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Abstract

An outstanding challenge of Epigenome-Wide Association Studies (EWAS) performed in complex 

tissues is the identification of the specific cell-type(s) responsible for the observed differential 

DNA methylation. Here, we present a novel statistical algorithm, called CellDMC, which is able to 

identify not only differentially methylated positions, but also the specific cell-type(s) driving the 

differential methylation. We provide extensive validation of CellDMC on in-silico mixtures of 

DNA methylation data generated with different technologies, as well as on real mixtures from 

epigenome-wide-association and cancer epigenome studies. We demonstrate how CellDMC can 

achieve over 90% sensitivity and specificity in scenarios where current state-of-the-art methods 

fail to identify differential methylation. By applying CellDMC to a smoking EWAS performed in 

buccal swabs, we identify differentially methylated positions occurring in the epithelial 

compartment, which we validate in smoking-related lung cancer. CellDMC may help towards the 

identification of causal DNA methylation alterations in disease.

Introduction

Somatic DNA methylation (DNAm) alterations have been shown to reflect cumulative 

exposure to environmental disease risk factors 1, and may contribute to disease risk by 

modifying cellular phenotypes 2,3. One major source of DNAm variation which may 
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hamper the identification of DNAm alterations predisposing or driving disease in 

Epigenome-Wide Association Studies (EWAS) 4, is cell-type heterogeneity 5,6. While 

statistical methods for identifying differentially methylated cytosines (DMCs) in 

heterogeneous tissues have been developed 7–14, none allow the identification of the 

specific cell-types responsible for the observed differential methylation 10. Indeed, the only 

existing tool that can help pinpoint differentially methylated cell-types is an enrichment 

analysis method for cell-type specific DNase hypersensitive sites that is performed on a 

relatively large list of DMCs 15, not allowing for individual CpGs to be ranked according to 

their likelihood of differential methylation (DM) in individual cell-types. Here, we present 

and validate CellDMC, a novel statistical algorithm that can identify interactions between 

phenotype and the proportions of underlying cell-types in the tissue, thus allowing for the 

detection of differentially methylated cytosines in individual cell-types (DMCTs).

Results

Detection of DMCTs with CellDMC: rationale and statistical framework

We reasoned that identification of DMCTs is possible within the same linear regression 

framework normally used to identify DMCs, by further inclusion of statistical interaction 

terms between phenotype and estimated cell-type fractions (Fig.1a, Supplementary Fig.1): 

intuitively, if a DMC is specific to one of the cell-types in the mixture, the observed 

differential methylation (DM) should be most prominent when the DM analysis is restricted 

to samples that contain the highest fraction of that cell-type (Fig.1b). CellDMC analyses the 

DNAm patterns of interactions of all cell-types in the mixture to infer DMCTs and their 

directionality of change (i.e. hyper or hypomethylation) (Fig.1, Online Methods, 

Supplementary Fig.1). Importantly, CellDMC also works in scenarios where all cell-types 

are uni-directionally differentially methylated to a similar degree (Fig.1c). CellDMC can 

also handle more complex scenarios, where a DMC occurs in two cell-types with opposite 

directionality (i.e. hypomethylated in one and hypermethylated in another) (Fig.1d), and 

which may not be identifiable by current state-of-the-art DMC calling algorithms (see later).

To estimate cell-type fractions, CellDMC applies our previously validated EpiDISH 

algorithm 16 in an iterative hierarchical procedure, called HEpiDISH 17, which leads to 

improved cell-type fraction estimates in complex tissues by recognizing that cell-types are 

naturally arranged along a developmental tree (Online Methods, Supplementary Data 1). In 

the context of epithelial tissues, HEpiDISH accomplishes this by using two distinct DNAm 

reference matrices, a primary reference matrix for the estimation of total epithelial, total 

fibroblast and total immune-cell (IC) fractions, and a separate, secondary, non-overlapping 

DNAm reference for the estimation of underlying IC cell subtype fractions. Justification and 

proof that this procedure works is given elsewhere 17, while additional proof that HEpiDISH 

works is provided here in the context of identifying DMCTs. In total, HEpiDISH can 

estimate cell-type fractions for 9-10 different cell-types commonly found in epithelial 

tissues, including epithelial cells, fibroblasts and 7 major types of immune-cells (Online 

Methods) 17. For tissues like breast, which contain a relatively large fraction of adipocytes 

18, the primary reference also includes a representative DNAm profile for fat cells 17.

Zheng et al. Page 2

Nat Methods. Author manuscript; available in PMC 2019 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Validation of CellDMC on in-silico mixtures

To test CellDMC’s ability to detect DMCTs, we first considered a number of different 

simulation scenarios, where we mixed together real DNAm profiles representing epithelial, 

fibroblast and immune cell types, in known mixing proportions, introducing DMCs in one, 

two or all cell-types, with parallel or opposite directionality, and over a range of different 

signal-to-noise ratios (SNRs) (Online Methods, Supplementary Table 1). Our choice of 

SNRs are conservative, corresponding to differences in average DNAm within an affected 

cell-type of approximately 0.4 to 0.5 (i.e. 40 to 50%) in the high SNR regime (SNR~3) 

down to changes as small as 0.1 (i.e. 10%) for the low SNR regime (SNR<1) 

(Supplementary Fig.2). In effect, the low SNR regime corresponds to a scenario where only 

10% of say single epithelial cells exhibit a common DNAm change. Considering first 

scenarios where the underlying cell-type fractions do not change appreciably between cases 

and controls, CellDMC obtained a high sensitivity and specificity to detect DMCTs (Fig.2a). 

For instance, even when SNR<1, CellDMC obtained a sensitivity above 0.75 for all 

scenarios where the differential methylation is unidirectional, regardless of the number of 

affected cell-types (Fig.2a). For scenarios with bi-directional changes, CellDMC could 

detect DMCTs with a sensitivity above 0.75 as long as the SNR was approximately 1.8 or 

above (Fig.2a). In line with these high sensitivity values, we observed excellent agreement 

between the predicted DNAm difference in the underlying DMCTs with the true DNAm 

difference, irrespective of SNR and whether DNAm alterations were uni-or-bi-directional 

(Fig.2b). Importantly, CellDMC allows DMCTs to be ranked in each cell-type according to 

their statistical significance with the ranking highly correlated with true effect size, as 

required (Supplementary Fig.2). All of the above results were largely unchanged if cell-type 

fractions were allowed to vary between cases and controls (Supplementary Fig.3), or if 

DMCs only occurred in one of the underlying immune cell subtypes (compared to the 

previous case when the DMCs were common to all ICs) (Supplementary Fig.4, 5, 6). 

CellDMC also attained high sensitivity and specificity if in-silico mixtures were generated 

purely from IC subtypes (without admixture by epithelial and fibroblast cells), representing 

the more common scenario of EWAS performed in whole/peripheral blood (Supplementary 

Fig.6). CellDMC performed similarly if the phenotype is continuously valued as opposed to 

binary, or for binary heterogeneous phenotypes with cases defined by a bi-modal 

distribution, as observed for instance in cancer (Supplementary Data 2). We further verified 

that CellDMC is robust to the choice of cell-type fraction estimation algorithm 

(Supplementary Data 3). Underlying this robustness, we observed that results were also 

unchanged if cell-type fraction point estimates were perturbed using either theoretical or 

empirical confidence intervals (Supplementary Data 4 and 5).

We also assessed CellDMC’s power and specificity to detect DMCTs as a function of 

sample size, cell-type complexity and missing cell-types. At a sample size of 100 controls 

and 100 cases, power of CellDMC was always greater than 0.75 if the SNR was larger than 

1.8 (corresponding to DNAm changes greater than 0.2 in individual cell-types) (Fig.2c, 

Supplementary Fig.7). Of note, as long as the fraction of the affected cell-type is distributed 

uniformly across samples (thus exhibiting a fairly large range), CellDMC’s sensitivity was 

robust to cell-type complexity, i.e. to the number K of cell-types in the mixture, although 

due to limitations on data availability, we could only assess this up to a value of K=7 
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(Supplementary Fig.8). We also assessed performance as a function of the variance of the 

altered cell-type fraction, estimating that sensitivity of CellDMC would remain over 50% as 

long as the range of fractions exhibited by the affected cell-type is higher than 0.2 (Fig.2d, 

Supplementary Fig.8). CellDMC was also robust if one major unaffected cell-type was 

missing from the reference DNAm matrix, while reduction in sensitivity was relatively 

marginal if an altered cell-type was missing from the reference (Supplementary Fig.9). In 

the case of blood tissue we simulated a realistic scenario, where cell-type fractions were 

modelled as observed in real blood EWAS but with one cell-type (CD8+ T-cells) missing 

from our reference: sensitivities to detect DMCTs in CD4+ T-cells were reduced at most by 

only 15% (Supplementary Fig.9). Thus, these data support the view that CellDMC can 

reliably detect DMCTs in a wide range of different realistic scenarios. However, we also 

expect CellDMC’s power to be strongly influenced by cell-type complexity, in line with the 

fact that DNAm references become less reliable as K increases, and also because specific 

cell-type proportions may exhibit small variation or fall below detection levels.

CellDMC outperforms state-of-the-art reference-based and reference-free DMC calling 
methods

Next, we compared CellDMC to state-of-the-art reference-based and reference-free DMC 

calling methods. Although CellDMC outperformed competing methods in effectively all 

considered scenarios, differences were especially striking when DNAm changes were bi-

directional (Fig.3, Supplementary Fig.10, 11). For instance, when DNAm changes occurred 

in two of the underlying cell-types with opposite directionality (denoted “Bi-2C”), 

conventional reference-based DMC calling that only includes the estimated cell-type 

fractions as covariates 7 would not resolve the underlying DMCs, resulting in sensitivities 

well below 0.25 (Fig.3, Supplementary Fig.10). In contrast, CellDMC attained sensitivities 

that ranged from over 0.95 for high SNRs to around 0.5 for low SNRs. If bi-directional 

changes occurred in more than 2 cell-types (denoted “Bi-AllC”), CellDMC also attained 

significantly higher sensitivity values than conventional non-interaction based DMC calling 

(Fig.3, Supplementary Fig.10). Similar improvements in sensitivity of CellDMC over state-

of-the-art reference-free methods (SVA & RefFreeEWAS) 8,19,20 were also observed, 

which were again particularly prominent in bi-directional scenarios affecting two or more 

cell-types (Fig.3, Supplementary Fig.11). In line with the sensitivity results, CellDMC’s 

specificity was also higher and more stable than that of competing methods (Fig.3). Thus, 

these data demonstrate that CellDMC can attain sensitivity and specificity values close to 

100% in scenarios where current state-of-the-art methods would fail to detect DMCs.

Validation of CellDMC on whole-genome bisulfite sequencing data

All previous simulation models mixed together DNAm profiles generated with Illumina 

450k/EPIC technology 21,22, a platform matched to the one used to generate the DNAm 

references. Thus, to demonstrate applicability of CellDMC to samples generated with a 

different technology, we devised in-silico mixture simulation models using whole-genome 

bisulfite sequencing (WGBS) profiles of purified cell-types, generated as part of IHEC 23 

(Supplementary Data 6). Although CellDMC’s performance measures dropped upon 

application to WGBS data, the reduction was only relatively marginal, with sensitivity and 

specificity values remaining high (sensitivity and specificity was still over 90% for the 
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higher SNR values, Supplementary Fig.12). Thus, we conclude that profiling technology is 

not a major limiting factor for CellDMC.

Validation of CellDMC in a blood EWAS

Next, we tested the ability of CellDMC to detect known DMCTs in a real EWAS. A recent 

EWAS for Rheumatoid Arthritis (RA) conducted on purified B-cells identified a total of 10 

DMCs, which were validated in two independent EWAS cohorts which also profiled purified 

B-cells 24. Thus, we reasoned that application of CellDMC to an independent RA EWAS 

performed on 689 blood samples 5, should be able to identify these 10 RA-DMCs as being 

differentially methylated specifically in B-cells. CellDMC predicted 8 out of these 10 to be 

differentially methylated, and 7 out of 10 to be B-cell DMCTs (FDR<0.05, Fig.4a). Of note, 

CellDMC predicted the DNAm difference between RA cases and controls to be occurring 

primarily in B-cells, and not in the other immune cell subtypes (Fig.4a), despite the fact that 

on average B-cells only accounted for 2% of blood cell subtypes in the samples, and despite 

exhibiting relatively little variation (Fig.4a). Although the median absolute difference in B-

cell fractions between the 689 samples was only 1.5%, 5 samples exhibited fractions larger 

than 10%, and therefore the ability of CellDMC to detect validated B-cell DMCTs is 

consistent with our previous simulation result (Fig.2d). Importantly, we estimated the chance 

that CellDMC would call 7 out of 10 randomly selected CpGs to be B-cell DMCTs at their 

observed significance levels to be less than 0.00001 (Fig.4a). We verified that results were 

robust to the choice of cell-type fraction estimation algorithm, or if one of the other minor 

blood cell subtypes was removed from the DNAm reference matrix (Supplementary Fig.13). 

Of note, had we applied a standard non-interaction based reference model to identify DMCs, 

6 of the 10 validated RA-DMCTs would have been detected as DMCs using the same 

FDR<0.05 threshold but without knowledge of the underlying DMCT being B-cells. We also 

note that CellDMC led to a larger than 4-fold reduction of DMCs compared to a method that 

did not adjust for cell-type fractions, and a larger than 2-fold reduction of DMCs compared 

to a non-interaction based model, with relatively little overlap between DMCs called by 

CellDMC and the standard non-interaction model (Supplementary Table 2). Thus, like the 

standard non-interaction based model, CellDMC is able to remove large numbers of 

associations caused by changes in the granulocyte/lymphocyte ratio 5, whilst also 

identifying different DMCs to those found using the standard model.

Validation of CellDMC in cancer epigenome studies

To demonstrate the ability of CellDMC to detect DMCTs in solid epithelial tissues, we 

applied it to the breast cancer EWAS setting, for which we had previously constructed a 

gold-standard set of 19,379 true positive breast cancer epithelial DMCs (bcDMCs) 9,17. 

This set was obtained by intersecting DMCs from a comparison of breast cancer epithelial to 

normal mammary epithelial cell-lines (thus representing relatively pure epithelial cell 

populations), with a corresponding list of DMCs derived from the TCGA breast cancer study 

25. We reasoned that applying CellDMC on our independent breast cancer tissue EWAS 18 

should not only validate the breast cancer epithelial DMCs, but should also predict the 

epithelial compartment to be the main DMCT. Confirming this, mean methylation 

differences between the epithelial cells found in breast cancer and those found in the normal 

tissue as predicted by CellDMC, exhibited an excellent correlation with the DNAm 
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differences observed in the actual cell-lines (Fig.4b). Overall, the magnitude of DNAm 

changes were still larger in the cell-lines possibly owing to cell-culture effects or their longer 

proliferative history (Fig.4b). CellDMC exhibited approximately 75% sensitivity and 70% 

specificity to detect DMCs and over 60% sensitivity to detect the DMCTs as occurring in the 

epithelial compartment (Supplementary Fig.14). Although it is unknown if the 19,379 true 

positive bcDMCs are also altered in fibroblasts, fat and immune cells, CellDMC predicted 

much smaller fractions of these loci to be altered in fat and ICs (Supplementary Fig.14).

As a third validation on real data, we considered the case of the HAND2 gene in endometrial 

cancer 26,27. We had previously discovered and validated hypermethylated DMCs in 

endometrial cancer, mapping to the 1st exon region of the HAND2 gene, which is a main 

target of the progesterone receptor tumor suppressor pathway 26,27. HAND2 is expressed in 

normal endometrial tissue including stromal fibroblasts, but lacks expression in endometrial 

cancer and the stromal fibroblasts of the cancer tissue 26, suggesting that the observed 

hypermethylation occurs in both epithelial and fibroblast cells. Indeed, the relatively large 

difference in DNAm (Δβ~0.5) observed between endometrial cancer and normal 

endometrial tissue 26 is a strong indication that the unidirectional DNAm change is 

occurring in both epithelial and fibroblast compartments. Application of CellDMC to the 

TCGA endometrial cancer study 28 confirmed that the DNAm change is occurring in the 

epithelial and fibroblast cells of the tissue (Fig.4c-d), and that the alteration in fibroblasts is 

local to the 1st exon region (Fig.4d, Supplementary Data 7). Interestingly, CellDMC also 

predicted the immune-cell compartment to be differentially methylated, albeit less strongly 

so (Fig.4c-d). This is also consistent with the observation that these HAND2 CpG sites 

become hypermethylated with age in blood 29, and that the unmatched TCGA endometrial 

cancers were derived from older women. Thus, the prediction of CellDMC that these 

specific HAND2 CpGs define DMCs in all 3 major cell-types within the endometrial tissue 

is entirely consistent with previous knowledge and data.

CellDMC identifies smoking-associated DNAm changes in squamous epithelial cells

Finally, to demonstrate how CellDMC may help gain novel biological insight, we applied it 

to the largest EWAS cohort performed in buccal swabs 30, consisting of 790 samples from 

women all aged 53 but with a wide range of different lifetime levels of smoking exposure. 

As expected, buccal swabs contained mainly epithelial and immune cells (Supplementary 

Data 8), and thus we used CellDMC to predict smoking-associated DMCTs in these two 

cell-types. By comparison to a gold-standard list of 62 true smoking-associated DMCs 

which have been validated in at least three independent whole blood EWAS studies 31, we 

confirmed CellDMC’s sensitivity to detect true DMCTs: most of the gold-standard DMCs 

were predicted to be hypomethylated specifically in the immune cell compartment of the 

buccal tissue (Fig.5a), in line with their observed hypomethylation in blood EWAS 31. 

Confirming CellDMC’s specificity, the top ranked DMCTs in immune cells have all been 

previously validated as being smoking-associated DMCs in blood (Fig.5a). Although most 

of the 62 gold-standard smoking-DMCs in blood were not predicted to be altered in the 

epithelial cells of the buccal swabs, the great majority (i.e over 90%) of DMCTs were, 

however, predicted to occur in the epithelial compartment, with a strong skew towards 

hypermethylation (Supplementary Fig.15). To validate these epithelial DMCTs, we posited 
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that their variance in DNAm levels would increase with the fraction of epithelial cells in 

lung squamous cell carcinoma 32, a cancer strongly associated with smoking, whilst also 

exhibiting a concomitant decrease in variance in samples with a higher immune-cell content. 

We were able to confirm this pattern for the top-ranked hypomethylated epithelial DMCT 

(Fig.5b), and for most of the other epithelial DMCTs, at high statistical significance (Fig.5c, 

Online Methods). Moreover, predicted hyper-and-hypo methylated epithelial DMCTs 

exhibited a highly significant trend towards positive and negative correlations between their 

DNAm levels and the estimated epithelial cell-type fractions, as required (Fig.5d). To 

confirm the biological and clinical significance of these findings, we posited that the DNAm 

alterations happening in the epithelial cells would exhibit increased deviations in lung cancer 

compared to the normal adjacent tissue, owing to an increase in the epithelial fraction in the 

tumors (Fig.5e). Confirming our expectation, hypermethylated and hypomethylated 

epithelial DMCTs exhibited increased and decreased levels of DNAm in lung cancer, 

respectively (Fig.5f). Consistent with the total immune cell fraction not being altered 

between normal and cancer, the top ranked DMCTs specifically hypomethylated in immune 

cells did not exhibit decreased levels in cancer, but increased levels, probably due to shifts in 

the specific immune cell subtype proportions (Fig.5f) Thus, the epithelial smoking-DMCTs 

identified here represent epigenetic alterations occurring in the squamous cell of origin of 

smoking related lung cancer and therefore may mark cells that are being selected for during 

lung carcinogenesis.

Discussion

We have presented a novel algorithm aimed at identifying DMCTs, and have extensively 

validated the method on simulated as well as real data, encompassing common EWAS and 

cancer epigenome scenarios, and different technologies. Results obtained on real data are in 

line with those derived from simulation. For instance, we have shown how CellDMC was 

able to identify validated DMCTs in a minor cell subpopulation (B-cells) within a large 

whole blood EWAS for Rheumatoid Arthritis, as predicted from our simulation analysis. 

The application of CellDMC to a smoking EWAS performed in buccal swabs is also 

noteworthy since it suggests that many of the top-ranked smoking associated CpGs detected 

in these buccal swabs are the result of DNAm changes in the infiltrating immune cells, but 

that there are also many other DMCs occurring specifically in the epithelial compartment. 

As shown here, these alterations and not those seen in the immune cells, become aggravated 

in lung cancer. It is plausible that these specific DNAm changes in the lung epithelium affect 

or reflect deregulation of transcription factor regulatory networks that contribute causally to 

lung cancer development in addition to those that occur in immune cells 33. Thus, we expect 

that widespread application of CellDMC to existing and future EWAS will help elucidate the 

role of DNAm changes and cell-types in disease. In this regard, we point that the main 

limitations of our method are only extrinsic factors such as the need for a large sample size 

and the availability of DNAm reference profiles for the main cell-types in the tissue of 

interest.

In summary, the ability of CellDMC to rank CpGs according to their probability of being 

DM in each of the underlying cell-types will be invaluable for EWAS and cancer epigenome 
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studies to help improve biological interpretation, for prioritizing candidates that require 

functional validation, and to help elucidate causal pathways to disease.

Online Methods

Estimation of cell-type fractions in complex tissues using EpiDISH/HEpiDISH

Estimation of the fractions of cell-types in a given sample constitutes the first step of the 

CellDMC algorithm and uses our previously validated EpiDISH 16 and HEpiDISH 17 

methods. We use these methods to estimate cell-type fractions for in-silico generated 

mixtures as well as for real samples from EWAS and cancer epigenome studies. Which 

method we use, i.e. EpiDISH or a hierarchical iterative version of it called HEpiDISH 

depends on the desired cell-type resolution, as we explain next.

In the case of whole blood, peripheral blood or in-silico mixtures of blood cell subtypes, we 

use the EpiDISH procedure with a DNAm reference matrix defined over 333 IC cell subtype 

specific DMCs and 7 IC cell subtypes 16. Briefly, EpiDISH models the DNAm profile of 

any given sample as a linear mixture over the DNAm profiles for the individual cell-types 

making up the sample. The associated multivariate linear regression is run using only the 

333 IC cell subtype specific DMCs, and is performed using a robust M-estimator, as 

implemented in the rlm function of the MASS R-package 34. We refer to this 

implementation as Robust Partial Correlations (RPCs) 16. In this framework, the non-

negativity and normalization constraints on the cell-type fractions (i.e. the estimated 

regression coefficients) are imposed a-posteriori, i.e. negative weights are set to zero and all 

other non-zero weights are normalized so that their sum adds to 1. As shown by us 16, RPCs 

improves inference, albeit marginally so, over the alternative approach which is to impose 

these constraints during inference via quadratic programming or constrained projection (CP) 

optimization 7. RPCs also performs similarly to another non-constrained approach that uses 

a penalized support vector regression model called CIBERSORT 16,35. In this work we use 

EpiDISH with RPCs throughout and only use CP for comparative purposes.

In the case of solid epithelial tissues and in-silico mixtures of epithelial, fibroblast and 

various IC cell subtypes, and when we only need to estimate cell-type fractions for the total 

epithelial, total fibroblast and total IC fractions, we once again use EpiDISH with RPCs, but 

now with a DNAm reference matrix defined over 716 DMCs and 3-cell types (generic 

Epithelial, generic Fibroblast, and a generic IC, denoted as the EpiFibIC reference matrix), 

as derived and validated previously by us in Zheng et al 17. The 716 DMCs are highly 

discriminative of the 3 main cell-types, exhibiting large differences in mean DNAm between 

epithelial, fibroblast and ICs 17. In some of the simulation scenarios, we also estimate 

fractions for individual IC cell subtypes, in which case we use our validated HEpiDISH 

algorithm 17. As explained in Zheng et al, HEpiDISH works by implementing EpiDISH in 

an iterative hierarchical fashion, first estimating total epithelial, total fibroblast and total IC 

fractions using the EpiFibIC reference, and then estimating proportions for the 7 individual 

IC cell subtypes using a 188 DMC subset of the original 333 DMC reference used to 

estimate fractions in blood. A key point is that the 188 DMCs do not share any overlap with 

the 716 DMCs of the EpiFibIC reference, and that all 188 DMCs have been selected to 

ensure that their median DNAm levels do not vary appreciably (most differences are less 
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than 0.05 and the maximum difference is 0.3, in absolute terms) between the epithelial, 

fibroblast and the collection of ICs. This latter criterion helps ensure that the error or noise 

induced by inferring IC cell subtype fractions in the mixture using a reference matrix that 

does not include epithelial and fibroblast references, is less than the effect size or signal of 

the 188 DMCs (since any of the original 333 DMCs in the blood reference exhibit big 

differences in DNAm, i.e. at least +/-0.5 with the great majority exhibiting over +/-0.8 

differences between at least one IC cell subtype and all others. See Zheng et al 17 for further 

justification and validation.

The CellDMC algorithm

CellDMC consists of 3 basic steps: (1) Estimation of cell-type fractions in a given sample 

using EpiDISH 16 or Hierarchical EpiDISH (HEpiDISH) 17, depending on the cell-type 

resolution desired (as described in previous section), (2) Estimation of differentially 

methylated cell-types (DMCTs) for a given phenotype of interest (binary or continuous), (3) 

Ranking of DMCTs per cell-type.

The key idea behind CellDMC is that a DNAm alteration occurring in a specific cell-type 

will exhibit a significant interaction between the phenotype and the corresponding cell-type 

fraction variable. To introduce relevant notation, we shall assume that we have a DNA 

methylation beta-valued matrix xcs, with c (c = 1,..,C) labeling the CpGs and s (s = 1,…,S) 

labeling the samples. For each sample s, let ys denote the phenotype (e.g. a 0 or 1 variable 

for binary phenotypes, or a continuously-valued number for continuous phenotypes), and let 

y  denote the vector of phenotype values over all samples. Correspondingly, we define x c to 

be the vector of beta (DNAm) values for CpG c across the S samples. We further assume 

that the fractions for the main cell-types, indexed by k (k=1…K and with K the number of 

cell-types), in the given samples have already been estimated using EpiDISH/HEpiDISH (or 

another algorithm the user wishes to use). We denote the estimated fractions for cell-type k 

over the S samples with the vector f k. CellDMC is then based on the following statistical 

model, which is run separately for each CpG c:

xc = μc + ∑
k = 1

K − 1
μck f k + βc y + ∑

k = 1

K − 1
βck

(I) f k * y + ε c

where μc, μck, βc, βck
(I) are regression coefficients to be estimated, * denotes the interaction 

term and where we assume that errors are Gaussianly distributed with a variance that may 

depend on the specific CpG c. We note that the above summations don’t run over all K cell-

types, because cell-type fractions are normalized and must add to 1. Because of this 

normalization constraint, the intercept term and the phenotype main effects term can be 

absorbed into the corresponding summations, so that an equivalent model is

xc = ∑
k = 1

K
μck f k + ∑

k = 1

K
βck

(I) f k * y + ε c
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The regression coefficients βck
(I) inform us as to whether there is a significant interaction 

between the phenotype and the corresponding fraction for cell-type k. We note that if 

differential methylation associated with the phenotype occurs at a CpG c and in cell-type k 
that the observed differential methylation should be larger in samples with high fractions for 

that cell-type k compared to samples with low content for cell-type k, and should be 

detectable via a statistically significant interaction term βck
(I). We solve the above model using 

least squares with the lm function in R, which provides estimates for the regression 

coefficients and their statistical significance via P-values Pck
(I). The P-values Pck

(I) for each cell-

type k are adjusted for multiple hypothesis testing using Benjamini-Hochberg (BH) False 

Discovery Rate (FDR) estimation. For those CpGs with BH-FDR values less than a 

predefined significance threshold (i.e. typically BH FDR<0.05), we call it a DMCT in the 

given cell-type. Finally, CpGs can be ranked within each cell-type according to the 

associated P-value of significance.

Finally, we note that additional covariates representing other biological (e.g. age, gender, 

ethnicity) or technical factors (batch) can be included in the above model. For instance, for a 

set Q of such factors, let z q (q=1…Q) denote the factor values across the S samples, then 

the model above becomes

xc = ∑
k = 1

K
μck f k + ∑

k = 1

K
βck

(I) f k * y + ∑
q = 1

Q
ρcq z q + ε c

DNA methylation datasets used for in-silico mixture simulation experiments

The following lists the DNAm datasets used in this manuscript to generate the in-silico 
mixtures, with their GEO (www.ncbi.nlm.nih.gov/geo) accession numbers or download 

links. We note that all these samples were not used in the construction of the DNAm 

references used in EpiDISH and HEpiDISH and therefore represent truly independent 

samples: Illumina 450k data of 4 epithelial cell-lines and 10 fibroblasts cell-lines from Stem-

Cell Matrix Compendium-2 (SCM2) 36 (GSE31848), Illumina 450k data of 8 B-cells, 71 

CD4+ T-cells, and 28 monocytes from Absher et al 37 (GSE59250), Illumina 450k data of 

31 CD4+ T-cells from Limbach et al 38 (GSE71955), Illumina 450k data of 4 B-cells, 6 

CD4+ T-cells, and 5 monocytes from Mamrut et al (GSE71244), Illumina 450k data of 36 

monocytes from Marabita et al 39 (GSE43976), Illumina 450k data of 8 CD4+ T-cells from 

Nestor et al 40 (GSE50222), Illumina 450k data of 214CD4+ T-cells, and 1202 monocytes 

from Reynolds et al 41 (GSE56047), Illumina 450k data of 6 B-cells, 6 CD4+ T-cells, and 6 

monocytes from Zilbauer et al 42 (https://www.ebi.ac.uk/arrayexpress/experiments/E-

MTAB-2145/). Two fibroblasts cell-lines were removed from SCM2 dataset after purity 

check. All of the above Illumina 450k data together made the purified cells pool for 

generating in-silico mixtures. In total, we have 4 epithelial cell lines, 8 fibroblast lines, 66 B-

cells, 336 CD4+ T-cells, and 1277 monocytes.

We also downloaded processed WGBS bed files from IHEC (http://epigenomesportal.ca/

ihec) samples that we expected to be of relatively high purity, representing epithelial, 
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fibroblast and immune cell-subtypes. Samples of low WGBS coverage / sequencing depth 

were removed. A total of 6 epithelial (4 podocytes and 2 breast epithelial), 2 fibroblast/

stromal, 8 B-cells, 11 CD4+ T-cells, and 9 monocyte samples were included. After merging 

them together, the number of common CpGs was 220351. Only 381 out of the 716 cell-type 

CpGs in EpiFibIC reference could be found. Thus, purity estimates were checked using 381 

CpGs in the EpiFibIC reference using EpiDISH. One podocyte sample was predicted to have 

a high fibroblast fraction and was removed. For the in-silico mixtures, we thus used 5 

epithelial, 2 fibroblast, 8 B-cells, 11 CD4+ T-cells, and 9 monocyte WGBS samples.

Generation of in-silico mixtures

To test performance of CellDMC in terms of sensitivity and specificity, we generated 200 in-
silico mixtures with half of them representing controls and the other half representing cases 

(disease). For cases, we altered the DNAm levels of 150 CpGs in specific cell-types, thus 

defining true DMCTs (and DMCs). For each of the 200 mixtures, we randomly sampled an 

epithelial cell, fibroblast, B-cell, CD4+ T-cell, and monocyte from the corresponding pools 

of purified cells, and mixed them together with 5 weights drawn from a Dirichlet 

distribution. Since for each sample, DNAm changes were made to all immune cells (B-cells, 

CD4+ T-cells, and monocytes) simultaneously and equally, we could treat this as a three 

cell-type mixture (Epi, Fib, and IC) problem, where we inferred the total IC fraction 

alongside the total epithelial and fibroblast fractions. We considered 5 different DMCT 

scenarios, including unidirectional DNAm changes in all 3 cell-types, unidirectional changes 

in 2 cell-types, change in 1 cell-type, bidirectional changes in 3 cell-types, and bidirectional 

changes in 2 cell-types. For each scenario, we also had 5 different signal to noise ratios 

(SNR) with values of 3, 2.4, 1.8, 1.2, and 0.9, corresponding to approximate absolute DNAm 

differences in individual cell-types (between cases and controls) of 0.42, 0.32, 0.22, 0.12, 

and 0.12, respectively. The latter two SNR values differ because we increased the noise/

variance in the case where SNR=0.9. For every scenario, we ran 100 Monte-Carlo runs.

We note that we also considered scenarios, where a DNAm change was only induced in a 

particular IC cell-subtype (and not in all ICs simultaneously), in which case we used 

HEpiDISH to estimate the cell-type fractions for all IC cell subtypes, in addition to the total 

epithelial and fibroblast fractions. We also considered a scenario mimicking a blood EWAS, 

where we only mixed together purified IC subtypes.

The overall strategy used to generate in-silico mixtures with a continuous phenotype is 

similar to that used for a binary phenotype. For each sample, the continuous phenotype y 
was assumed to take a value between 0 and 1. In the case where y=1, the corresponding beta 

value was sampled as described previously for disease samples in the binary phenotype 

context, whereas for samples with values y <1, the altered beta-values were correspondingly 

scaled by y. The SNR values were defined at y=1.

In the scenario where we allow for a bi-modal distribution within the disease phenotype, we 

use the same parameters as for the binary phenotype case. The only difference is that for 

each DMCT, only 70% of the disease samples were randomly selected to be altered, whereas 

the other 30% disease samples were modelled as control/normal samples.
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Perturbations of cell-type fraction point estimates

We used two different approaches to assess the robustness of CellDMC to the use of cell-

type fraction point estimates. Briefly, in one approach, instead of using the point estimates, 

we randomly sampled a number from the interval given by point estimate ± standard 

deviation*3. In the second approach, we bootstrapped DMCs making up the reference 

matrix, thus generating a new reference DNAm matrix with the same number of DMC but 

with several of these appearing multiple times. Inference of cell-type fractions was then 

performed using this bootstrapped DNAm reference matrix, with the new point estimates 

subsequently used in CellDMC.

Simulations involving missing cell-types in DNAm reference matrix

To study the impact of missing cell-types, we first considered a scenario where there are 3 

cell-types with one cell-type being differentially methylated (Uni-1C scenario) and another 

cell-type missing. In detail, we only altered epithelial cells introducing 150 true epithelial 

DMCTs. Cell-type fractions were then estimated using the EpiFibIC reference matrix but 

with one cell-type (fibroblasts) missing from the reference DNAm matrix. Correspondingly, 

CellDMC was subsequently run with only 2 cell-types. We note that when generating the in-
silico mixtures, the cell-type fractions for all 3 cell-types were drawn from a uniform 

Dirichlet distribution, so that each cell-type exhibited the same underlying mean and 

variance for the fraction.

We also ran a second simulation but now with 2 of the 3 cell-types being altered (Uni-2C 

scenario), and with one of the altered cell-types missing from the DNAm reference.

In a third analysis, we focused on blood tissue, considering the Uni-1C scenario. In more 

detail, we generated in-silico mixtures of 5 blood cell subtypes (B-cells, CD4+ and CD8+ T-

cells, Monocytes and Neutrophils) using our pools of purified blood cell subtypes 

constructed earlier, drawing cell proportions from a weighted Dirchlet distribution, with 

weights determined to yield realistic cell-type fractions in blood, as inferred from a blood 

EWAS 5. As before, 150 DMCTs were generated within one cell-type only (we chose CD4+ 

T-cells) with sensitivity and specificity computed by CellDMC using a DNAm reference 

matrix that did not include another cell-type (we chose CD8+ T-cells). As in all other 

simulations, total of 100 Monte-Carlo runs were performed, each run simulating 100 cases 

and 100 controls. We benchmarked results against the scenario where none of the 5 cell 

subtypes was missing from the DNAm reference matrix.

Implementation of CellDMC on in-silico mixtures and definition of sensitivity and 
specificity

We estimated cell-type fractions of all in-silico mixtures using EpiDISH (RPC mode) with a 

reference 17, which consists of 716 cell-type specific DMCs, to estimate fractions of 3 major 

cell-types (generic epithelial cells, generic fibroblasts, and total immune cells). Next, 

CellDMC was run with the estimated fractions, multiple hypothesis correction method set to 

“FDR”, and FDR (adjusted P-value) threshold 0.05, which resulted in a matrix containing 

predicted DMCT(s) and a matrix of coefficients for each cell-type including predicted 

DNAm change, raw and adjusted P-values, ranked by selected cell-type. As long as a CpG in 
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one cell-type was predicted to be a DMCT, it was counted as a predicted DMC. Sensitivity 

to detect DMCs was defined as the number of predicted true DMCs divided by 150 (true 

number of DMCs). Sensitivity to detect DMCT was defined as the mean sensitivity to 

correctly predict DMCTs (considering directionality of change) averaged over all relevant 

cell-types. In the case where we induced DNAm changes in individual IC cell subtypes, we 

estimated cell-type fractions for all cell-types using our HEpiDISH framework, but all 

subsequent analysis proceeded as for the 3 cell-type scenario above.

Power calculations

To estimate the appropriate sample size to achieve a certain sensitivity and specificity, we 

performed corresponding power calculations for a DNAm change in one cell-type (Uni-1C) 

and unidirectional changes in all cell-types (Uni-AllC) scenarios. For each scenario, we did 

100 Monte-Carlo runs for 5 SNR(s) as described earlier. We varied sample sizes from 10 to 

500 (including 10, 20, 30, 40, 50, 100, 150, 200, 300, and 500), in each case with half of 

these as controls and the other half as cases. Mean sensitivities for DMCT detection over 

100 Monte-Carlo runs were calculated.

Simulation analysis of cell-type complexity

For K=3, we mixed epithelial, fibroblast and monocytes and used EpiDISH with 

centEpiFibIC DNAm reference to estimate cell-type fractions. For larger K values, we 

iteratively added one more IC cell subtype to the mix in the order of neutrophils (K=4), 

CD4+ T-cells (K=5), B-cells (K=6) and CD8+ T-cells (K=7). For K>3, we used HEpiDISH. 

For each choice of K and in each Monte-Carlo run, there were 150 true DMCTs (75 hyper, 

and 75 hypo) occurring specifically in monocytes.

Application of CellDMC to a blood rheumatoid arthritis EWAS to detect B-cell specific 
rheumatoid arthritis DMCs

We obtained Illumina 450k data profiling peripheral blood for 335 controls and 354 

rheumatoid arthritis cases from Liu et al (GSE42861) 5. Data was normalized as described 

elsewhere 29. We estimated cell-type fractions of all 7 major immune cell subtypes (B-cells, 

CD4T-cells, CD8T-cells, NK cells, monocytes, neutrophils, eosinophils) using EpiDISH 

with a DNAm reference consisting of 333 IC cell-type specific DMCs 16. All parameters of 

CellDMC were the default choices. We tested CellDMC’s predictions against 10 B-cell 

specific RA CpGs, which had been validated in 3 independent purified B-cell EWAS 

datasets, as reported in Julià et al 24. To assess the statistical significance of CellDMC’s 

DMCT predictions, we randomly picked 10 CpGs 100,000 times, and compared the 

weighted t-statistics of the estimated B-cell specific regression coefficients to the observed 

one. P value was calculated as the number of runs, where the statistic was larger than the 

original observed one, divided by the number of runs.

Application of CellDMC to endometrial cancer

We downloaded and processed level 3 Illumina 450k data of uterine corpus endometrial 

carcinoma (UCEC) from TCGA 28. This dataset contains 374 cancer samples and 34 normal 

adjacent control samples. We estimated cell-type fractions for the total epithelial, total 
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fibroblast and total immune cell components, using our previously validated EpiFibIC 

DNAm reference (716 cell-type specific DMCs).

Application of CellDMC to a breast cancer EWAS

To test CellDMC’s ability to detect DMCTs occurring in breast cancer epithelial cells, we 

used a breast cancer tissue DNAm 450k dataset, which included 92 normal controls and 305 

breast cancer cases, from Teschendorff et al (GSE69914) 18. We estimated cell-type 

fractions using EpiDISH in conjunction with a previously validated DNAm reference for 

breast tissue, consisting of 491 cell-type specific DMCs and 4 cell-types (generic epithelial, 

generic fibroblast, fat and total IC) 17. All parameters choices in CellDMC were the default 

ones. The true positive breast cancer epithelial DMCTs/DMCs and a corresponding list of 

true negatives were constructed as reported in Zheng et al 9,17.

Application of CellDMC to a buccal smoking-EWAS and validation in lung squamous cell 
carcinoma

The smoking buccal Illumina 450k dataset was processed as described in Teschendorff et al 

30. Using EpiDISH and EpiFibIC DNAm reference, we estimated cell-type fractions of total 

epithelial cells, total fibroblasts, and total immune cells. Since the estimated fractions of 

fibroblasts in all samples were quite small with mean less than 0.05, we only included 

epithelial cells and immune cells when running CellDMC, which was run with smoking 

pack years as the phenotype. Among all 790 samples in the dataset, we only used 647 

samples for which smoking pack year information was available.

DMCTs predicted to occur specifically in the epithelial compartment of buccal swabs were 

validated in the Illumina 450k lung squamous cell carcinoma (LSCC) data, generated as part 

of The Cancer Genome Atlas (TCGA) 32. We only validated DMCTs which exhibited 

similar DNAm levels in epithelial and blood cell-subtypes in samples not exposed to 

smoking, since only for these we would expect to see an association between their DNAm 

levels and the estimated epithelial fraction in the tumors. To this end, we collected Illumina 

450k data of 11 different epithelial cell-lines (Hipe, Saec, Hre, Hae, Hrpe, Prec, Hee, Hcpe, 

Hnpce, Hmec, Hrce) from ENCODE (GSE40699) and a total of 42 purified samples 

representing all 7 major immune cell types (neutrophils, eosinophils, monocytes, CD4+ and 

CD8+ T-cells, B-cells and NK-cells) from Reinius et al 43 (GSE35069) to identify CpGs 

with the same ground state of DNAm level in epithelial and immune cells: in detail, we used 

limma (an empirical Bayes framework) 44, to select 277,801 CpGs with P-values greater 

than 0.5 or absolute DNAm change between epithelial and immune cells less than 0.05. Of 

17,285 and 6658 DMCTs predicted by CellDMC in buccal swabs to be hypermethylated and 

hypomethylated in epithelial cells, respectively, 3629 and 816 of them overlapped with the 

277,801 non-DMCs. We used EpiDISH with EpiFibIC reference to estimate cell-type 

fractions in the TCGA LSCC DNAm dataset (275 cancer samples). We computed the 

Pearson’s correlation coefficient between the DNAm beta values of these predicted epithelial 

DMCTs and the estimated fraction of epithelial cells across the 275 cancer samples. To test 

whether there is an association between DNAm variance and epithelial cell-type fraction, we 

used the Breusch-Pagan (BP) test with beta values as response and cell-type fraction as 
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predictor. We used the signed BP-statistic to test for positive and negative associations 

between DNAm variance with epithelial and immune cell-type fractions, respectively.

We confirm that all work described herein complies with the Life Sciences Reporting 

Summary, published alongside this article.

Data availability

All data analyzed in this manuscript is already publicly available from Gene Expression 

Omnibus - GEO (www.ncbi.nlm.nih.gov/geo/), the TCGA data portal (https://

gdc.cancer.gov), International Human Epigenome Consortium - IHEC (http://

epigenomesportal.ca/ihec), or from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). 

Accession codes for data from GEO include GSE31848, GSE59250, GSE71955, 

GSE71244, GSE43976, GSE50222, GSE56047, GSE42861, GSE69914, GSE40699, and 

GSE35069. Accession code for data from ArrayExpress is E-MTAB-2145. All DNA 

methylation reference matrices used to estimate cell-type fractions are available on Github 

(https://github.com/sjczheng/EpiDISH)

The DNAm dataset in buccal cells is available by submitting data requests to 

mrclha.swiftinfo@ucl.ac.uk; see full policy at http://www.nshd.mrc.ac.uk/data.aspx. 

Managed access is in place for this 69 year old NSHD study to ensure that use of the data 

are within the bounds of consent given previously by participants, and to safeguard any 

potential threat to anonymity since the participants are all born in the same week.

Code availability

CellDMC is freely available as a user-friendly R-script within the EpiDISH Bioconductor 

package, freely available from github (https://github.com/sjczheng/EpiDISH), and in due 

course also from Bioconductor (https://www.bioconductor.org).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of differentially methylated cell-types (DMCTs) using CellDMC.
a) For a given DNAm data matrix, CellDMC uses a reference DNAm matrix encompassing 

major cell-types (CTs) in the tissue of interest, to estimate cell-type fractions in each sample, 

subsequently adjusting the DNAm data matrix for these estimated fractions. It then fits 

statistical models adjusting for cell-type fractions, that include interaction terms between the 

phenotype and estimated cell-type fractions to identify DMCs in specific cell-types 

(DMCTs). These can then be ranked according to statistical significance in each cell-type. 

b,c,d) Scatterplots of adjusted beta-values against cell-type fraction for 3 different types of 

DMCTs. b) A DMCT (CpG1) which is hypermethylated in cell-type CT1 but not in cell-

types CT2 and CT3. c) A DMCT (CpG2) hypermethylated in all three cell-types. d) A 

DMCT (CpG3) occurring in two cell-types (CT1 & CT2) but with DNAm changes occurring 

in opposite direction (hypermethylated in CT1, hypomethylated in CT2).
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Figure 2. Validation of CellDMC on simulated data.
a) Sensitivity (SE) and specificity (SP) (y-axis) of CellDMC to detect DMCTs in five 

different scenarios and for five different SNRs (x-axis). The scenarios correspond to uni-

directional DNAm changes being unique to one cell-type (Uni-1C), shared by two cell-types 

(Uni-2C) or occurring in all cell-types (Uni-AllC), and to bi-directional changes (i.e 

hypermethylated and hypomethylated) in two cell-types (Bi-2C) or all cell-types (Bi-AllC). 

SNR values range from SNR~3 (mean DNAm difference in affected cell-types of approx. 

0.4 to 0.5) to SNR < 1 (mean DNAm difference ~ 0.1). Each box contains 100 data points 

from 100 Monte-Carlo runs. Boxes indicate 25th and 75th centiles. Whiskers extend to the 

largest values no further than 1.5IQR from these centiles where IQR=inter-quartile range. b) 
Scatterplots of the true DNAm difference in affected cell-types (y-axis) versus the predicted 

Zheng et al. Page 19

Nat Methods. Author manuscript; available in PMC 2019 May 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



DNAm difference from CellDMC (x-axis) for the uni-directional (left panel) and bi-

directional (right panel) cases. Data points are shown for 100 DMCs, 2 affected cell-types 

(CT1 and CT2) and for five SNR levels. c) Sensitivity to detect DMCTs as a function of 

total sample size (numbers of cases and controls are each 100) for five different SNR values 

in the Uni-1C scenario. Each data point represents the mean over 100 Monte-Carlo runs. d) 
Sensitivity to detect DMCTs as a function of the cell-fraction range exhibited by the affected 

cell-type in a mixture of three cell-types. Each boxplot derives from 100 data points (100 

Monte-Carlo runs). Boxes indicate 25th and 75th centiles. Whiskers extend to the largest 

values no further than 1.5IQR from these centiles where IQR=inter-quartile range.
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Figure 3. Benchmarking of CellDMC to state-of-the-art reference based and reference-free DMC 
calling algorithms.
a-c) From left to right, plots of the sensitivity of CellDMC, of conventional reference-based 

DMC calling (which includes cell-type fractions only as covariates without interaction-

terms, denoted “NoInt”), and of the reference-free method SVA, against the SNR for five 

different differentially methylated cell-type scenarios where mean cell-type fractions are not 

different between cases and controls. Because the competing methods can only detect 

DMCs, and not DMCTs, we compare the methods in terms of their sensitivity to detect 

DMCs. Results are for 100 Monte-Carlo runs, where in each run 200 in-silico mixture 

samples were simulated (100 “control” and 100 “disease”). d-f) As a-c), but now for the 

specificity. Boxes indicate 25th and 75th centiles. Whiskers extend to the largest values no 

further than 1.5IQR from these centiles where IQR=inter-quartile range.
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Figure 4. Validation of CellDMC in real EWAS and cancer epigenome data.
a) Validation of CellDMC in a Rheumatoid Arthritis (RA) EWAS performed on 689 blood 

samples (Liu et al 5). The bar to the left indicates 10 CpG sites that have been validated to 

be RA-associated DMCs in 3 independent purified B-cell cohorts, with their directionality of 

DNAm change as indicated 24. The central heatmap displays the predicted DMCTs from 

CellDMC, based on a two-tailed t-test for the interaction term. Statistical significance of this 

result was assessed using 100,000 Monte-Carlo runs, where in each run 10 CpGs were 

selected at random and their weighted averaged t-statistic (grey curve and area) compared to 

the observed value (vertical red line). Boxplots display the cell-type fraction estimates across 

the 689 samples. Boxes indicate 25th and 75th centiles. Whiskers extend to the largest 

values no further than 1.5IQR from these centiles where IQR=inter-quartile range. b) 
Validation of CellDMC to detect true breast cancer epithelial DMCs. Scatterplot of the 

DNAm difference between breast cancer cell lines and normal mammary epithelial cell-lines 

(y-axis) against the predicted DNAm difference from CellDMC between the epithelial 

component of breast cancer tissue (n=305 samples) and that of normal breast (n=92), for a 

total of approximately 19,000 true positive breast cancer epithelial DMCs. One-tailed 

Fisher-test P-value is given. c) Validation of CellDMC in the endometrial TCGA cancer 

study. Scatterplots of the beta value (adjusted for cell-type fractions) of one of the HAND2 
CpGs against the epithelial, fibroblast and total immune-cell (IC) fractions, with samples 
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labeled according to endometrial cancer (red) or normal endometrium (blue). d) CellDMC 

predictions for DNAm differences between cancer and normal in each of the 3 cell-types, for 

all CpGs mapping to HAND2.
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Figure 5. Identification of epithelial specific smoking DMCTs and their relevance in lung cancer.
a) Smoothed scatterplot of CellDMC t-statistics in epithelial cells (x-axis) vs immune cells 

(IC) (y-axis) derived from a 790 buccal swab EWAS with smoking as the phenotype. Calling 

of DMCTs was based on a two-tailed t-test. Blue dashed lines indicate level of statistical 

significance (FDR<0.05). Red points label CpGs from a gold-standard list of 62 true 

smoking-DMCs derived in blood. Lower panel displays a heatmap of CellDMC predictions 

(significance of signed adjusted P-values) for the 62 true smoking-DMCs. b) Scatterplot of 

the DNAm level (beta-value) of the top-ranked smoking-associated epithelial-specific 

DMCT against the epithelial cell-type fraction (left panel) and total immune cell fraction 

(right panel) across the 275 lung squamous cell carcinoma (LSCC) samples from the TCGA. 

c) Scatterplot of the signed Breusch-Pagan (BP) differential variance statistic of DNAm 

against immune-cell fraction (y-axis) versus the corresponding statistic for the epithelial 

fraction (x-axis), as computed across the 275 lung cancer samples, for all predicted 

epithelial-specific smoking-DMCTs derived from buccal swab EWAS. d) Scatterplot of the 

Pearson Correlation Coefficients (PCC, y-axis) between DNAm and epithelial cell-type 

fraction, as computed over the 275 lung cancer TCGA samples, against the CellDMC t-

statistics for predicted epithelial-specific DMCTs derived in the buccal swab smoking 

EWAS (x-axis). Dashed lines indicate level of statistical significance (FDR<0.05). P-value is 

from a one-tailed Fisher’s exact test on the CpGs passing significance in each quadrant. e) 
Boxplots of cell-type fractions estimated with EpiDISH for epithelial, fibroblast and immune 

cells in the normal and lung squamous cell carcinoma (LSCC) samples from the TCGA. 

Number of data points in each boxplot is indicated within panel. f) Average DNAm levels of 

three categories of DMCTs derived with CellDMC from the buccal smoking EWAS, in the 

matched (n=40) normal-adjacent and LSCC sample pairs from the TCGA. The DMCT 

categories are the 50 top-ranked hypomethylated, 50 top-ranked promoter hypermethylated 
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epithelial DMCTs, and the 50 top-ranked hypomethylated immune-cell DMCTs. P-values 

are from a one-tailed Wilcoxon rank sum test. AUC discriminatory values derived from 

Wilcox-test statistic are given. Number of data points in each boxplot is 40 corresponding to 

the number of matched normal-adjacent cancer pairs. In e-f), boxes indicate 25th and 75th 

centiles. Whiskers extend to the largest values no further than 1.5IQR from these centiles 

where IQR=inter-quartile range.
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