than one TTE study was included for each patient; all videos obtained 
from the same patient were exclusively assigned to the training, validation, 
or testing groups.

Testing using point-of-care ultrasound
Cardiac videos were obtained prospectively by certified sonographers using 
POCUS from 408 random patients who had a clinical indication for a full 
outpatient TTE study between November 2022 and March 2023 (Lumify, 
Philips Healthcare). The videos were stored using the web-based platform 
Q-path, Telexy Healthcare, Port Coquitlam, Canada and were used for 
testing of the view classifier as a proof of concept to evaluate if the view 
classifier would be able to recognize and categorize views obtained using 
handheld ultrasound. The model was evaluated on the POCUS data set 
without any further training, which allowed us to test the robustness and 
generalizability of the model.

Testing using an independent cohort
We also evaluated the performance of the view classifier on a random 56 
full TTE studies performed at Mayo Clinic in Arizona and Florida from a to-
tal of 460 000 TTEs between 2003 and 2021 as an independent sample. 
Only one TTE per patient was considered.

Echocardiography
Views were classified into the following nine categories: (i) parasternal long- 
axis left ventricle (PLAX-LV); (ii) parasternal short-axis aortic valve 
(PSAX-AV), which included both standard and zoomed-in views; (iii) apical 
four-chamber (A4C), which also included A4C right ventricle-focused view; 
(iv) apical three-chamber (A3C); (v) apical two-chamber (A2C); (vi) inferior 
vena cava/abdominal aorta, or liver, views; (vii) all views that include colour 
Doppler; (viii) all views that include contrast enhancement; and (ix) other 
remaining views, which included all other TTE views. Examples of the 
view categories are shown in Supplementary material online, Figure S1. 
An ultrasound image-enhancing agent (i.e. contrast) was used for endocar-
dial border detection according to clinical practice recommendations, when 
two or more left ventricular segments could not be adequately visualized.

Transthoracic echocardiographic images from Mayo Clinic, Rochester 
were reviewed and labelled manually by one reviewer (J.A.N.), a cardiology fel-
low trained in view classification. Transthoracic echocardiographic images 
from the Mayo Clinic in Arizona and Florida were reviewed and labelled manu-
ally by a board-certified cardiologist (G.T.). All above views were identified and 
included from the resting TTE cohort resulting in a total number of 8862 vid-
eos in the training set and 2274 videos in the internal validation set (combined 
number of 11 136 videos), Supplementary material online, Table S1. The spe-
cific views included from the stress echocardiography cohort were PLAX-LV, 
A4C, A3C, A2C, and other remaining views [specifically including PSAX-mitral 
valve level (PSAX-MV), PSAX-papillary muscle level (PSAX-PAP), and 
PSAX-apex level] with 1407 videos used in training and 308 in internal 

validation, Supplementary material online, Table S2. In the training and internal 
validation sets, only one example of each view was included.

Transthoracic echocardiographic volumes with <10 frames including the 
still images of continuous wave Doppler, pulsed wave Doppler, tissue 
Doppler imaging, and M-mode were excluded in the data pre-processing 
stage (see next section). Other exclusion criteria included TTE studies ac-
quired with a congenital protocol and cine videos with a view transforming 
to another view. The TTE images included both greyscale and B-mode col-
ours (example in Supplementary material online, Figure S1I). Different clips 
for the same view may have different quality, depth, or gain (see 
Supplementary material online, Figure S2).

The views obtained using POCUS, which were used for testing the view 
classifier, were A2C, A3C, A4C, PLAX-LV, and PSAX-MV/PSAX-PAP (in-
cluded in the ‘others’ category) views.

Data pre-processing
Institutional TTEs were stored in the Digital Imaging and COmmunication in 
Medicine (DICOM) format. The Echo Notion Software (Notion PACS, 
2019) ‘Batch Query’ function was used to anonymize and download the 
TTEs in our study. Subsequently, the manually labelled views were identified 
using accession, series, and instance numbers, which collectively uniquely 
identified specific cine images.

The downloaded DICOM files were then cropped in an automated way 
to show the echocardiographic window with unnecessary information re-
moved; this process resulted in the exclusion of company logos, heart 
rate, blood pressure, frame rate, and study date. Then, to isolate the imaging 
sector, the changing portion of the video across the temporal dimension 
(i.e. pixel values changing from frame to frame) was identified, and morpho-
logical transformations were applied. Finally, a bounding box was drawn 
around the largest moving portion of the video in order to define the im-
aging sector. Note that the ECG signal was removed if it was outside the 
sector but was retained if it overlapped the imaging sector in any way; 
this was done to avoid introducing any bias to resultant videos (see 
Supplementary material online, Figure S3). The initial second from each 
cine image was discarded as it was usually the least stable part of the study. 
Subsequently, 10 consecutive frames from the middle portion of each cine 
loop were used. All images were resized to 256 × 256 pixels with padding 
to maintain the aspect ratio. All pre-processing steps used Python 3.6 with 
pydicom 2.3, pillow 8.3, and opencv-python 4.5.

Convolutional neural networks
We first trained the view classifier using the two-dimensional (2D) 
ResNet-18 CNN.16 For this purpose, the middle 10 frames of each cine 
loop were treated as still images and used as input data. Because the tem-
poral dimension was not fed into the network in this training, the network 
was not aware of the consecutive nature of the frames and treated them as 
independent images. The 2D CNN model generated a score between 0 and 
1 for each frame, for each of the nine classifications, with high values indi-
cating high confidence that the image belongs in that category. The pre-
dicted category for each cine loop is the category with the highest 
average score. We also tested the 2D network using only one frame per 
cine loop to test its robustness.

We then trained another version of the view classifier using a three- 
dimensional (3D) ResNet-18 CNN to evaluate whether this would improve 
the performance of the view classifier. The 3D CNN took into account the 
third, temporal, dimension with Conv3d. This allows the 3D CNN model to 
incorporate the relationship between frames of the same cine loop. Similar 
to the 2D network, the 10 middle frames were used, but in this case, the 10 
frames were treated as one example rather than 10 independent examples.

Additionally, for the 2D CNN, we implemented other widely used archi-
tectures, including Inception-v3,16 VGG-13, and VGG-16.17

All 2D and 3D CNNs were trained with batch size 128, learning rate 0.01, 
stochastic gradient descent optimizer, and multi-step learning rate sched-
uler using Python 3.6 and PyTorch 1.10. PyTorch functions Conv2d and 
Conv3d were used for the convolution of 2D and 3D CNNs, respectively. 
Also, we used random resized cropping for data augmentation with a crop 
of random size ranging from 0.25 to 1.0 and a random aspect ratio ranging 
from 0.75 to 1.0. We trained the models for 200 epochs and selected the 
best model based on the validation performance with cross-entropy loss.
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Model evaluation
Diagnostic performance was evaluated using accuracy, positive predictive 
value (PPV), and area under the receiver operating characteristic curve 
(AUC). When multiple examples existed for the same view in the testing 
set, only the two examples with the highest probability numbers were 
used. In the POCUS data set, there was only one example of each view ob-
tained so the probability of that example was used. Overall accuracy was 
calculated as the number of correctly identified views overall divided by 
the total number of views. The per-view accuracy was calculated as the 
number of correctly identified videos from all available videos for each 
view. The PPV for each view was calculated as the number of correctly iden-
tified videos divided by the total number of predicted videos for each view. 
The PPV was considered to be the performance measure that relates the 
most to the intended use of the view classifier (i.e. to have correctly iden-
tified views of interest). The per-view and the averaged AUCs were re-
ported. A confusion matrix was used to show correct and incorrect view 
classifications of the testing set.

The top two examples for each view in each TTE study identified by the 
2D CNN were compared with the two top examples for each view that an 
expert echocardiographer (S.V.P.) identified manually. This comparison was 
performed in a random sample of patients who had four to five examples of 
a view of interest (including A2C, A3C, A4C, PLAX-LV, and PSAX-AV) re-
sulting in a total of 73 overall videos (three different TTE studies for each of 
the mentioned five views were used).

Results
Overall, 909 patients were used in training, 229 in internal validation, 
100 in testing using full TTE studies, and 408 in additional testing using 
POCUS. Patients had a wide range of ages, sizes, and comorbidities 
(Table 1; Supplementary material online, Table S3). Clips with varying 
depths and quality were used (Supplementary material online, Figures 
S1 and S2). Only seven TTE studies utilized contrast. The indications 
for the included TTE studies are shown in Supplementary material 
online, Table S4.

Performance of view classifier
The overall accuracy of the 2D CNN using the middle 10 consecutive 
frames was 97.3%, and the averaged AUC was 0.998 (Figure 2). The PPV va-
lues exceeded 93% for all views of interest (A2C, A3C, A4C, PLAX-LV, and 
PSAX-AV) (Figure 2). Description of the 40/1500 (2.7%) incorrectly identi-
fied views is shown in Supplementary material online, Table S5. A few obser-
vations could be made from the misclassified views. First, when 2D Doppler 
views were misidentified as another view, it was the correct 2D view to 
which the Doppler colour had been applied in 75% of cases. Second, 
contrast-enhanced videos were frequently identified as A2C, A3C, or 
A4C views. Third, there was confusion between the PSAX-AV view and 
other short-axis views (e.g. PSAX-MV) as well as other views that include 
the aortic valve (e.g. PLAX-zAV and ascending aorta). Finally, there were 
some rare occurrences in the test set that the view classifier was not trained 
to classify (e.g. pulmonary artery main branches, prosthetic mitral valve with 
shadowing, severely enlarged right ventricle, among others).

Because each frame in a cine loop was treated independently, some 
frames belonging to the same view were identified as two or more differ-
ent views by the 2D CNN in the testing set. However, the use of the aver-
aged probability from all included frames for each view and then the use of 
the two examples with the highest probability for each view were strat-
egies utilized to help reduce the impact of this issue. This was reflected in a 
lower accuracy of the 2D CNN when testing using only one random 
frame (accuracy 95.8%; Supplementary material online, Figure S4).

The average AUCs for 2D CNNs with the Inception-v3, VGG-13, 
and VGG-16 architectures were 0.998, 0.997, and 0.997, respectively, 
and they were almost equivalent to the model using the ResNet-18 
architecture. Therefore, we used ResNet-18 architecture for the 3D 

CNN because of the equivalent performance and the computationally 
lighter architecture in terms of the number of trainable parameters.

On the other hand, the overall accuracy of the 3D CNN was 96.3% with 
an averaged AUC of 0.998 (Figure 3). Similar to the 2D CNN, the per-view 
accuracy exceeded 98% in all views. However, the PPV values were 
lower compared with the 2D CNN although they still exceeded 89% 
for these views (A2C, A3C, A4C, PLAX-LV, and PSAX-AV) (Figure 3). 
Description of the 56/1495 (3.7%) incorrectly identified views is shown 
in Supplementary material online, Table S6. There were more incorrectly 
predicted PSAX-AV views compared with the 2D CNN (20 vs. 11 videos, 
respectively), but, similar to the 2D CNN, the confusion was often with 
views that contained the ascending aorta, PLAX-zAV view, or other short- 
axis views. In other instances, the PLAX-RV inflow and the Sc4C-septum 
views were also misidentified as PSAX-AV. Second, contrast-enhanced vid-
eos were also frequently identified as A2C, A3C, or A4C views. Third, 
there were several 2D Doppler mode videos misidentified as other views, 
although in six of nine cases, these were the views of the underlying 2D vid-
eos to which the Doppler colour was applied.

Notably, almost all of the misclassified views by the 2D CNN had a 
probability number/inference score of <90% (Supplementary material 
online, Figure S5). This was not necessarily the case in the 3D CNN, 
where many more incorrectly labelled videos had probabilities ≥ 90%.

Interestingly, when compared with the top two views that an expert 
echocardiographer identified in a random sample with four to five exam-
ples of a view of interest (A2C, A3C, A4C, PLAX-LV, and PSAX-AV), 
there was agreement in 29 of 30 videos selected as top two examples 
(97%). Specifically, all top two examples per view were the same for 
the three TTEs in each of the A3C, A4C, PLAX-LV, and PSAX AV views. 
In the A2C view, there was disagreement in the second top example in 
one of the three TTE studies (one of six examples). The agreement with 
the single best example was 100%.

Saliency maps
To be able to understand the basis on which the CNNs classified the 
views to different categories, we looked at saliency mapping, which re-
presents the input pixels that the CNNs found to be shared by exam-
ples of the same view and used as identifying features of that certain 
view. Since the 2D CNN performed better than the 3D CNN, we 
show representative examples of saliency mapping across different 
views as identified by 2D CNNs in Supplementary material online, 
Figure S6. These features were consistent across different images 
from the same views and are similar to those used by echocardiogra-
phers to classify the views.

Prospective testing using point-of-care 
ultrasound videos
In the POCUS data set, there were 32 of 2039 views were misidentified 
using the 2D CNN with an overall accuracy of 98.4% and an averaged 
AUC of 0.998 (Figure 4). The PPV exceeded 95% in all the five view cat-
egories. On the other hand, there were 102/2039 misidentified views 
when using the 3D CNN with an overall accuracy of 95.0% and an aver-
aged AUC of 0.996 (Figure 5). Positive predictive value exceeded 91% in 
all view categories with the least value being for the A4C view where 35 
(8%) of the images of the view classifier identified belonged to the A4C 
and 3 (0.7%) to the A2C view. Notably, PPV was universally better using 
the 2D CNN for all views tested (A2C, A3C, A4C, PLAX-LV, and 
others) (Figures 4 and 5).

Performance in the independent cohort
In random 56 full TTE studies from the Mayo Clinic in Arizona and 
Florida, the 2D CNN still performed well with an overall accuracy of 
96.62% (Supplementary material online, Figure S7).
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Performance according to decade 
of study
We assessed the performance of the 2D CNN view classifier on TTEs 
from the testing set at Mayo Clinic, Rochester obtained at/before vs. after 
10 October 2012 (Supplementary material online, Figure S8). Performance 
was largely similar with accuracy of 96.7% and 98.1%, respectively.

Inter-observer variability in labelling 
transthoracic echocardiographic studies 
from Mayo Clinic, Rochester
A total of random 45 examples were validated by an experienced level 
III board-certified echocardiologist (S.V.P.) with 100% agreement with 
the labelling performed by (J.A.N.).
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Table 1 Characteristics of patients in the training, internal validation, and transthoracic echocardiographic testing sets

Training (n = 909) Validation (n = 229) Testing (n = 100)

Sex (male) 487 (53.6%) 109 (47.6%) 46 (46%)

Age at echocardiogram 69 (57, 78) 68 (59, 77) 65 (50, 73)

Ethnicity
Hispanic or Latino 8 (0.9%) 4 (1.7%) 1 (1%)

Non-Hispanic or Latino 732 (80.5%) 190 (83%) 76 (76%)

N-Miss 169 35 23
Race

American Indian/Alaskan Native 2 (0.2%) 2 (0.9%) 0 (0%)

Asian 11 (1.2%) 4 (1.7%) 1 (1%)
Black or African American 11 (1.2%) 4 (1.7%) 4 (4%)

Native Hawaiian/Pacific Islander 1 (0.1%) 0 (0%) 0 (0%)

White 823 (90.5%) 207 (90.4%) 89 (89%)
Other 13 (1.4%) 3 (1.3%) 1 (1%)

N-Miss 48 9 5

Year
2003–05 186 39 16

2006–08 173 47 16

2009–11 146 43 22
2012–14 151 32 15

2015–17 131 48 15

2018–20 122 20 17
Vendors 251 61 13

Acuson 329 81 44

GE 265 73 28
Philips 1 — 1

Toshiba 63 — 14

Unknown
Weight 85.25 (71.84, 108.22) 84.0 (68.0, 105.6) 97.0 (77.87, 127.5)

Height 168.0 (158, 176.65) 166.5 (159, 176.25) 169.9 (159.45, 177.8)

BMI (kg/m2) 29.1 (25.01, 36.42) 29.76 (25, 35.79) 31.96 (26.82, 45.59)
Congestive heart failure 150 (16.5%) 36 (15.9%) 21 (21%)

Peripheral vascular disorders 166 (18.3%) 47 (20.7%) 16 (16%)

Chronic obstructive pulmonary disease 131 (14.4%) 37 (16.3%) 26 (26%)
Diabetes mellitus 139 (15.3%) 38 (16.7%) 15 (15%)

Renal failure 81 (8.9%) 21 (9.3%) 9 (9%)

Liver disease 41 (4.5%) 14 (6.2%) 7 (7%)
Atrial fibrillation 186 (20.5%) 50 (22%) 20 (20%)

Hyperlipidaemia 340 (37.5%) 90 (39.6%) 35 (35%)

Hypertension 417 (46%) 104 (45.8%) 43 (43%)
Pulmonary hypertension 71 (7.8%) 16 (7.0%) 17 (17%)

Continuous variables are summarized as median (interquartile range). Categorical variables are summarized as count (%).
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Discussion
An automated view classifier that can identify specific views of inter-
est from full TTE and POCUS studies provides the building blocks 
that will allow for the application of deep neural networks to echo-
cardiography exams. This is especially the case since the performance 
of deep neural networks depends largely on both the quality and the 
number of input exams used for training, the latter of which would 
otherwise be a cumbersome task to perform at a large scale manually. 
In this study, we developed an automated CNN-based TTE view clas-
sifier that identified five major echocardiographic views (i.e. 
PLAX-LV, PSAX-AV, A4C, A3C, and A2C) with an excellent accur-
acy exceeding 97% and an AUC exceeding 0.998. The accuracy was 
still high at 96.6% in an independent cohort from Mayo Clinic in 
Arizona and Florida. Other views including the subcostal views, 
contrast-enhanced views, 2D Doppler views, and others had to be 
labelled to allow for testing on a complete full TTE study, simulating 
a real-world experience. Importantly, the developed view classifier 
performed comparably when applied to videos obtained using a 
handheld ultrasound device (POCUS).

We utilized 2D and 3D CNNs separately for the classification of 
echocardiographic views. In general, the 2D network offered the advan-
tage of being lighter and faster to execute when compared with the 3D 
network. Additionally, it was more versatile as it could accommodate any 
number of frames and could operate effectively even when presented 
using a single frame with an accuracy of 95.8%. However, it did not ac-
count for the temporal dimension of cine loops. Therefore, it analysed 
the different frames from the same cine loop as independent data points. 
One consequence we observed was that two different frames from the 
same cine loop in the testing set could be identified as two different 

views. We were able to overcome such a consequence by averaging 
the probability output number from the middle 10 frames in each cine 
loop, which allowed only one view to be predicted from each loop. 
This resulted in enhanced performance when compared with using 
only one frame to predict the view of interest. Following this step by 
choosing the two videos with the highest probability number/inference 
score for each view in each study helped further mitigate this challenge. 
Interestingly and despite all these sensible limitations for a 2D CNN, the 
performance of the view classifier, as indicated by the PPV, was similar or 
better in the identification of the A2C, A3C, PSAX-AV, and PLAX-LV 
views when using the 2D CNN compared with the 3D CNN. 
Although the 3D CNN seemed to have a superior performance in the 
identification of the A4C view while using the TTE testing set, the 2D 
CNN still performed better in the identification of the A4C view in 
the POCUS testing set. This could be because of the increased input 
used for training the 2D in our study (10 frames from each video vs. 
one video for the 3D CNN). Two-dimensional CNNs were also found 
to outperform 3D CNNs in view classification of echocardiographic vid-
eos in a previous study.16 Reassuringly, the 2D CNN was found to use 
features similar to those used by echocardiographers to classify the 
views, as shown using saliency mapping.

Different architectures have been used in other recently developed 
echocardiographic view classifiers. For example, Gao et al.14 used two 
2D CNN networks, one of which was concentrated along spatial dimen-
sions, and the other along the temporal dimension. Each network was 
executed separately, but input from both the spatial and temporal net-
works was combined to obtain final classification scores for eight views 
of interest. The classifier performed with an overall accuracy of 92.1% 
in distinguishing the eight views from each other. Kusunose et al.13 instead 
used one 2D CNN, similar to ours, with different types of input such as 

Figure 2 Performance of the two-dimensional convolutional neural network on the transthoracic echocardiographic testing data set. Left graph 
shows the receiver operating characteristic curves for each of the nine view categories and the area under receiver operating characteristic curve, ac-
curacy, positive predictive value, negative predictive value, sensitivity, and specificity of each of the view categories. Right graph shows the confusion 
matrix for the model. 2D, two-dimensional; A2C, apical two-chamber; A3C, apical three-chamber; A4C, apical four-chamber; Acc, accuracy; CNN, 
convolutional neural network; NPV, negative predictive value; PLAX-LV, parasternal long-axis left ventricle; POCUS, point-of-care ultrasound; PPV, 
positive predictive value; PSAX-AV, parasternal short-axis aortic valve; Sen, sensitivity; Spe, specificity; TTE, transthoracic echocardiography.
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Figure 4 Performance of the two-dimensional convolutional neural network on the point-of-care ultrasound data set. Left graph shows the receiver 
operating characteristic curves for each of the nine view categories and the area under receiver operating characteristic curve, accuracy, positive pre-
dictive value, negative predictive value, sensitivity, and specificity of each of the view categories. Right graph shows the confusion matrix for the model. 
A2C, apical two-chamber; A3C, apical three-chamber; A4C, apical four-chamber; Acc, accuracy; CNN, convolutional neural network; NPV, negative 
predictive value; PLAX-LV, parasternal long-axis left ventricle; POCUS, point-of-care ultrasound; PPV, positive predictive value; PSAX-AV, parasternal 
short-axis aortic valve; Sen, sensitivity; Spe, specificity; TTE, transthoracic echocardiography.

Figure 3 Performance of the three-dimensional convolutional neural network on the transthoracic echocardiographic testing data set. Left graph 
shows the receiver operating characteristic curves for each of the nine view categories and the area under receiver operating characteristic curve, ac-
curacy, positive predictive value, negative predictive value, sensitivity, and specificity of each of the view categories. Right graph shows the confusion 
matrix for the model. 2D, two-dimensional; A2C, apical two-chamber; A3C, apical three-chamber; A4C, apical four-chamber; Acc, accuracy; CNN, 
convolutional neural network; NPV, negative predictive value; PLAX-LV, parasternal long-axis left ventricle; POCUS, point-of-care ultrasound; PPV, 
positive predictive value; PSAX-AV, parasternal short-axis aortic valve; Sen, sensitivity; Spe, specificity; TTE, transthoracic echocardiography.
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images averaged over time and 10 uniformly spaced images in one cardiac 
cycle according to a semi-automatic heartbeat algorithm. The perform-
ance of the network was the best when utilizing the 10 selected images 
with an overall accuracy of 98.1% in the classification of five views of inter-
est. Khamis et al.15 used a sequential classification method that combined a 
spatiotemporal feature extraction method and a dictionary learning meth-
od to predict three views with an overall accuracy of 95%. Zhang et al.14

trained a Visual Geometry Group (VGG) network to predict 23 view 
classes. The final output score was averaged for 10 randomly selected 
frames from each video. The performance was lower compared with 
other view classifiers that might be related to the comprehensive number 
of target view classes. Howard et al.18 developed a deep learning model 
combining two CNNs taking spatial and temporal stream, respectively, 
with video data set. The model showed a lower error rate compared 
with single 2D or 3D CNN, and the improved error rate was comparable 
with our performance. Madani et al.12 suggested a 2D CNN inspired by 
VGG-16, and it also demonstrated that a simple majority vote for video 
classification with a 2D model could be effective. The performance was 
consistent with ours in 27 test echocardiographic studies. Our study uti-
lized 2D and 3D CNNs without the use of additional methods to extract 
features along the temporal axis and was able to classify nine view categor-
ies with an overall accuracy of 96%.

Since each study used different patients, number of views, and pre- 
processing methods, direct comparison between the networks is not 
feasible. However, there are many important characteristics for this 
current TTE view classifier. First, we included TTE studies across a 
wide time interval spanning 18 years (2003–2020) and representing a 
variable patient population with different ages, sizes, comorbidities, 
and a wide range of ultrasound vendors. This allowed the view classifier 
to be exposed to many variations of the same view, different patient 
characteristics, and variable image quality. Second, we assessed the per-
formance of the view classifier on real-world full TTE studies. This is dif-
ferent from multiple previous TTE view classifiers that were tested 
using sets that only contained pre-selected views of interest,13–15 in 
which the performance could change drastically when exposed to 

‘new’, unfamiliar views in full TTE studies. Importantly, we were also 
able to assess the performance of the current view classifier on a num-
ber of echocardiographic views obtained using POCUS with excellent 
accuracy and PPVs. Notably, no previous study has evaluated the per-
formance of a view classifier on POCUS images.

Our focus was to correctly identify five views of interest (PLAX-LV, 
PSAX-AV, A4C, A3C, and A2C), as these views would allow for the 
characterization of the function and disease processes involving all 
major cardiac structures including (i) the left atrium, left ventricle, 
and mitral valve (PLAX-LV, A4C, A3C, and A2C); (ii) right atrium, right 
ventricle, and tricuspid valve (A4C); and (iii) aortic valve (PSAX-AV). 
With that said, the view classifier can be further tailored to identify 
additional views pertinent for certain disease processes (e.g. 
PLAX-zoomed AV view in studying aortic stenosis). Additionally, we 
chose to separate views containing Doppler colour or those enhanced 
by contrast from their corresponding views to avoid distracting fea-
tures when training future CNNs to identify shared disease patterns. 
Despite this, on occasion, Doppler colour was missed by the view clas-
sifier, and views with Doppler colour were still identified as their base-
line corresponding views. Notably, the PLAX-LV and A3C views have 
many similarities; they include the anteroseptal and inferolateral LV 
walls, LV outflow tract, the aortic valve, the mitral valve, and the RV out-
flow tract. However, the A3C view shows the LV outflow tract in a 
more parallel fashion to the insonation angle that would allow for 
studying flow in the LV outflow tract. It is possible that the CNN is 
able to appreciate these differences and, therefore, overlap between 
these two views was not an issue in this current view classifier. 
Reassuringly, when compared with the top two views that an expert 
echocardiographer identified, there was agreement in 29 of 30 videos 
selected as top two examples (97%) by the view classifier.

The current view classifier is expected to pave the way for the 
application of CNNs to the echocardiogram not only for automated as-
sessment of routinely obtained echocardiographic parameters but also 
to identify disease patterns not easily recognized by the human eye 
using routine echocardiography, such as cardiac amyloidosis, 

Figure 5 Performance of the three-dimensional receiver operating characteristic on the point-of-care ultrasound data set. Left graph shows the 
receiver operating characteristic curves for each of the nine view categories and the area under receiver operating characteristic curve, accuracy, posi-
tive predictive value, negative predictive value, sensitivity, and specificity of each of the view categories. Right graph shows the confusion matrix for the 
model. A2C, apical two-chamber; A3C, apical three-chamber; A4C, apical four-chamber; Acc, accuracy; CNN, convolutional neural network; NPV, 
negative predictive value; PLAX-LV, parasternal long-axis left ventricle; POCUS, point-of-care ultrasound; PPV, positive predictive value; PSAX-AV, 
parasternal short-axis aortic valve; Sen, sensitivity; Spe, specificity; TTE, transthoracic echocardiography.
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sarcoidosis, storage diseases, and subclinical forms of hypertrophic 
cardiomyopathies. The model demonstrated exceptional accuracy 
on the POCUS data set, exhibiting robustness without the need for re-
training or fine-tuning. This highlights the potential for AI-based algo-
rithms to be widely applied to this tool, with limitless future 
applications anticipated, especially as the use of POCUS is exponentially 
increasing and becoming an integral part of the ‘physical exam’.19,20 For 
example, the future development of automated neural networks to 
identify low left ventricular ejection fraction or impaired right ventricu-
lar systolic dysfunction on a quick POCUS exam would provide valuable 
information to clinicians not certified in echocardiography. This can fa-
cilitate referral to full TTE studies and cardiology consultation in pri-
mary care clinics and would allow for earlier initiation of available 
therapies with proven effectiveness in heart failure. Similarly, the assess-
ment of left and right ventricular function in the intensive care units can 
have an immediate impact on management strategies minute to minute 
while awaiting a formal TTE study. Other potential applications of the 
AI-enhanced POCUS include screening for diseases in the community 
and in rural settings where the accessibility to a full TTE exam might be 
limited, such as screening for severe aortic stenosis and heart failure in 
patients with dyspnoea. In this scenario, the AI-enhanced POCUS might 
help triage these patients and identify those in need to be transported 
to appropriate medical centres for further evaluation and management.

Limitations
All TTE studies were obtained from Mayo Clinic sites, and performance on 
echocardiographic studies obtained in other institutions needs further 
evaluation. Specifically, the Mayo Clinic format of the A4C view is left-right 
flipped compared with most other institutions (i.e. the left ventricle is on 
the left side of the image), and testing the ability of the view classifier to cat-
egorize the apical views in the standard format is warranted. However, it 
should be noted that the view classifier had excellent performance in geo-
graphically distinct locations of the Mayo Clinic in Arizona and Florida, even 
when the training only involved TTEs from the Mayo Clinic site in 
Rochester, Minnesota. Furthermore, the view classifier was validated using 
POCUS images where different ultrasound machines were utilized and 
maintained excellent performance without additional training on 
POCUS images. The inclusion of videos obtained by different vendors 
across a long time period spanning 20 years and testing using TTEs from 
other locations and POCUS proves good generalizability.

Because we utilized the middle 10 frames in each loop, we likely in-
cluded frames in different stages of the cardiac cycle for each view due 
to the variability in the length and number of cardiac cycles included in 
each loop. Also, the cine rate, defined as the number of frames per second, 
of each TTE was not equivalent across all studies. However, this should 
provide a means for the CNNs to be exposed to more variations of 
the same view and might have helped in the identification of the most im-
portant features to classify a view (e.g. it should not matter whether the 
mitral valve is open or closed to identify the A4C view). Furthermore, we 
chose to avoid the first 10 frames whenever feasible since the initial part of 
the acquired cine loops is usually the least stable, although that would have 
provided a relatively consistent stage of the cardiac cycle.

Despite the high PPVs of the current view classifier, there will be a small 
portion of misidentified videos (e.g. 56 loops in each 1000 TTE studies iden-
tified for A2C) that may need manual review upon implementation of the 
classifier. However, this remains more manageable than having to review 
>70 videos for each TTE study (e.g. >70 000 videos for 1000 TTE studies 
to identify A2C views). Moreover, choosing views with certain probability 
numbers/inference scores (e.g. >0.90) might allow for full automatization 
of the view classification process. The testing TTE set had only seven stud-
ies utilizing contrast. A formal comparison of the view classifier perform-
ance between these seven studies and other higher-quality TTE studies 
was therefore not feasible. The testing set obtained using POCUS had 
only five view categories, and it is possible that this contributed to the 

higher accuracy of the model observed in these patients. Future validation 
of the view classifier on POCUS images obtained in less controlled envir-
onments and by less experienced operators is needed. Finally, given that 
contrast-enhanced loops are not routinely obtained in a TTE study (i.e. 
only obtained when two or more left ventricular segments could not be 
adequately visualized), we only had a small number of examples of 
contrast-enhanced loops in the training and validation sets, which likely af-
fected the performance of the model for this view category.

Conclusions
An automated AI-based view classifier utilizing CNNs was able to clas-
sify cardiac views obtained using TTE from real-life, full echocardio-
graphic studies with high accuracy exceeding 96% and averaged AUC 
exceeding 0.997. The performance on POCUS was comparable. 
Validation in other independent Mayo Clinic sites yielded similar results. 
This view classifier will allow for the future application of deep learning 
neural networks to cardiac images obtained by either TTE or POCUS 
to evaluate cardiac structure and function and to detect various disease 
processes. Future studies are needed to evaluate the performance of 
the view classifier on echocardiographic images obtained in other cen-
tres is needed.
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