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ABSTRACT Genetically homogeneous populations, such as inbred strains, are powerful experimental tools
that are ideally suited for studying immunology, cancer, and genetics of complex traits. The zebrafish, Danio
rerio, has been underutilized in these research areas because homogeneous strains of experimental fish
have not been available in tractable condition. Here, we attempted to inbreed two zebrafish wild-type
strains, Tubingen and India, through full sib-pair mating. Although the inbred Tibingen strain failed to
thrive and was lost after 13 generations, an inbred India strain (IM) has been maintained successfully. The IM
strain has endured 16 generations of inbreeding and has maintained a healthy condition. Two additional
strains, IM12m and IM14m, were established as closed colonies from the branches of the IM strain. Geno-
type analyses using genetic markers revealed a dramatic decrease in polymorphisms (62% dropped to 5%)
in both IM (generation 14) and the two closed colonies. This indicates a high level of homogeneity in these
strains. Furthermore, scale transplantations between individuals within each strain were successful. These
data suggest that extremely homogeneous zebrafish strains have been established, thereby creating a valu-
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able resource for practical application.

Genetically uniform strains of animals are valuable tools in biomedical
research. Multiple laboratories can use these strains without concern
that genetic background variability will confound the experimental
results. Indeed, genetic background often affects phenotypes associated
with a particular mutant or experimental manipulation in several organ-
isms (Anzai et al. 2010; Nojima et al. 2004; Nomura 1991; Yamamura
et al. 2001). In such cases, genetically isogenic strains that can be
maintained for generations play an important role in providing
highly reproducible results (even several or more years later), and
enable us to directly compare and evaluate results obtained from
multiple laboratories. Genetically homogeneous strains also provide
essential tools for the identification of quantitative loci that affect
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evolutionarily and biomedically important traits (Frankel 1995;
Kimura et al. 2007; Klingenberg et al. 2004; Klingenberg et al.
2001; Tomida et al. 2009; Xiao et al. 2010). Extremely reliable and
reproducible data obtained from genetically homogeneous model
organisms enable the dissection of both gene-gene and gene-
environmental interaction patterns. Furthermore, to identify the
susceptible genes, it is often necessary to generate congenic strains;
strains that differ from their inbred partner strain by only a short
chromosomal segment. The stably maintained homogeneous strain
makes it possible to backcross continuously to generate congenic
strains (Markel et al. 1997; Morel et al. 1996; Yui et al. 1996).
Numerous attributes in the zebrafish, Danio rerio, including large
numbers of eggs per clutch, a short generation time, and relatively low
costs associated with maintenance, enable the application of a wide
variety of biological techniques to the organism, such as embryonic
manipulations, forward and reverse genetics, and molecular biology.
Consequently, over the past two decades, the zebrafish has become an
important vertebrate model organism in developmental biology, neu-
roscience, and cancer research. However, the zebrafish system has one
major weakness; namely, the lack of highly homogeneous strains that
can be stably maintained for many generations. For example, in both
mice and medaka, over 10 inbred strains have been maintained by full
sib-pair mating for more than 20 generations; these strains have

Volume 1 | October 2011 | 377


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000851/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000851/-/DC1
mailto:mshinya@lab.nig.ac.jp
mailto:nosakai@lab.nig.ac.jp

expanded the use of these animals as vertebrate model systems (Naruse
et al. 2004; Peters et al. 2007). Comparable zebrafish inbred strains
have not been available to the scientific community.

Streisinger et al. (1981) demonstrated that gynogenesis could be
used to produce homozygous diploid fish in which only the maternal
genome is represented in the offspring. Two zebrafish strains, C32 and
SJD, were generated in this manner and were subsequently inbred for
a number of generations (Johnson et al. 1995; Nechiporuk et al. 1999;
Streisinger et al. 1981). Genetic analysis of single nucleotide polymor-
phisms (SNPs) revealed that 7% and 11% of tested loci were poly-
morphic in the SJD and C32 strains, respectively (Guryev et al. 2006).
As 14.1% of these SNPs were polymorphic in an outbred strain, WIK,
it is difficult to conclude that SJD and C32 truly represent homoge-
neous lines (Guryev et al. 2006).

Recently, several additional clonal zebrafish strains have been
generated by gynogenesis. Successful transplantations between adult
fish have been performed with these strains without severe immune
reactions (Mizgirev and Revskoy 2010). It is too early to know, how-
ever, whether these strains can be maintained and expanded over
many generations. Finally, there is an additional inbred strain, SJA,
which is listed in the Zebrafish Model Organism Database (ZFIN,
Bradford et al. 2011). It is unclear how SJA was created, however,
and only 85% of its genome is guaranteed to be monomorphic.

It is clear that some logistical difficulties (i.e., inbreeding depres-
sions), including high mortality levels of embryos and larvae, biased
sex ratio, and few eggs from natural crosses, have made it hard to
inbreed zebrafish. However, it is not clear whether these difficulties are
too severe to establish and maintain homogeneous strains in zebrafish.
In this study, we have inbred two zebrafish wild-type strains, attempt-
ing to know the severity of inbreeding depression in zebrafish and to
establish highly homogeneous zebrafish strains through continuous
full sib-pair mating.

MATERIALS AND METHODS

Strains and fish maintenance

Two outbred wild-type strains, India and Tiibingen, were used
to generate genetically homogeneous strains of zebrafish. The India
strain is a strain obtained from expedition to Darjeeling (see ZFIN
at http://zfin.org/action/genotype/genotype-detail?zdbID=ZDB-GENO-
980210-28). The Tibingen strain originated from a local pet shop
and was maintained for many generations in the laboratory at Tiibingen
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(Haffter et al. 1996). This strain has been used by the Sanger Institute
for the Danio rerio Sequencing Project. The two inbreeding strains were
named IM (India-Mishima) and TM (Tiibingen-Mishima). For the IM
strain, male and female fish of generation n were denoted I,-M# and I,-
F#, respectively (# represents the serial number). An IM pair (consisting
of one male and one female) within generation # was denoted I,,-#. For
example, the IM founder pair (I,-1) consisted of one male (I,-M1) and
one female (I)-F1). The same nomenclature was applied to TM fish,
with a “T” replacing the “I.” The method for fish breeding is described
in supporting information, File S1.

Generation and selection of pairs

To generate genetically homogeneous zebrafish strains, sister-brother
mating was performed for many consecutive generations. A basic
strategy for inbreeding is schematically represented in Figure 1. Typ-
ically, five males and five females were selected from offspring
obtained from a single pair of parents. Five single-pair matings were
established from them, and embryos from each pair were raised to
adulthood. To determine which pair’s offspring was intercrossed to
generate the next generation, the following criteria were used: (1)
average number of eggs laid; (2) fertilization efficiency; (3) average
number of embryos surviving until three days postfertilization (dpf);
(4) survival rate of embryos at three dpf; (5) normal development in
the most embryos; (6) normal growth into healthy adult fish in the
most larvae; and (7) sex ratio. If most pairs of a given generation
revealed problems in any of these parameters, additional pairs were
generated, and the process was repeated. Paired fish of generation n
were fixed in 100% ethanol and placed at —30° after confirmation that
their offspring were producing viable progeny (generation n + 2). If
a paired fish was found dead before this confirmation was possible, the
deceased fish was fixed in 100% ethanol and immediately placed at
-30°. Closed colonies from two distinct branches of the IM family
were maintained through mass-mating of healthy-looking females and
males (three to eight each). Significant differences between the fertility
data at generation n and those at generation 0 were tested by t-test.

Genetic monitoring

During the course of the experiment, the fish were genotyped to
monitor genetic homogeneity and to guard against contamination.
Genotyping was performed using the simple sequence length poly-
morphisms (SSLP) listed on the ZFIN web site. Positional information
for each marker was obtained from ZFIN and the Massachusetts

Figure 1 Schematic representation of
typical inbreeding strategy. (1) Five
pairs at generation n (G,)) were gener-
ated from offspring originated from
a single pair of fish at generation n-1
(Gna). (2) Embryos (Gpiq) from each
pairs were obtained and raised to
adulthood. Data corresponding to the
fertility of each pair were recorded. (3)
The best pair at generation n (pair 1 in
this figure) was determined based on
the fertility data (see Materials and
Methods for detailed criteria). (4) In-
breeding was repeated from (1) for
the next generation; i.e., five pairs at
generation n + 1 (Gp.1) were gener-
ated from the offspring of the best pair
at generation n.

-

. Generation of five pairs
originated from a single
pair of parents

2. Obtaining embryos from
each pairs and raised to
adulthood

3. Detarmination of the best
pair based on the fertility
data

4. Generation of five pairs
from offspring of the best
pair
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General Hospital Zebrafish server (Shimoda et al. 1999). The allele size
of each SSLP marker was determined for both TM and IM founder
pairs (generation 0), and markers that were polymorphic in the orig-
inal pair were identified. Furthermore, using four progeny from each
strain (generation 1), codominant inheritance of the selected markers
was confirmed. Genomic DNA was extracted from fin-clips of living
fish or one-quarter of an ethanol-fixed fish using the Maxwell 16
Automated Purification System (Promega, Tokyo, Japan). Each fish’s
genotype was determined using methods described in Kimura et al.
(2005), with some modifications.

Scale transplantation

Two fish were anesthetized using 0.01% ethyl 4-aminobenzoate
(w/v) and placed on a wet Kimwipe with the lateral side up. For
autotransplantation, one dorsal and one ventral scale were removed
using forceps. The dorsal scale then was inserted into the ventral
position (where the ventral scale had just been removed). For
transplantations between individuals, one dorsal scale from the donor
fish was inserted into the ventral region of the recipient fish. Dorsal
scales contain melanophores and, therefore, are easily identified
within the recipient’s nonpigmented ventral region. The day after
transplantation, the presence of the donor scale was confirmed. If
the transplanted scale was missing at this time, the operation was
deemed a failure. Between posttransplantation days 3 and 24, the
transplanted scale was checked frequently (posttransplantation days
3 to 9, every two days; posttransplantation days 10-24, every three
days) to monitor for allograft rejection. Significant differences between
autotransplantation and transplantations between individuals were
tested by Fisher’s exact test.

RESULTS

TM inbreeding

Tibingen is a heterogeneous, wild-type strain of zebrafish, and in
April 2005, inbreeding was initiated with three independent single-
pair matings (generation 0) (Figure 2A). Complete fertility records for
each pair in each generation are shown in Table S1. The first obstacle
to inbreeding arose in generation 2 (Figure 3C, E, G, I). At this point,
the average number of fertilized eggs per clutch was 56 (the lowest
value measured during the study, except for the value in generation
13), and the fertilization efficiency was only 43.2%, significantly lower
than the value at generation 0. At three dpf, the number of living
embryos and the survival rate (each measured on a per clutch basis)
also were quite low (46 and 62.5%, respectively), although the differ-
ences were not significant compared to the data at the beginning of
the inbreeding. In this generation, 8 of 10 pairs yielded less than 50
living embryos at three dpf per clutch. Because of generation 2’s
fertility problems, additional pair matings were established from gen-
eration 1 fish, and two subfamily branches (one originating from T;-4
and the other from T;-5) were maintained (Figure 2A). Because of
these difficulties, it took approximately five months to establish the
next generation successfully, whereas the typical zebrafish generation
time is three months (Laale 1977) (Figure 2A). After generation 4, no
additional major problems arose, and the TM strain was successfully
propagated until generation 11 (Figures 2A and 3). The body size and
lifespan seemed the same as that of the original strain, although most
TM fish were usually disposed of after around one year to save space
in the fish facility. However, a biased sex ratio was observed in pair
matings of generation 2 (T,-2, T,-3, and T,-8), generation 5 (Ts-1,
Ts-4), and generation 6 (T,-2). In each case, the progeny from the
crosses were predominantly male.
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The second major difficulty arose in generation 12 of the TM
strain. Most pairs of generation 12 produced embryos with pheno-
types that included a small head, an underdeveloped lower jaw, and
poor circulation (Figure 4). These phenotypes were collectively desig-
nated the “TM phenotype.” Embryos with the TM phenotype died
within 10 dpf from cell necrosis within the brain or starvation or both.
As a result, additional single-pair matings were established from gen-
eration 12 fish. Pairs T1,-8, T},-15, and T ,-16 produced phenotyp-
ically normal embryos, whereas T},-4 produced both normal embryos
and embryos with the TM phenotype (Figure 2A, Table S1). The
remaining 12 single-pair matings, however, only produced embryos
with the TM phenotype. Normal embryos obtained from the above
single-pair matings were raised to adulthood. Unfortunately, the T},-
15 and T,-16 progeny were all male. In generation 13, therefore, only
fish from Ti,-4 and T),-8 were available for sib-pair mating (Figure
2A). All progeny from generation 13, however, exhibited the TM
phenotype. In a final attempt to overcome this problem, additional
single-pair matings were established from generation 11 (T;;-6 and
T11-7). Embryos from these crosses appeared normal and healthy;
however, all Ty;-7 progeny were male, and the T;;-6 progeny did
not produce any fertilized eggs. Therefore, despite much effort, in-
breeding of the TM strain ended at generation 13.

IM inbreeding

Inbreeding of the IM strain began in August 2005 (Figure 2B). India is
a wild-type strain that has been used often as the reference line for
mapping mutations (Geisler 2002). Inbreeding of India fish was ini-
tiated with five single-pair matings (generation 0). Complete fertility
records for each pair in each generation are shown in Table S2.
Successful progression from one generation to the next took between
two-and-one-half and four months for IM (Figure 2B), indicating
a relatively smooth inbreeding process.

As with TM, the fertilization efficiency of the IM strain decreased
soon after the inbreeding process was initiated. IM efficiency remained
significantly low (approximately 50%, Figure 3F). In contrast, TM
fertilization efficiency had recovered by generation 6. However, be-
cause IM females tended to lay more eggs than TM females (Figure
3A, B), the number of fertilized eggs and surviving embryos at three
dpf were mostly higher in IM compared with TM (Figure 3C, D, G,
H). Furthermore, although the value was still significantly lower than
that of generation 0, the fertilization efficiency of IM suddenly in-
creased to ~80% at generation 15, providing hope that this parameter
may improve in subsequent generations. The survival rate at three dpf
did not vary much during the course of the experiment (Figure 3]).
Surprisingly, one pair (I;4-2) produced embryos with a phenotype
indistinguishable from the TM phenotype (Figure 2B, compare Figure
4E, F with Figure 4C, D). Therefore, we established additional single-
pair matings using IM fish from some pairs in generation 13 (I;5-2,
I13-4, and I;5-5). To be safe, generation 15 single-pair matings were
prepared from I;4-3, which had different parents than I;,-2 (Figure
2B). Phenotypically wild-type embryos were obtained from all gener-
ation 15 pairs, and the progeny, the IM fish of generation 16, have
been growing well. During earlier stages of the IM inbreeding process,
there were examples of unbalanced sex ratios. I3-1, I3-2, and I,-1
produced primarily male progeny; however, this did not develop into
a persistent problem. In addition, generation 15 and generation 16 fish
generally looked a little bit smaller than fish of their original strain, but
they appeared healthy in all other ways and consistently produced
fertilized eggs without artificial insemination. Just like fish in the India
strain, their original strain, most of IM fish were usually in good
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A

Generation 0 1 2 3 4 5 6 7 8
Date of 2005 2006 2007
mating  Apr. Aug. Nov. Apr. Sep. Dec. Mar. Jun. Oct.
23 17 30 18 28 12 27 29 16
Identifier To-1 —— T1-1 = T21 Ta1 Ts-1 Te-1 Te-1
To2 FT12 T2 —T31 Ts-2 Ts-2 Te-2 T7-1 Ts-2
T3 T3 |T23 T3-2 T4-3 T5-3 Te-3 Tr-2 Te-3
T4 |— T4 { Ts-3 Ts4 Ts4 Te-4 T7-3 Te-4
—T2-5 T34 Ta-5 Ts-5 Te-5 Tr-4 Te-5
—T4-5 T T26 T35 Ts-6
FTi6 [ To7 J: Ts-6
~T7 T8
—T-8 | T29
— T2-10
B
Generation 0 1 2 3 4 5 6 7 8 9 10
Dateof 2005 2006 2007 2008
mating  Aug.  Nov. Feb.  May Aug. Nov.  Jan. May Aug. Nov. Feb.
23 1 1 9 29 16 30 1 21 19 19
Identifier fo-1 -1 -1 [3-1 I4-1 I5-1 lg-1 171 Io-1 l10-1
lo-2 11-2 -2 [3-2 14-2 Is-2 le-2 I7-2 Ig-1 lg-2 l10-2
lo-3 -3 12-3 13-3 14-3 15-3 le-3 17-3 lg-2 lg-3 110-3
lo-4 -4 3-4 le-4 ls-4 lo-4 l7-4 lg-3 lo-4 l1o-4
lo-5 -6 l4-5 ls-5 le-5 17-5 lg-4 lo-5 l10-5
lt-4 — I2-5 -6 lg-5 lo-6
1+-5 177

condition until they were disposed of to surrender space (about one
year, normally). We will continue to propagate the IM strain through
sib-pair matings.

As was learned from the TM strain, continuous sib-pair mating
carried the risk of strain extermination. To avoid complete loss of
the genetically homogeneous IM strain, therefore, we also established
two IM branch families and maintained them as closed colonies. 1;,-4
and I;4-3 served as founder pairs of these colonies (Figure 2B), and
they were named IM12m and IM14m, respectively. These strains have
been successfully propagated for two to four generations by mass
mating.

Genetic assessment of the strains inbred

To monitor inbreeding progress and to avoid strain contamination,
the pairs whose progeny was crossed in the next generation were
frequently used in a genetic analysis. Each fish was genotyped using
two genetic markers per chromosome (50 markers in all). These 50
markers were prepared for the TM and IM strains as listed in Table S3
and Table S4, respectively. Polymorphic markers in founder fish were
included in the marker sets as much as possible. In generation 0 of the
TM and IM strains, polymorphisms were detected at 52% and 84% of
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9 10 1 12 13
2008 2009
Jan. May Aug. Nov. Mar.
30 7 7 5 18
Te-1 Tio-1 Tl - Tl
Te-2 T10-2 T2 |- T2 Tt
Te-3  T103 = T1=3 1 T3 JE T2
Te-4 Tio-4 Ti1-4 |~ Ti-4 Ti39
Te-5 T10-5 Ti1-59 |- T125 Tis3
T8 |- T26 Tz 6
Tu? | Tw?7 |-Twda Figure 2 Pedigree of the
L T8 L Txs  highly homogeneous strains.
| 1,9  (A) Pedigree of the TM strain.
_ﬁo (B) Pedigree of the IM strain.
L T Bolded paired identifiers rep-
== resent the pair whose offspring
— T12-14 . . .
were kept inbreeding. Single-
— TS underlined paired identifiers
— Ti12 represent pairs that produced
— Ti13 some embryos with the TM
— T12-16 phenotype, whereas double-
underlined paired identifiers
represent pairs that only pro-
" 12 13 14 5 duced embryos with the TM
2009 phenotype. Two closed colo-
M% Se?é Ja1”3‘ A‘;'é A“192' nies (IM12m and IM14m) were
established from the pairs in
Wt —he? ~hel w2 ket boxes.
114-2 l12-1 l13-2 { l14-6 l15-2
-3 112-2 113-3 114-9 I15-3
l11-4 112-3 13-4 1141 hs-4
111-5 113-5 I15-5
—|\ 112-5
112-6 114-12
— ha-4
— |45
— a7
— l4-8
— 114-10

the examined loci, respectively (Table 1). By generation 9, the number
of polymorphic makers had decreased to 12% (TM) and 8% (IM),
indicating a dramatic loss of genetic diversity. In the TM strain, 8% of
the markers were polymorphic at generation 11, whereas in IM, only
2% of the markers were polymorphic by generation 13. No unex-
pected alleles were detected in this analysis, suggesting a lack of con-
tamination during the inbreeding process.

To determine more precisely which genomic regions remained
polymorphic within the IM strain, an additional 50 genetic markers
were analyzed. This “additional marker set” contained two more
markers per chromosome than the original IM marker set. The I;4-
3 pair, which consisted of I;,-M3 and I;4-F3, was chosen for this
analysis. In addition, three fish from IMI14m that had been mass-
mated for two generations (IM14m2), three fish from IM12m that
had been mass-mated for one generation (IM12ml), and three fish
from IM12m that had been mass-mated for three generations
(IM12m3) were included in the analysis. The 100 markers covered
the zebrafish genome with an average interval of 19.4 = 12.3 ¢M. The
alleles found in these fish are shown in Table 2. At generation 0, 62%
of the markers were polymorphic, whereas only 5% were polymorphic
in I;4-3 (Table 1) and IMI2ml (data not shown). Alleles that
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Figure 3 Fertility of the TM and
IM strains at each generation.
Graphed data from TM (A, C, E,
G,andl)and IM (B, D, F, H, and
J) are shown. (A, B) Number of
eggs per clutch. (C, D) Number
of fertilized eggs per clutch. (E,
F) Percentage of fertilized eggs
per clutch (fertilization effi-
ciency). (G, H) Number of em-
bryos that survived until three
dpf per clutch. (I, J) Percentage
of embryos that survived until
three dpf per clutch. Bars in-
dicate mean values; error bars
indicate range of values. Both
maximum (up) and minimum
(down) values are indicated.
Asterisks indicate the significant
differences (P < 0.05) from the
values observed in generation 0.

76867 at LG8) were polymorphic in IM14m2. For each of these IM
strains, therefore, ~95% of the genome was homozygous. As such, we
have successfully generated highly inbred and genetically homoge-
neous strains of zebrafish by sequential sib-pair mating.
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Tolerance for tissue transplantation within the IM strain

As with other animals, adult zebrafish that are part of an outbred
colony reject transplanted tissue from another individual (Figure 5B).
In mice, however, successful tissue transplantation between individu-
als occurs if the two mice originated from the same inbred strain
(Medina 2010). Similar results have been seen in medaka after 8
generations of sib-pair mating (Hyodo-Taguchi and Egami 1985).
To test whether tissue transplantation between adult individuals was
possible in zebrafish strains inbred for many generations, scale trans-
plantation experiments were performed (Figure 5A). IM animals from
generations 14 and 16, as well as IM12m1, were chosen for analysis. In
autograft experiments (in which a dorsal scale is place in a ventral
region of the same individual), 86-100% of the autografted scales
remained at the transplanted region 24 days after transplantation
(Figure 5B-D). In contrast, most grafts between individuals of the
outbred India strain were rejected and, therefore, not detected except
for one scale at 24 days after transplantation (Figure 5B, P = 0.005 by
Fisher’s exact test). When scales were transplanted between IM indi-
viduals (generation 14), 78% of the scales survived 24 days (Figure
5C); this did not represent a significant difference from autograft
experiments (P = 0.527 by Fisher’s exact test). For both I;4 (Figure
5D) and IM12m1 (data not shown), no grafted scales were rejected
(P =1 by Fisher’s exact test). These strains of zebrafish inbred for 12
or more generations are, therefore, sufficiently homogeneous to sup-
port transplantation of cells between adult individuals.

DISCUSSION

In this study, we inbred two wild-type zebrafish strains, TM and IM,
by full sib-pair mating. Although the TM strain was lost after 13
generations, the IM strain successfully produced offspring from pairs

Figure 4 The TM phenotype. Embryos with the TM
phenotype had small heads and underdeveloped jaws.
Lateral views of the embryos are shown. (A, B) Wild-type
embryo. (C, D) TM embryo with the TM phenotype. (E,
F) IM embryo with the TM phenotype. Arrowheads mark
the underdeveloped jaws. Scale bar is 0.7 mm.

at generation 15; that is, the IM strain endured 16 generations of sib-
pair mating. Furthermore, two additional strains (IM12m and
IM14m) were established as closed colonies. Genotype analysis
revealed that polymorphisms associated with the IM founder pair
(62% of the interrogated genetic markers) were dramatically reduced
(5%) in IM, IM12m, and IM14m. These data suggest a high level of
genetic homogeneity within each strain. In fact, allograft rejection was
not observed between individuals within these strains. Together, the
IM, IM12m, and IM14m strains represent important resources for the
zebrafish scientific community, particularly in the fields of complex
trait analysis. Furthermore, the inbreeding strategy described here will
be a good reference to establish more strains of zebrafish that are
highly homogeneous. Those strains are available from M. Shinya by
request.

Highly homogeneous zebrafish strains: IM, IM12m,

and IM14m

The genetic analysis of SSLP markers showed that the genomes of the
IM, IM12m, and IM14m strains were ~95% nonpolymorphic (Tables
1 and 2). The coefficient of inbreeding is the probability that two
alleles at a randomly chosen locus in an individual are identical by
descents, and it is theoretically calculated as 0.951 for an individual
generated by full sib-pair mating for 14 generations (Falconer 1989).
Therefore, our estimation that ~95% of the genomes were homozy-
gous in the IM and its related strains is consistent with the theoretical
value, even though we examined only 100 loci. To determine more
precisely the degree of polymorphism within these strains, it will be
necessary to genotype more genetic markers, including SNPs. Alter-
natively, direct sequencing of these strains will provide the most ac-
curate assessment of genetic homogeneity. In this regard, we have

Table 1 Number of polymorphic markers within the TM and IM strains

Generation

Marker Set Strain 0 9 11 13 14 15
TM marker set (n = 50) ™ n 26 6 4 ND ND ND
(%) 52.0 12.0 8.0 ND ND ND

IM marker set (n = 50) IM n 42 4 ND 1 1 1
(%) 84.0 8.0 ND 2 2.0 2.0

IM marker set + additional marker set (n = 100) M n 62 ND ND ND 5 ND
(%) 62.0 ND ND ND 5.0 ND

ND, not determined.
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Table 2 Alleles present in IM (generation 14), IM14m2, and IM12m3

LG Markera Position (cM) Allele LG Marker@ Position (cM) Allele
1 29394 8.5 279 14 29857 10.5 215
Z5508 24.2 208 75435 34.6 110
76802 61.3 187, 191 Z8801 55.5 229
26223 85.1 210 211837 91.9 133
2 227170 12.9 282 15 26312 9.7 188
79361 431 211 26895 49.3 128, 132¢
210838 57.0 205 29773 85.2 212
79037 86.2 119 210193 97 151
3 211244 14.0 230 16 214570 3.6 184
215457 40.9 128 79881 27.7 195
722516 64.9 155 29685 43.4 192
27486 100.6 181 79269 78.9 251
4 21366 10.9 106 17 76010 2.3 138
720533 26.0 206 222674 335 162
Z11250 44.9 147 79692 64.5 251
27524 61.6 96 Z21144 81.1 167
5 215414 3.6 190 18 711685 4.3 223
728921 28.2 255 29231 26.2 267
79871 54.0 181 78343 494 197
29185 103.0 86 27961 75.4 182
6 21265 3.5 104 19 Z4009 12.7 242
7880 25.2 170 74825 28.1 243
210183 51.3 240 27686 48.8 162
79230 81.0 186 79512 80.8 153
7 Z191 1.9 120, 122 20 26804 7.9 184
29133 35.5 132 Z10056 38.9 259
21239 70.6 186 221067 64.9 188
213936 85.8 190 221485 115.8 146
8 21637 4.9 101 21 758858 1.4 127
Z11001 39.9 144 26869 494 129
76867 62.3 220, 236k 71497 119 251
29279 81.5 151 26537 125.2 110
9 78348 8.3 263 22 79516 6.8 177
211785 48.8 190 213794 26.7 225
75564 74.5 236 23286 59.2 89
27564 86.7 151 74682 68.7 292
10 710251 8.6 221 23 21668 0 149
28146 27.9 147 Z4003 16.6 243, 247
73835 48.7 153 75141 36.6 88
27558 77.3 150 Z4120 60.1 137
11 222552 0.0 137 24 210961 1.2 132
713411 22.6 236 723011 36 220
213666 51.4 273 713229 53.5 159
211809 69.5 131 26923 75.7 100
12 77135 6.3 170 25 221302 4.3 158
29891 32.0 186 21197 10.9 210
74830 55.0 158 Z21055 42.5 133
21312 78.7 147 71431 67.8 172
13 29878 4.7 268
76104 25.2 179
217223 51.5 125
26007 80.7 128

‘I§G, linkage group.

Markers belonging to the IM marker set are in bold.
c The allele in IM14m2 was 220.

The allele in IM12m3 was 132.

begun sequencing two genomes from I,4-3 (I4-M3 and I,,4-F3), which
will identify polymorphisms within the IM strain.

Highly homogeneous strains of zebrafish are typically difficult to
manipulate and maintain. Problems associated with these strains
include physiological weakness, biased sex ratios, and the inability to
perform natural crosses. Homozygous diploid zebrafish lines C32 and
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SJD (Johnson et al. 1995; Streisinger et al. 1981) were shown to be
homozygous in over 90% of genomes through SSLP marker analyses
(Nechiporuk et al. 1999). Unfortunately, C32 lacked vigor, and SJD
progeny were predominantly male. Reciprocal introgression of genes
to overcome these phenotypes was attempted by crossing C32 and
SJD (Rawls et al. 2003). The IM strain and two related closed colonies
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Figure 5 Scale transplantation experiments. (A) Schematic representation of scale transplantation. A dorsal scale was always transplanted to the
ventral side. The "diff" (black arrows) indicates transplantation between individuals, and “auto” (gray arrows) indicates transplantation within the
same fish. (B-D) The percentage of surviving transplanted scales during the 24 days after transplantation. Crosses indicate autotransplantation,
and diamonds indicate transplantation between individuals. Transplantation data from the India outbred strain (B), IM fish at generation 14 (C),
and IM fish at generation 16 (D) are shown. P-values were calculated from the data at 24 days after transplantation.

were shown to be ~95% homozygous. As a result, they are somewhat
weaker physiologically than heterogeneous populations (e.g., lower
tolerance for sudden changes to pH or temperature). These weak-
nesses, however, have not hindered their propagation or maintenance.
Furthermore, all three strains are capable of laying fertilized eggs un-
der natural-cross conditions. While inbreeding IM, we occasionally
observed biased sex ratios. In generations 3 and 7, some pairs pre-
dominantly yielded males (see Results), but after generation 8, no
further gender bias was detected. No sex ratio bias has been seen
for either IM12m or IM14m. Taken together, IM strains do not ex-
hibit the phenotypic weaknesses that typically plague homogeneous
populations of zebrafish. Careful selection for those phenotypes in
each generation may have contributed to this successful outcome.

The genetic homogeneity and health condition of IM, IM12m, and
IM14m make them ideally suited for experimental manipulation.
Testicular cell grafting experiments have already been performed
using these strains (Kawasaki et al. 2010). To effectively utilize these
strains in genetic analyses of quantitative traits, however, it will be
necessary to generate at least one additional inbred strain from a dif-
ferent genetic background (i.e., not India). We have begun additional
inbreeding by following the inbreeding strategy described here with
some modifications to attempt to generate more homogeneous lines
from other zebrafish wild-type strains.
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TM phenotype
TM inbreeding failed at generation 13 because of the TM phenotype
(Figure 4). This phenotype arose so suddenly and with such a high
frequency (almost every embryo from generation 12 breeding pairs was
affected) (Figure 2A) that propagation of the line was not possible.
Although TM and IM were raised under essentially identical condi-
tions, the TM phenotype primarily affected only one line. It is likely,
therefore, that a genetic factor(s) caused this condition. Phenotypes
associated with maternal contributions often arise quickly, but the
TM phenotype does not seem to be inherited maternally. One female
(T1,-F13) produced embryos with the TM phenotype when crossed
with Tj,-M13 but yielded wild-type embryos when crossed with T,-
M14 (Table S1). The pattern of phenotypic appearance within the TM
family (rapid and essentially ubiquitous) makes it difficult to explain
this phenomenon with a single factor. Many factors (perhaps including
environmental factors) may have been involved in the phenotypic
expression. Genomic comparisons between zebrafish parents that pro-
duce embryos with either the wild-type or TM phenotype may lead to
identify the causative loci. As we have sampled most pairs for DNA
preparation, we are now planning to perform the genomic analyses
using those samples to elucidate the genetic basis of the TM phenotype.
The TM phenotype was also seen in a single cross of the IM strain,
which was derived from a completely different genetic background.
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Furthermore, similar phenotypes have been observed in another wild-
type strain, AB, which was established long ago in Oregon (H. Yokoi,
personal communication). These observations suggest that the TM
phenotype is generally associated with increased homozygosity of the
zebrafish genome. “Inbreeding depression” is a term used to describe
the reduced fitness of a given population that results from breeding
related individuals (Charlesworth and Willis 2009). The TM phenotype
exemplifies inbreeding depression. Then, in addition to the inbreeding
problems described above, how to cope with the TM phenotype is
an important issue to establish inbred strains in zebrafish. One way
to avoid extinction caused by TM phenotype is the way taken in the
IM inbreeding at generation 14: generating many branches and for
the next generation, selecting a single-mating pair whose parents are
different from those of pairs with TM phenotype (Figure 2B). Alter-
natively, we can avoid the phenotype, if the causative loci are identified.
In this sense, the genomic analyses proposed above will provide a big
help to establish inbred strains in zebrafish more easily.

Level of inbreeding depression in zebrafish

Inbreeding depression presents a major difficulty in generating and
maintaining highly homogeneous strains. The degree of inbreeding
depression varies from species to species. Quail, for example, exhibit
remarkably strong inbreeding depression (Sato 1986). The lethal
equivalent (LE) is an index that attempts to quantify inbreeding de-
pression. An LE is defined as a set of alleles that would cumulatively
cause an individual to fail to produce its offspring, if all alleles in the
set are homozygous in the individual (Morton et al. 1956). The num-
ber of LEs in quail has been estimated at 8.7 (Sittmann et al. 1966),
whereas values of 1.4 to 3.6 LEs have been reported for zebrafish
(McCune et al. 2002; McCune et al. 2004). It seems clear, therefore,
that zebrafish exhibit less inbreeding depression than birds, a fact that
contributed to the success of our IM project.

In both mice and medaka, inbreeding depression is weak enough to
allow 20 or more generations of continuous sib-pair mating. However,
there is a clear difference between these two species. Inbred strains of
medaka are generated quite easily, as only two to three single-pair
matings are typically established and tested per generation (Taguchi
1980). In contrast, sibling crosses in mice generate many sterile animals
and require numerous single-pair matings at each generation, especially
the first generation (Silver 1995). This inbreeding depression typically
begins to diminish by generation 8. Therefore, inbreeding depression is
stronger in mice than in medaka. In this study, we typically established
five single-pair matings per generation. Although we lost one strain, IM
remains maintained by continuous sib-pair mating. These data suggest
that inbreeding depression in zebrafish is greater than in medaka but
likely less than in mice.

Inbreeding depression is caused by increased homozygosity for
a single locus with heterozygous advantages and/or a single or multiple
deleterious mutations with recessive effects (reviewed in Charlesworth
and Willis 2009). It is interesting and important to identify the genomic
factors involved in inbreeding depression and in its variation among
species. Although some genetic analyses have been performed for the
traits related to fitness (Remington and O’Malley 2000), they have not
identified those factor(s) yet. Together with the quantitative trait loci
(QTL) analyses for the fitness traits, genomic sequencing analyses using
TM and IM fish in some generations might give some insights into the
factor(s) related to inbreeding depression. Those kinds of data from
several organisms will provide information about the genomic factor
(s) that contribute to the variation of inbreeding depression among
those species.
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Generation of zebrafish inbred strain by full

sib-pair mating

In mice and rats, an inbred strain is defined as a population that was
established with a single ancestral pair and has been inbred (brother x
sister) for 20 or more consecutive generations (Guidelines for Nomen-
clature of Mouse and Rat Strains). This definition also is used by the
medaka community (Taguchi 1990). Although homogeneous lines
have been generated in zebrafish through gynogenesis (Johnson
et al. 1995; Streisinger et al. 1981), no zebrafish strains have been
established that meet the inbred strain definition used by the mice
and medaka scientific communities. To our knowledge, the 16 gen-
erations of continuous sib-pair mating that characterize the IM strain
represent the longest such effort to date. With 4 more generations of
careful inbreeding (for a total of 20 generations), the IM strain will
become the first inbred strain of zebrafish that meets the definition of
inbred strain used for mice and medaka.
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