
Editorial

Man or machine? Will the digital transition be able to automatize
dietary intake data collection?

Data collection in studies of dietary intake has traditionally
relied on labour-intensive methods requiring inputs from
the individual studied. As a result, such studies are costly
and time-consuming. But the emergence of digital tech-
nologies has sparked a new interest in methods and
approaches that can be used for automated collection and
processing of data on food intake. New sensor technolo-
gies, smarter interfaces and progress in artificial intelli-
gence (AI) research seem to be boosting the field and
bringing the field forward.

Information and communication technology (ICT)
assistance for dietary data collection has been available for
a number of years, including both web- and application
(app)-based solutions where participants can enter dietary
information directly interfaced to a database. Most replace
a simple paper-and-pen approach with a keyboard or a
smart screen but do not radically change the workload
required by the participant. What the digital transition
offers is the smart application of new sensors and devices
that can ‘think and sense’ themselves and thus remove
partly or fully the workload and responsibility for data
acquisition from the participant. As such, we can distin-
guish between (i) more simple ICT-assisted self-reporting
dietary data acquisition and (ii) automated or semi-
automated dietary data acquisition. The first type covers
ICT-based solutions where paper-based methods are
replaced with screen-based ones, examples of which have
been reported(1,2). The second type covers methods that
automatize the data entry by using sensors and/or AI to
reduce workload, such as the chest-worn micro camera
computer called eButton(3) and the mini-suitcase format
Dietary Intake Monitoring System (DIMS) used for bedside
food intake monitoring in hospitals(4).

Scholars are testing the reach of new technologies,
sensors and devices for the study of food intake in
experimental laboratory settings such as the Foodscape
lab at Aalborg University(5), the Fake Food Buffet lab at the
Technical University of Zürich(6) and the Restaurant of the
Future at Wageningen University(7). Along with the pro-
gress made in the Technology Assisted Dietary Assessment
(TADA) project(8,7), the efforts to develop automatic and
semi-automatic approaches have brought about devices
such as the Mandometer Technology(9), the eButton(10),
the DIMS(11) and the Splendid approach(12).

This issue of Public Health Nutrition presents eight
studies on semi-automated dietary data acquisition and
ICT-assisted self-reported dietary data acquisition. They

fall in two groups: (i) applications for use in research
settings and (ii) applications meant to be used by con-
sumers in real-life food environments. They deal with
important aspects including proof of principle over valid-
ity, reliability, user-friendliness and feasibility.

Applications for use in research settings

Four of the papers deal with studies carried out in lab or
health-care settings and explore applications using
advanced imaging and language processing relying on AI.

Jia et al.(13) set out to develop an AI-based algorithm
which can automatically detect food items from images
acquired by an egocentric wearable camera for dietary
assessment, the chest-worn eButton. The eButton cate-
gorizes pictures into food-related ones and uses AI to
create tags of the pictures. The study tested the algorithm
on two data sets, and results suggest that the approach has
the potential to automatically identify foods from low-
quality, wearable camera-acquired images with reason-
able accuracy. That in turn seems to be able to reduce
both the burden of data processing and privacy concerns.
However, the estimation of volume/weight is an issue if
results are to be translated into nutritional values.

The reliability and validity of the eButton are studied in
the paper by Beltran et al.(14), which examines the use of a
digital screen-based wire mesh procedure to determine
food amounts. The eButton wire mesh is a method that
attempts to solve the issue of estimation of portion sizes.
The estimation is done on screen images of foods by an
assessor who fits a mesh from a mesh library on to each
food. The authors found good reliability and validity
comparing size estimations from two types of practi-
tioners, although a difference between dietitians and
engineers was found. The mesh approach seems to be
promising to estimate amounts, and it could be anticipated
that training a machine to perform this is a possible way
forward to automatize the process.

The study by Ofei et al.(15) examines the validity of the
DIMS technology, developed for monitoring of food intake
among hospital patients, by comparing it with the weighed
food method. The DIMS has previously been shown to
reduce workload and offers an easy way to determine pre-
and post-serving portion sizes and type estimation,
although the post-serving conditions have been more
challenging since leftovers are often mixed together(16).
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However, the results of the study showed a significant
correlation between the two methods and suggest that the
DIMS is a valid, novel, easy-to-use alternative for mon-
itoring of dietary intake in hospital settings.

Mezgec et al.(17) present a study using a two-step pro-
cess to estimate food intake. The authors use a deep
learning approach to picture-recognition of images
representing choices from the ‘fake food buffet’ to tag
images, and a subsequent language processing approach
to match the tags with entries in a food composition
database. The results of the study show that the accuracy
of the deep learning model trained to tag fake-food images
as well as of the matching of the resulting words with the
food composition database was satisfactory. The study
shows that the feasibility of semi-automatically creating a
description of food items that links it to, for instance, the
FoodEx2 language classification system offered by the
European Food Safety Authority. This means that a direct
link can be created to relevant food composition
databases.

Applications for use in consumer settings

Four of the papers relate to studies of smartphone-based
applications. Two of them deal with approaches that use
the camera to collect pictures for further processing in a
research context, whereas the two other studies examine
applications meant for consumer-targeted nutrition infor-
mation that display information on foods sourced from
databases.

Yang et al.(18) present a picture-based approach and
explore the utility of a new smartphone-based imaging
method that works without a fiducial marker. Instead it
applies virtual reality, automated training and a standard
food unit to estimate the portion size. The imaging
approach estimates food volumes that need to be con-
verted to amounts post-process. The method was found to
be valid and a training sequence improved estimation
accuracy significantly.

The study by Prinz et al.(19) examines the validity of a
mobile camera by comparing it with weighed methods,
and also evaluates user satisfaction. The results show a
significant correlation between the two methods in esti-
mation of energy, macronutrient and fibre intakes,
although the authors found a systematic bias with
increasing levels of intake. With respect to user friendli-
ness, a large majority of participants were satisfied with the
photo-based method and had few technical challenges.

Braz and Baena de Moraes Lopes’ study(20) aims to
verify the reliability of information, the sources of infor-
mation used and the user opinions of sixteen free mobile
apps with nutritional information available in Brazil. They
found that the accuracy, in the case of energy, ranged from
0 to ~ 57%. Not surprisingly the authors concluded that the
apps are not useful for nutritional guidance.

Food composition is increasingly available for brands
and calculating nutritional value through barcodes and
Universal Product Codes has become technically avail-
able, along with app-based solutions. Maringer et al.(21)

study the option of getting in-shop access to nutritional
values through a scanning approach. More specifically,
they examine the quality of the results obtained from
labelled food product databases using a barcode scan-
ner to link the food to the database value. The
results of the study showed that energy values could be
retrieved in almost all cases. For nutrients, however,
availability and accuracy varied greatly across the
apps. Since open access to data about branded
foods is increasing, this approach to converting food
intake to energy intake is a promising avenue to explore
further.

Discussion

The papers all together clearly illustrate the width and the
scope of current research efforts at the intersection of food
and digital technology. They cover new applications of
smartphones that can be used in a consumer environment
as well as cutting-edge technologies and hardware. The
studies cover important aspects of validity, reliability,
convenience and feasibility.

First and foremost, imaging and language processing
technologies are an important part of the solutions
reported in this issue. The papers suggest that computer-
based tools that help us make sense of how we see and
how we speak about food are at the core of these scientific
efforts. The task of dietary assessment can be described in
simple terms as ‘measuring the type and amounts of a
dietary record and linking it to an authoritative table that
can return the energy and the nutrient content’. But in
practice it represents a huge technological and scientific
challenge.

Besides images and language, current research is
investigating the use of proxies and indicators of intake in
order to find specialized hardware solutions that can assist
in specifying types and amounts of food. These include
scales, jawbone motion sensors, chewing and swallowing
audio sensors, fork motion sensors, hand movement sen-
sors, spectrophotometry vision, electromyography vision
and near-field communication(16,22–27). These research
directions can advance the science of automated dietary
assessment assuming the necessary cross-disciplinarity
across nutrition, food and ICT is established. At Aalborg
University we have established a strategic interdepart-
mental cooperation called the Digital Foodscape Lab that
aims to bridge the gap across studies of food and nutrition,
mobile devices, communication, robotics and mediology.
Such cooperation makes it possible to develop and test
prototypes of applications in real-world environments
under realistic conditions, with the assistance of both
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students and early career researchers, while keeping costs
at an acceptable level.

A synthesis of the eight papers points in this issue to
directions and priorities for future research needs, including:

∙ automatic or semi-automatic portion size estimation;
∙ correct estimation of leftovers and plate waste;
∙ creation of more direct links to foods for which
nutritional contents are already known, especially since
they might appear in a branded food composition table;

∙ better computer vision technologies and algorithms for
classifying foods;

∙ smarter ways to directly monitor foods purchased at the
point of sale;

∙ research on how to address privacy concerns and full
compliance with the General Data Protection
Regulation(28); and

∙ closer cooperation internationally across research groups.

Digital solutions for better health care is a trending topic
at regional, national and EU levels. The European Strategic
Forum on Research Infrastructures (ESFRI) is currently
addressing some of the challenges specifically related to
food, and food, nutrition and health is expected to be a
topic in the next ESFRI roadmap. One of the contexts that
might provide infrastructure to facilitate such work is the
Food, Nutrition and Health Research Infrastructure
(FNHRI) suggested by the EU Richfields design study(29).
The FNHRI will try to improve access to data and
strengthen the infrastructure between groups and labs
working with digital-assisted solutions.
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