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Abstract

Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical
representation of the system including accurate values of the model parameters. Fortunately, modern experimental
techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown
parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the
experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the
structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori
whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for
general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some
point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently
available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The
results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous
compromise among range of applicability, computational complexity and information provided.
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Introduction

Modelling and simulation offer the possibility of integrating

information, performing in silico experiments, generating predic-

tions and novel hypotheses so as to better understand complex

biological systems. However, the quality of the results will highly

depend on the predictive capabilities of the model at hand. In this

regard, the selection of an adequate modelling framework for the

system under consideration and for the questions to be addressed

is crucial [1] together with the capacity to anchor model

sophistication with experimental data [2]. In this respect,

parameter estimation by means of data fitting has become a

critical step in the model building process [3].

However, and despite the ever increasing availability and

quality of biological data, this parameter estimation step still

remains a difficult mathematical and computational problem.

It has been argued that such difficulties are often originated in

the lack of identifiability, i.e. in the difficulty or (in some cases)

impossibility of assigning unique values for the unknown

parameters. This has been in fact the case in many examples

found in the literature [4–8]. These works report the impossibility

to asses unique and meaningful values for the parameters since

broad ranges of parameter values result in similar model

predictions.

But what is the exact origin of the lack of identifiability? We can

distinguish between structural and practical identifiability. Struc-

tural identifiability is a theoretical property of the model structure

depending only on the system dynamics, the observation and the

stimuli functions [9]. Practical identifiability is intimately related to

the experimental data and the experimental noise.

Although the questions seem rather similar, there are several

crucial differences. Possibly the most important has to do with the

capability to recover identifiability. If some parameters turn out

not to be structurally identifiable, numerical approaches will not

be able to find reliable values for them. In those situations, the only

possibilities for a successful model building will be i) to reformulate

the model (reducing the number of states and parameters), ii) to fix

some parameter values (for example, those which are less relevant

to model predictions) or iii) to design new experiments by adding

measured quantities (if technically possible). Lack of practical

identifiability will be in general terms solvable, providing the

experimental constraints allow designing sufficiently rich experi-

ments. In this regard, recent works suggest the use of model based

(optimal) experimental design to iteratively improve the quality of

parameter estimates [10–13].

There are, at least, two reasons to asses identifiability. First,

most of the model parameters have a biological meaning, and we

are interested in knowing whether it is at all possible to determine

their values from experimental data. Second, numerical optimi-

sation approaches will find difficulties when trying to estimate the

parameters of a non-identifiable model.

In this regard, practical identifiability analysis has received

substantial attention in the recent literature. Local analyses are

based on the computation of local sensitivities, the Fisher

Information Matrix, the covariance matrix, or the Hessian of

the least-squares function [14,15]. Hengl et al. [16] proposed the
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method of mean optimal transformations to reduce the number of

model parameters to improve practical identifiability. Balsa-Canto

et al. [10] suggested the use of a bootstrap based approach so as to

quantify practical identifiability in terms of eccentricity and

pseudo-volume of the robust confidence hyper-ellipsoid. In a

more recent work, the same authors suggested the use of the global

rank of parameters to assess the relative influence of the

parameters in the observables and to anticipate lack of structural

or practical identifiability [17].

Despite the importance of knowing a priori whether there is any

chance of uniquely estimating all model unknowns, the structural

identifiability analysis has been ignored in the vast majority of

modelling studies in systems biology. Only recently some works

have considered the structural identifiability analysis of cell

signalling related examples. Balsa-Canto et al. [17] proposed the

use of power series based approaches combined with identifiability

tableaus so as to asses the identifiability of the model of the NFkB

module by Lipniacki et al. [4]; Roper et al. [18] considered the

analysis of different alternative models of a single phosphorylation-

dephosphorylation cycle in the MAPK cascade [19], by means of a

differential algebra based approach.

However, the structural identifiability analysis for general non-

linear dynamic models in systems biology is still a challenging

question. Even though a number of methods exist [20], there is no

method amenable to every model, thus at some point we have to

face the selection of one of the possibilities.

This work presents a critical comparison of currently available

methods so as to evaluate their potential in systems biology. In

particular, we will consider the Taylor series method [21], the

generating series method [22], both complemented with the

identifiability tableaus [17], the similarity transformation approach

[23], the differential algebra based method [24,25], the direct test

method [26,27], a method based on the implicit function theorem

[28] and the recently developed test for reaction networks [29–31].

The advantages and disadvantages of all these methods are

evaluated on the basis of a collection of examples of increasing size

and complexity. The selected models include different types of

non-linear terms, such as generalised mass action (GMA),

Michaelis-Menten and Hill kinetics, as typically found in systems

biology models. The six different examples considered are: the

Goodwin oscillator model [32], a pharmacokinetics model that

describes the receptor-mediated uptake of glucose oxidase [33],

the model of a glycolysis inspired metabolic pathway [34], a high

dimensional non-linear model which represents biochemical

reaction systems [35], the model of the central clock of Arabidopsis

Thaliana [36] and the model of the NFkB signalling module [4].

Methods

Mathematical model formulation
We will assume a biological system described by:

X
pð Þ :

_xx~f x,pð Þz
Pnu

j~1 gj x,pð Þuj ,

y~h x,pð Þ, x t0ð Þ~x0 pð Þ

(
ð1Þ

where x~ x1,:::,xnx
ð Þ[M5Rnx is the state variable, with M a

subset of Rnx containing the initial state, u~ u1,:::,unu
ð Þ[Rnu a

nu{dimensional input (control) vector with u1,:::,unu
smooth

functions, and y~ y1,:::,yny

� �
[Rny is the ny{dimensional output

(experimentally observed quantities). The vector of unknown

parameters is denoted by p~ p1,:::,pnp

� �
[P, and in general is

assumed to belong to an open and connected subset of Rnp : The

entries of f, g~ g1,:::,gnu

� �
and h are analytic functions of their

arguments. These functions and the initial conditions may depend

on the parameter vector p[P:
It should be noted that typical models in systems biology, such

as GMA models or those incorporating Michaelis-Menten or Hill

type kinetics can be easily drawn in the format of Eqn. (1).

Structural identifiability definition
Structural identifiability regards the possibility of giving unique

values to model unknown parameters from the available

observables, assuming perfect experimental data (i.e. noise-free

and continuous in time) [9].

N A parameter pi, i~1,:::,np is structurally globally (or uniquely)

identifiable if for almost any p�[P,

S pð Þ~S p�ð Þ[pi~p�i , ð2Þ

N A parameter pi, i~1,:::,np is structurally locally identifiable if for

almost any p�[P, there exists a neighbourhood V p�ð Þ such that

p[V p�ð Þ and S pð Þ~S p�ð Þ[pi~p�i , ð3Þ

N A parameter pi, i~1,:::,np is structurally non-identifiable if for

almost any p�[P, there exists no neighbourhood V p�ð Þ such

that

p[V p�ð Þ and S pð Þ~S p�ð Þ[pi~p�i : ð4Þ

A vector s pð Þ is an exhaustive summary of the experiment if it

contains only the information about the parameters p that can be

extracted from knowledge of u tð Þ and y t,pð Þ:
From the previous definitions, structural global (p[P) and local

(p[V p�ð Þ) identifiability can be checked by using the exhaustive

summary as follows:

p�[V p�ð Þ and s pð Þ~s p�ð Þ[p~p�: ð5Þ

Methods for testing structural identifiability
Structural identifiability analysis of linear models is well

understood and there are a number of methods to perform such

a task. In contrast, there are only a few methods for testing the

structural identifiability of non-linear models: the Taylor series

method [21], the generating series method [22], the similarity

transformation approach [23], the differential algebra based

method [24,25], the direct test [26,27], a method based on the

implicit function theorem [28] and the recently developed test for

reaction networks [29,30].

Taylor series approach
The Taylor series approach [21] is based on the fact that

observations are unique analytic functions of time and so all their

derivatives with respect to time should also be unique. It is thus

possible to represent the observables by the corresponding Taylor

series expansion in the vicinity of the initial state t0 and the

Structural Identifiability in Systems Biology
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uniqueness of this representation will guarantee the structural

identifiability of the system. The idea is to establish a system of

non-linear algebraic equations in the parameters, based on the

calculation of the Taylor series coefficients, and to check whether

the system has a unique solution.

Let us assume that the state variables x[M5Rnx , the outputs

y[Rny , the inputs u[Rnu and the functions f : M?Rnx and

g : M?Rnx|Rnu in Eqn. (1) have infinitely many derivatives with

respect to time. Let us also assume that h : M?Rny has infinitely

many derivatives with respect to the state vector components and

their successive derivatives. The Taylor series expansion of the

observation function, in a neighbourhood of the initial state, is

then given by

yi t,pð Þ~yi t0,pð Þzt _yyi t0,pð Þz t2

2!
€yyi t0,pð Þz::: with i~1,:::,ny: ð6Þ

If we define:

ai
k pð Þ : ~ lim

t;tz
0

dk

dtk
yi t,pð Þ, k~0,1,2,:::,kmax, i~1,:::,ny, ð7Þ

then a sufficient condition for global structural identifiability is

given by

ai
k pð Þ~ai

k p�ð Þ,k~0,1,2,:::,kmax, i~1,:::,ny[p~p�, ð8Þ

where kmax is the smallest positive integer, such that the

symbolic computations give the solution of the parameters.

Possibly the major disadvantage of this method is related to the

impossibility to define a priori the value of kmax, thus, in general, it

will not be possible to talk about a ‘‘omplete’’resolvability for the

cases where kvkmax. Some bounds have been established for

particular types of models. For example, for a linear model the

upper bound on the number of derivatives should be 2nx{1 [37],

for bilinear models, 22nx{1 and for homogeneous polynomial

systems, s2nx{1
� �

= s{1ð Þ, where s represents the degree of the

polynomials [38]. For a single output model, Margaria et al. [39]

showed that nxznp derivatives are sufficient to determine the

structural identifiability using the Taylor series method. These

bounds could be higher for real problems, particularly when the

germ is not informative, i.e. when the Taylor coefficients become

zero at the initial conditions.

Another important disadvantage of this method is that the usual

complexity of the resulting algebraic parametric relations makes

the analysis difficult, allowing, in many cases, only for local

identifiability results [40]. This is particularly true when the

number of required derivatives is large. This explains why, despite

its conceptual simplicity and that computations may be simplified

when the initial conditions are known, this approach has not

become popular in practice [41].

Generating series approach
Conceptually similar to the Taylor method, in the generating

series approach [22] the observables can be expanded in series

with respect to time and inputs in such a way that the coefficients

of this series are the output functions h x,p,t0ð Þ, and their

successive Lie derivatives along the vector fields f and g
(Lfh x,p,t0ð Þ, Lgh x,p,t0ð Þ, LfLfh x,p,t0ð Þ, LfLgh x,p,t0ð Þ, LgLfh
x,p,t0ð Þ, LgLgh x,p,t0ð Þ and so on).

The Lie derivative of h along the vector field f, is given by:

Lfh x,p,tð Þ~
Xnx

i~1

f i x,p,tð Þ Lh x,p,tð Þ
Lxi

ð9Þ

with f i the ith component of f,where i, i~1,:::,nx.

The exhaustive summary contains the coefficients of h x0 pð Þð Þ,
and the successive Lie derivatives along g and/or f, evaluated at

the initial conditions x0 pð Þ. The model (1) is structurally globally

identifiable if the exhaustive summary is unique.

As in the case of the Taylor approach, the major disadvantage

of the generating series approach is that the minimum number of

required Lie derivatives is unknown. The lack of such a bound

offers only sufficient, but not necessary, conditions for identifia-

bility. The advantage is that the mathematical expressions

obtained with the generating series method are usually simpler

than those obtained with the Taylor series approach [42].

It should be remarked at this point that both power series based

methods may be applied to arbitrary non-linear functions f, g and

h in the model (1), thus being excellent candidates to perform the

analysis for the models in systems biology. However, the solution

of the resultant set of non-linear algebraic equations in the

parameters may be challenging (or impossible) even with the aid of

symbolic manipulation software. In this concern, the systematic

computation of so called identifiability tableaus [17] is introduced

here as a way to easily visualise the possible structural

identifiability problems and to systematise the solution of the

resulting algebraic system of equations on the parameters.

Identifiability tableaus
The tableau represents the non-zero elements of the Jacobian of

the series coefficients with respect to the parameters. It consists of a

table with as many columns as parameters and with as many rows

as non-zero series coefficients (in principle, infinite).

If the Jacobian is rank deficient, i.e. the tableau presents empty

columns, the corresponding parameters may be non-identifiable.

Note that since the number of series coefficients may be infinite,

structural non-identifiability may not be fully guaranteed unless

higher order series coefficients are demonstrated to be zero.

If the rank of the Jacobian coincides with the number of

parameters, then it will be possible to, at least, locally identify the

parameters. In this situation a careful inspection of the tableau will

help to decide on an iterative procedure for solving the system of

equations, as follows:

N The number of non-zero coefficients is usually much larger

than the number of parameters. In practice this means that we

should select the first np rows that guarantee the Jacobian rank

condition. The tableau helps to easily detect the necessary

coefficients and to generate a ‘‘minimum’’ tableau.

N A unique non-zero element in a given row of the minimum

tableau means that the corresponding parameter is structurally

identifiable. If the parameters in this situation can be

computed as functions of the power series coefficients, they

can be then eliminated from the ‘‘minimum’’ tableau to

generate a ‘‘reduced’’ tableau. Subsequent reductions may lead

to the appearance of new unique non-zero elements, and so

on. Thus, all possible ‘‘reduced’’ tableaus should be built in

sequence first.

N Once no more reductions are possible, one should try to solve

the remaining equations. Since it is often the case that not all

remaining power series coefficients depend on all parameters,

Structural Identifiability in Systems Biology
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the tableau will help to decide on how to select the equations to

solve for particular parameters.

N If several meaningful solutions exist for a given set of

parameters, then the model is said to be structurally locally

identifiable.

Similarity transformation approach
The similarity transformation approach [23] is based on the

local state isomorphism theorem. The model should be locally

reduced, i.e. controllability and observability conditions must be

fulfilled at t0 and it is assumed that the entire class of bounded and

measurable functions is available for stimulus. The method seeks

state variable transformations that leave invariant the stimuli-

observables map and the structure of the system.

The local state isomorphism is used to establish a set of first

order linear inhomogeneous partial differential equations which is

used to construct the functional form of such transformations.

Unfortunately, the solution of the partial differential equations

may be complex, and the need to test controllability and

observability conditions poses additional problems to the applica-

tion of this methodology for general non-linear systems.

An alternative was proposed by Denis-Vidal and Joly-Blanchard

[43] that allows to obtain direct relations of the components of the

isomorphism.

The identifiability of the parameters of the model (1) can be

obtained by using the local state isomorphism theorem as follows:

Theorem 1. [40] Let us consider the parameter values p,p�[p
such that the model (1) is locally reduced at the initial states x0 pð Þ,
respectively x0 p�ð Þ (observability and controllability rank condi-

tions are satisfied at x0 pð Þ, respectively x0 p�ð Þ), V5Rnx is an open

neighbourhood of x0 pð Þ, and there exists an analytical mapping

l : V?Rnx with the following properties:

(i)

rank
Ll xð Þ
Lx
jx~x�~nx, ð10Þ

(ii)

l x0 p�ð Þð Þ~x0 pð Þ, ð11Þ

(iii)

f l x�ð Þ,pð Þ~ Ll xð Þ
Lx
jx~x� f x�,p�ð Þ, ð12Þ

g l x�ð Þ,pð Þ~ Ll xð Þ
Lx
jx~x�g x�,p�ð Þ, ð13Þ

h l x�ð Þ,pð Þ~h x�,p�ð Þ, ð14Þ

for all x�[V : Then (1) is globally identifiable at p if and only if

conditions (10)–(14) imply p~p�:

The claim of [44] is that the local state isomorphism between

two state space systems corresponding to p and p� must be linear.

This restriction comes from the assumption that the observability

rank condition must be satisfied. Further details may be found in

the recent work by Peeters and Hanzon [45]. Note that Denis-

Vidal and Joly-Blanchard [43] eliminate the assumption of

linearity.

The major disadvantages of this method are related to the

difficulty of assessing the observability condition and the

complexity to solve the differential equations (12) for general

non-linear dynamic systems. Even the modifications proposed by

Denis-Vidal and Joly-Blanchard [43] may not be enough for large

scale highly non-linear models.

Direct test
The conceptually simplest approach to test structural identifia-

bility is the so called direct test [46], applicable to uncontrolled and

autonomous systems.

This method consists basically on trying to solve directly the

equality f pð Þ~f p�ð Þ[p~p�, for getting local or global identifia-

bility of the generic model (1). In general, reaching a conclusion

may require excessively complicated formal manipulations or the

equations to be solved may be too complicated for an analytic

expression to exist, which then imposes the use of numerical

methods, thus loosing the formal nature of the solution.

Differential algebra approach
The differential algebra methods [24] are based on replacing

the stimuli-observables behaviour of the system by some

polynomial or rational mapping. Non-observable differential state

variables are eliminated in order to get differential relations among

inputs, outputs and parameters, that result from these differential

relations, using Ollivier’method [47]. The exhaustive summary

can be obtained and solved using algebraic methods, such as the

Buchberger algorithm [48]. The algorithm is rigorous, as it

converges in a finite number of steps [24].

Different strategies using the differential algebra approach have

been proposed for models described by linear/non-linear

differential equations, in terms of polynomial or rational functions,

with or without known initial conditions.

Let us consider the general model given by (1), with f : M?Rnx ,
g : M?Rnx|Rnu , h : M?Rny polynomial or rational functions of

their arguments and the nu{dimensional differentiable input u.

The second assumption is that the system is accessible from its

initial conditions (equivalent to a ‘‘generic controllability’’) [25].

The model S pð Þ can be written as differential polynomials

S’ pð Þ :
x{f x,pð Þ{

Pnu

j~1

gj x,pð Þuj ,

y{h x,pð Þ:

8><
>: ð15Þ

Rational systems of differential equations are reduced to the

same denominator, or to a pure polynomial form.

The differential algebra approach proceeds as follows:

N S’ pð Þ represents the set of differential polynomials denoted by

F u,y,x,tð Þ.
N The differential polynomial ring (R u,y,x½ �) is made of polynomials

of the indeterminate variables x1,:::,xnx
and their derivatives,

the inputs u1,:::,unu
and outputs y1,:::,yny

and their derivatives.

N I5R u,y,x½ � is the ideal generated by the polynomials

F u,y,x,tð Þ and consists of all differential polynomials that

Structural Identifiability in Systems Biology
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can be obtained by using addition, multiplication and

differentiation. A differential ideal is called prime if

P1P2[I[(P1[I or P2[I ).

N The differential ideal is represented by a finite basis computed

by applying a set ‘‘ordering’’ of the variables and their

derivatives, called ranking. In literature, the ranking is given by

the inputs, as lowest ranked, outputs, and the highest rank is

attributed to the state variables [24]:

u1v:::vunuv _uu1v:::v _uunuv€uu1v:::vy1v:::vynyv

_yy1v:::v _yyny
v€yy1v:::vx1v:::vxnxv _xx1v:::v _xxnxv€xx1v:::

ð16Þ

The leader of a polynomial is the highest ranking derivative of the

polynomial, and the corresponding variable is called leading variable

[24]. The results usually change if the ranking is changed. So, we

can say that differential algebra methods are rank dependent. This

ranking is used to obtain an observable representation of the

model, by eliminating the unmeasured state variables.

N Ritt’s algorithm [49] computes the characteristic set, using the

set of differential polynomials and differential ideals. With the

ranking (16), the differential ideal has the characteristic set

made of differential polynomials of the form

A1 u,yð Þ,:::,Any u,yð Þ,
Anyz1 u,y,x1ð Þ,:::,Anyznx u,y,x1,:::,xnxð Þ, ð17Þ

where A1,:::,Any ,:::,Anyznx are differential polynomials, with the

leaders of Ai, i~1,:::,ny the derivatives of yi. The relations (17)

represent the characteristic set associated to the generic model (1)

[24,27]. The characteristic set may also be computed using the

(improved) Ritt-Kolchin algorithm [50] or Rosenfeld-Gröbner

algorithm [26]. All these algorithms eliminate the highest ranking

variable, such that differential polynomials in u,y,p are obtained

using symbolic computations. The eliminating process is called

pseudo-division.

N Normalising the differential polynomial in u,y,p the exhaus-

tive summary of the model is obtained. It is made of the

coefficients ci of each polynomial Ai u,yð Þ, i~1,:::,ny, denoted

by c : P?Rl , l~l1z:::zlny
, defined by c pð Þ~cij pð Þ,

i~1,:::,ny, j~1,:::,li, where li is the number of coefficients in

each Ai u,yð Þ, i~1,:::,ny: The structural identifiability is

equivalent to checking the injectivity of the map c : P?Rl .

This is equivalent to solving the system of equations

cij pð Þ~cij p�ð Þ, i~1,:::,ny, j~1,:::,li [39]. In this concern,

algorithms based on the Gröbner basis may give information

about the nature of the solution. Note that, in some occasions

solving that system of non-linear algebraic equations may be

complicated, if not impossible; for these situations it is possible

to use pseudo-randomly generated numerical values instead of

symbolic cij p�ð Þ [25].

The advantage of these differential algebraic methods is that the

solution of the associated algebraic equations gives precise

information about the identifiability or non-identifiability of the

parameters, but the disadvantage is the great computational

requirements when a complex model is considered.

Implicit Function Theorem
Proposed by Xia and Moog [28], this method is based on

computing the derivatives of the observables with respect to

independent variables (time) to eliminate unobserved states. A

differential system is obtained, depending only on known system

inputs, observable outputs and unknown parameters [41]. An

identification matrix is defined, consisting of the partial derivatives

of the differential equations with respect to unknown parameters.

If the identification matrix is not singular, the system is said

identifiable. The identifiability theory is based on the following

theorem:

Theorem 2. [28] Let Y : Rnyznuznp?Rnp denote the function

of model parameter p[Rnp , system input u[Rnu , system output

y[Rny , and their derivatives:

Y~Y p,u,u,:::,u kð Þ,y,y,:::,y kð Þ
� �

,

where k is a non-negative integer. Assume that Y has continuous

partial derivatives with respect to p: Then the generic model (1) is

locally identifiable at p�[P if there exists a point

p�,u�,u�,:::,u� kð Þ,y�,y�,:::,y� kð Þ
� �

[Rnpznuzny

such that

Y p�,u�,u�,:::,u� kð Þ,y�,y�,:::,y� kð Þ
� �

~0,det
LY
Lp�

� �
=0: ð18Þ

The relations in (18) are equivalent to checking structural identi-

fiability, by examining differential polynomials Y in the characteris-

tic set, that can give us information if the model is identifiable or not,

and which parameters are identifiable/non-identifiable.

This method becomes more and more complicated as the

number of parameters increases due to the complexity of deriving

the matrix
LY
Lp�

. Wu et al. [41] proposed an alternative, the multiple

time points method, that may be helpful for large scale systems. This

method relies on the computation of the derivatives at a number of

sampling times t1,:::,ti:Note however, that this requires preliminary

information about the observables at those sampling times.

This method offers the possibility of detecting the minimum

number of observables needed to compute all parameters [28], as

the computations may be performed independently for each

observable.

Identifiability analysis for dynamic reaction networks
For the case of chemical reaction networks written as in the

chemical reaction network theory (CRNT) [29,30] the structural

identifiability may be checked in two steps [30]: the reaction rate

identifiability and the structural rate identifiability.

The idea is to determine the structurally identifiable reaction

rates, using the stoichiometric matrix, and then parameter

identifiability may be computed for the considered reaction rates,

using one of the above mentioned methods. In their work, Davidescu

and Jorgensen make use of the generating series approach.

We consider the following facts and notations, as presented in

[51]:

N N[RnR|nS , with nR, the number of reactions and nS the

number of species, regards the stoichiometric matrix.

N Nm[RnR|nSm , Num[RnR|nSu , where the index m stands for

measured chemical species and um for unmeasured ones,

regard the stoichiometric sub-matrix corresponding to the

observed species and the stoichiometric sub-matrix corre-

sponding to the unobserved species, respectively;
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N if rank Nmð Þ~nR, then all reactions are identifiable;

N if rank Nmð ÞvnR, an identifiability criterion was introduced by

[51], based on the difference between NmNz
m and I , where

Nz
m ~NT

m NmNT
m

� �{1
is the Moore Penrose inverse, and I is

the identity matrix.

A reaction rate is called structurally identifiable if the corresponding

column in the matrix

NmNz
m {I

� 	
ð19Þ

is represented by the null vector [30].

Implementation of methods
To the authors knowledge, currently there are only two software

tools available that can be used for structural identifiability analysis

of non-linear models: DAISY [25] and the recently developed

GenSSI toolbox [52].

DAISY implements the differential algebra based approach by

using REDUCE. In principle, it is suited for any non-linear

dynamic system with known numeric or symbolic non-rational

initial conditions. It offers the advantage that non-expert users

may perform the structural identifiability analysis even for rational

models that be automatically transformed into polynomial forms.

The major disadvantage is that no intermediate results may be

obtained, i.e. unless the computation is completed no results will

be displayed.

To surmount this difficulty, we made an implementation of the

method by using the Epsilon, linalg and Gröbner packages, available

in MAPLE, for calculations of Gröbner bases and related

operations for ideals in polynomial rings. The computation of

the characteristic sets has the disadvantage that one should have

knowledge about the implementation and theory, and the

algorithm needs to be adapted by hand, for example for rational

models.

GenSSI implements the combination of the generating series

approach with the identifiability tableaus[17]. It is also suited for

non-linear dynamic models provided they are linear in the control

variables (as in Eqn. (1)). It offers several advantages to non-expert

users such as the possibility of handling any type of non-linear

terms with transforming the models to polynomial form and the

possibility of automatically incorporating known symbolic or

numeric initial conditions. In addition, intermediate results on the

structural identifiability of a sub-set of parameters are provided

throughout the process.

The rest of the methods considered here were implemented by

using suitable packages available in symbolic manipulation

software tools, such as MATHEMATICA, MAPLE and MA-

TLAB.

Results

As mentioned before, there is no single method amenable to all

types of problems for testing structural identifiability. In order to

perform a critical comparison of the different possibilities in the

context of systems biology, we have considered the structural

identifiability analysis of the following models: the Goodwin

oscillator model [32], a pharmacokinetics model that describes the

receptor-mediated uptake of glucose oxidase [33], the model of a

glycolysis inspired metabolic pathway [34], a high dimensional

non-linear model which represents biochemical reaction systems

[35], the model of the central clock of Arabidopsis Thaliana [36] and

the model of the NFkB signalling module [4].

Case study 1: Goodwin’s model
The model describes the oscillations in enzyme kinetics [53].

The state variable x1 represents an enzyme concentration whose

rate of synthesis is regulated by feedback control via a metabolite

x3, and x2 regulates the synthesis of x3. It is characterised by a

rational kinetics consisting of a Hill-like term, and it is given by:

_xx1~{bx1z
a

Azxs
3

,

_xx2~ax1{bx2,

_xx3~cx2{dx3,

x1 0ð Þ~0:3617,x2 0ð Þ~0:9137,x3 0ð Þ~1:3934

8>>>>>>><
>>>>>>>:

ð20Þ

Two scenarios will be considered, (a) the typical case when only

x1 can be measured (y1~x1) and (b) a hypothetical situation for

which all states can be measured (y1~x1,y2~x2,y3~x3).

For the case of one observable, the power series based methods

(Taylor and generating series) were not able to compute a full rank

tableau, because only 6 iterative derivatives could be computed. In

contrast, for the case of full observation the power series based methods

ended up in a full rank tableau as shown in Figure 1.(a). However,

the symbolic manipulation tools were not able to solve the non-

linear system of equations on the parameters, so only structural

local identifiability may be assessed.

The similarity transformation approach could not be applied since the

controllability condition is not fulfilled for this system.

The direct test method indicated the identifiability of a, but no

information was reported for the remaining parameters due to the

complexity of the algebraic manipulations.

The method based on the implicit function theorem was only applicable

for the case of full observation concluding that the remaining

parameters are structurally locally identifiable provided sw2.

Similarly, to apply the identifiability analysis for dynamic

reaction networks we had to fix both s and A this allowing to

derive the structural local identifiability of the remaining

parameters.

The differential algebra approach, as implemented in DAISY, results

in the non-identifiability of the model when 1 or 3 observables are

considered. No results about local identifiability were reported,

thus we decided to transform the original model into a full

polynomial form of the model, as follows:

_xx1~{bx1zax5,

_xx2~ax1{bx2,

_xx3~cx2{dx3,

_xx4~sx4x6 cx2{dx3ð Þ,
_xx5~{sx4x2

5x6 cx2{dx3ð Þ,
_xx6~{x2

6 cx2{dx3ð Þ,x1 0ð Þ~0:3617,x2 0ð Þ~0:9137,

x3 0ð Þ~1:3934,

x4 0ð Þ~x3 0ð Þs,x5 0ð Þ~ 1

Azx3 0ð Þs ,x6 0ð Þ~ 1

x3 0ð Þ :

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð21Þ

to check whether further results could be achieved.

Since algebraic operations were much simpler for this model

reformulation, the power series based approaches were now able

to conclude that the model (21) is structurally globally identifiable

Structural Identifiability in Systems Biology
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for all parameters, for the full observation case. However, the

DAISY software found the model structurally non-identifiable

(initial conditions not used), and was not able to finish the

computations reporting errors at the time of introducing the initial

conditions.

To sum up, this example illustrates how the structural

identifiability analysis may contribute to the design of experiments

by providing information on what to be observed so as to

guarantee the structural identifiability of a given mathematical

model. In addition, results also show how rational terms and Hill

coefficients may pose problems to some of the methods and how

pure polynomial forms may be useful so as to simplify the analysis.

For illustrative purposes, a detailed explanation of the

application of the different methods to this example may be

found in Supporting Information S1.

Case study 2: Pharmacokinetics model
The pharmacokinetics model [33] is a two compartment model

that embodies the ligands of the macrophage mannose receptor,

and it is represented mathematically as a system of differential

equations of the form:

_xx1~a1 x2{x1ð Þ{kavmx1= kckazkcx3zkax1ð Þ,
_xx2~a2 x1{x2ð Þ,
_xx3~b1 x4{x3ð Þ{kcvmx3= kckazkcx3zkax1ð Þ,
_xx4~b2 x3{x4ð Þ, x1 0ð Þ~c0,x2 0ð Þ~0,x3 0ð Þ~cc0,x4 0ð Þ~0,

8>>>>>><
>>>>>>:

ð22Þ

where x1 represents the enzyme concentration in plasma, x2 its

concentration in compartment 2, x3 is the plasma concentration of

the mannosylated polymer that acts as a competitor of glucose

oxidase for the mannose receptor of macrophages, and x4 is the

concentration of the same competitor in the part of the

extravascular fluid of the organs accessible to this macromolecule

[33]. This example is often used as a benchmark for structural

identifiability methods. Two scenarios are considered (a) the case

were the measured state corresponds to x1 (y1~x1), (b) the case

where ‘‘an artificial output’’ y2~x2 is added [54], to do so a2 is

assumed to be known [33,35].

The model (22) is autonomous and has no control function, so

in this case the Taylor series approach and generating series approach

coincide. The corresponding reduced identifiability tableaus are

presented in Figure 2. The identifiability tableaus for both scenarios

have full rank, thus guaranteeing, at least, structural local

identifiability, even for the realistic scenario with one observable.

The introduction of a fictitious control in the model so as to

fulfil the controllability condition enabled the application of the

local state isomorphism theorem to asses local structural identifiability

for the case with two observables [55]. However, the presence of a

control variable does not correspond to reality, therefore the

similarity transformation approach can not be directly applied.

The application of the direct test method generated two solutions

for the parameters. Only for parameter b2 global structural

identifiability was confirmed.

Saccomani et al. [35] considered the use of DAYSI for the

analysis of this model concluding that for the scenario with two

observables the six parameters considered are structurally globally

identifiable (with known a2). Note however that no results could be

obtained for the case with one observable (with unknown a2),

generating the computational error ‘‘heap space low’’.

Figure 1. Goodwin oscillator: Identifiability tableaus. (a) Identifiability tableau obtained by means of the power series methods for the case of
full observation, (b) Identifiability tableau obtained by means of the power series methods for the case of pure polynomial form and full observation.
H j½ � and V j½ � regard the different generating series coefficients, H is used for zero order coefficients whereas V correspond to the successive Lie
derivatives of hj along f, for example, V000 j½ �~Lf Lf Lf hj , j~1,:::,ny. A black square in the coordinates i,kð Þ indicates that the corresponding non-
zero generating series coefficient i depends on the parameter pk .
doi:10.1371/journal.pone.0027755.g001

Figure 2. Pharmacokinetics model [33]. Identifiability tableau
obtained by means of the Taylor/generating series method
doi:10.1371/journal.pone.0027755.g002
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For the case of the application of the implicit function theorem it was

possible to obtain the characteristic set independent of the

unobserved states. However, manually generating the identifia-

bility Jacobian matrix was too complicated. Therefore, the analysis

could not be finished.

In order to apply the method for reaction networks we need to

devise the network that gives rise to the model (22). For this

particular example a stoichiometric matrix N[R6|4 can be

obtained, with the matrix of measured states Nm of rank 4. Final

results assess the local identifiability of ka, kc and Vm. It should be

noted that this may be rather complicated since the solution may

not be unique [56].

From the results can then be concluded that the model is at least

structurally locally identifiable for the realistic case with one

observable as reported by the series based methods.

Case study 3: Glycolysis inspired metabolic pathway
This model represents a glycolysis inspired pathway (the upper

part of the glycolysis) with different physiological constraints on

enzyme synthesis as described in Bartl et al. [34]. A specific

enzyme, here denoted by u, usually catalyses a metabolic reaction,

expressed in terms of the stoichiometric matrix and the

metabolites, here denoted by x: The dynamical model can be

written as a system of differential equations

_xx1~{
k1x1

x1zkM

u1,

_xx2~
k1x1

x1zkM

u1{
k2x2

x2zkM

u2,

_xx3~
k2x2

x2zkM

u2{
k3x3

x3zkM

u3,

_xx4~
k2x2

x2zkM

u2z
k3x3

x3zkM

u3{
k4x4

x4zkM

u4,

_xx5~
k4x4

x4zkM

u4:

x1 0ð Þ~S1,x2 0ð Þ~S2,x3 0ð Þ~S3,x4 0ð Þ~S4,x5 0ð Þ~S5:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð23Þ

The model is considered to be fully observed, y1~x1,y2~x2,f
y3~x3,y4~x4,y5~x5g, and u1,u2,u3,u4 independent variables.

The Taylor series approach produced an identifiability tableau of

rank 5 as given in Figure 3.(a). Also, the solutions of the

parameters were given: unique solution for k1,k2 and kM , double

solution for k3 and four solutions for k4. However multiple

solutions were found and due to their complexity it was impossible

to assess their uniqueness for the case of real positive values.

The application of the generating series approach indicated the

global identifiability of the model. The computational cost was

significantly lower as compared to the Taylor series approach. In

addition, the identifiability tableau was not as dense, thus the

solution of the system of non-linear equations on the parameters

was simpler, finally resulting in an unique solution for all

parameters.

The similarity transformation approach could not be used for this

example since the observability condition is not fulfilled. The direct

test method was also not applicable since the system is autonomous

and controlled.

The method based on the implicit function theorem could be applied by

considering the following 3 relations

f1~ _yy1 y1zkMð Þzk1y1u1,

f2~ _yy2 y1zkMð Þ y2zkMð Þ{k1y1 y2zkMð Þu1zk2y2 y1zkMð Þu2,

f3~ _yy3 y2zkMð Þ y3zkMð Þ{k2y2 y3zkMð Þu2zk3y3 y2zkMð Þu3:

From the first equation and its derivative, the parameters k1 and

kM were found. Using the second one and _ff 2, the determinant

with respect to k2 and k3 was shown to have rank 2, and from the

last equation the parameter k4 could be found. By applying

Theorem 2, local identifiability was guaranteed.

Both differential algebra method implementations found the

model to be globally identifiable (computation performed without

the use of initial conditions).

It should be noted that the metabolic network (23) can be

written in terms of stoichiometric matrix and reaction rates. The

stoichiometric matrix has rank equal to 5. By choosing one matrix

corresponding to the reaction rates 1, 2, 3 and 4, and then the

reaction rates 1, 2, 3 and 5, and for each case applying the

generating series approach, the identifiability is assessed.

Figure 3. Glycolysis metabolic pathway: Identifiability tableaus. (a) Identifiability tableau obtained by means of the Taylor series method
(Ai j½ �, regards the jth component of the ith order coefficients of the Taylor series, (b) Identifiability tableau obtained by means of the generating series
method.
doi:10.1371/journal.pone.0027755.g003
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Several methods (the generating series method, differential

algebra and the method for reaction networks) were successful in

concluding that the model is structurally globally identifiable.

Case study 4: high dimensional non-linear model [35]
The system, that could describe a biochemical reaction

network, is represented by twenty differential equations, twenty-

two parameters, and all the states are assumed to be measured

[35]:

_xx1~{vmaxx1= kmzx1ð Þ{p1x1zu tð Þ,
_xx2~p1x1{p2x2,

_xx3~p2x2{p3x3,

_xx4~p3x3{p4x4,

_xx5~p4x4{p5x5,

_xx6~p5x5{p6x6,

_xx7~p6x6{p7x7,

_xx8~p7x7{p8x8,

_xx9~p8x8{p9x9,

_xx10~p9x9{p10x10,

_xx11~p10x10{p11x11,

_xx12~p11x11{p12x12,

_xx13~p12x12{p13x13,

_xx14~p13x13{p14x14,

_xx15~p14x14{p15x15,

_xx16~p15x15{p16x16,

_xx17~p16x16{p17x17,

_xx18~p17x17{p18x18,

_xx19~p18x18{p19x19,

_xx20~p19x19{p20x20:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð24Þ

Saccomani et al. [35] considered the analysis of this system by

means of the differential algebra approach using DAISY software. They

concluded that the model is structurally globally identifiable after

150 min in a computer of 3:13 GHz and 3GB RAM .

The application of the Taylor series approach in combination with

the identifiability tableaus resulted in structural global identifiability

of the model in a few seconds. The reduced identifiability tableau

(Figure 4.(a)) needed only 3 derivatives to achieve the maximum

rank 22. The solution of the algebraic system was given by

considering the following groups of parameters: vmax,km,p1, then,

p2 can be calculated individually. Knowing the solution of these

parameters, the next group to be computed is given by p13,p14,p15,
p16,p17,p18,p19,p20, and p6,p7,p8,p9,p10,p11,p12. The fourth group

of parameters is p3,p4,p5: All 22 parameters have unique solution,

so the model (24) is structurally globally identifiable.

The generating series approach in combination with the identifia-

bility tableaus also concludes that the model is structurally globally

identifiable. The corresponding identifiability tableau is represented

in Figure 4.(b). All the results were computed in approximately 4s
on a computer of 2:66 GHz and 8GB RAM.

The similarity transformation method requires observability and

controllability rank conditions. To prove the observability rank

condition we should calculate the rank of the subspace generated

by consecutive differentials of h xð Þ and f xð Þzg xð Þu. The rank 22

was obtained in MATLAB, in a few minutes, after five iterations.

Unfortunately, the controllability condition could not be assessed

due to computational requirements.

The direct test did not provide conclusive information about the

identifiability of the parameters. A unique solution was obtained,

but it does not comply with the structural identifiability rules, in

the sense that from f x,pð Þ~f x,p�ð Þ, we could not find a solution

p~p�, as required.

The implicit function theorem was successfully applied to the

problem. The computations were rather simple in this case since

all the state variables were measured. With an extra derivative of

the corresponding output, the rank condition of the identifiability

Jacobian matrix was fulfilled, and so the structural local

identifiability was confirmed.

Figure 4. High dimensional nonlinear model: Identifiability tableaus. (a) Identifiability tableau obtained by means of the Taylor series
method, (b) Identifiability tableau obtained by means of the generating series method.
doi:10.1371/journal.pone.0027755.g004
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For this example, it is possible to apply the identifiability analysis

for dynamic reaction networks approach by defining the corresponding

stoichiometric matrix N[R20|21, with the matrix of measured

states Nm of rank 20. Since rank Nmð Þ~nR then the reaction rate

identifiability is satisfied and we can directly apply the generating

series approach for all reaction rates. Results coincide with the

direct application of the generating series, i.e. the model is

structurally globally identifiable.

The first matrix indicated the identifiability of k3,kprod ,kdeg,i1.

The second matrix showed the identifiability of t1,k1,k2; the third,

t2,c4a,e2a; the fourth, c5,i1a and the fifth, c3a.

Results obtained in this case reveal that nearly linear models

with full observation are tractable for most of the methods

considered. Major differences rely on the computational cost

which ranges from a few seconds (GenSSI) to a couple of hours

(DAISY).

Case study 5: Arabidopsis Thaliana model
The model describes the first multi-gene loop identified in the

Arabidopsis circadian clock [36] that comprises a negative

feedback loop, in which two partially redundant genes, Late

Elongated Hypocotyl (LHY) and Circadian Clock Associated 1

(CCA1), repress the expression of their activator, Timing of CAB

Expression 1 (TOC1). A minimal mathematical representation of

the system requires 7 coupled differential equations and 29
parameters. The differential equations involve Michaelis-Menten

kinetics that describe enzyme-mediated protein degradation, and

Hill functions that describe some transcriptional activation terms.

The model is given by [36]:

_xx1~n1
x6

g1zx6
{m1

x1

k1zx1
zq1x7u tð Þ,

_xx2~p1x1{r1x2zr2x3{m2
x2

k2zx2
,

_xx3~r1x2{r2x3{m3
x3

k3zx3
,

_xx4~n2
g2

2

g2
2zx2

3

{m4
x4

k4zx4
,

_xx5~p2x4{r3x5zr4x6{m5
x5

k5zx5
,

_xx6~r3x5{r4x6{m6
x6

k6zx6
,

_xx7~p3{m7
x7

k7zx7
{ p3zq2x7ð Þu tð Þ

xi 0ð Þ~0, i~1, . . . ,7:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

The observations correspond to the luminescence and the mRNA:

y1~x1,y2~x4 [36]. In order to analyse the role of the control

variable related to the light intensity we considered the situation

for which light intensity is kept constant to its maximum (u~1)

and the case corresponding to a pulse-wise light stimulation.

Results reveal that the model is not structurally globally

identifiable for the case with u~1 not even structurally locally

identifiable since a subset of model parameters are not identifiable

(m7, k7, p3, q1 and q2).

Under the pulse-wise stimulation the Taylor series approach,

implemented in MATHEMATICA, reached 10 derivatives.

Note that this means having only 20 Taylor coefficients that

result into a rank 14 identifiability tableau. From the parameters

appearing in the tableau (n1,n2,m1,m4,m5,m6,m7,k1,k4,k5,
k7,p2,p3,q2) only p3 and n2 could be regarded as globally

identifiable, since it was not possible to solve the system of

equations for the remaining parameters. More derivatives would

be required to get further results. However the task was

computationally too demanding.

The generating series approach was able to reach the 11th derivative

resulting in an identifiability tableau of rank 16. In this case a

unique solution could be computed for p3,n2,q2,m1,k1. Similarly

to what happened with the Taylor method, further derivatives

would be required, but the task is too demanding from the

computational point of view.

The similarity transformation method could not be applied to this

example since the observability condition is not satisfied.

The direct test method was also not applicable since the model is

controlled.

The differential algebra approach was not successful in providing

results for this example. Both the MAPLE and DAISY

implementations reported computational errors due to lack of

memory.

As in previous examples, we also resorted to rewrite the model

(25) in a pure polynomial form, as a system of 16 differential

equations, given below:

_xx1~n1x6x8{m1x1x9zq1x7u tð Þ,
_xx2~p1x1{r1x2zr2x3{m2x2x10,

_xx3~r1x2{r2x3{m3x3x11,

_xx4~n2g2
2x12{m4x4x13,

_xx5~p2x4{r3x5zr4x6{m5x5x14,

_xx6~r3x5{r4x6{m6x6x15,

_xx7~p3{m7x7x16{ p3zq2x7ð Þu tð Þ,
_xx8~{ _xx6x2

8,

_xx9~{ _xx1x2
9,

_xx10~{ _xx2x2
10,

_xx11~{ _xx3x2
11,

_xx12~{2x3 _xx3x2
12,

_xx13~{ _xx4x2
13,

_xx14~{ _xx5x2
14,

_xx15~{ _xx6x2
15,

_xx16~{ _xx7x2
16,

x0 pð Þ~ 0,0,0,0,0,0,0,
1

g1
,

1

k1
,

1

k2
,

1

k3
,

1

g2
1

,
1

k4
,

1

k5
,

1

k6
,

1

k7

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð26Þ

Using this pure polynomial form, and the corresponding

observable states y1~x1,y2~x4,y3~x8,y4~x9,y5~x12,y6~x13,
it was possible to extract more information about model

identifiability. Using the Taylor series approach, we found an

identifiability tableau of rank 17, using 7 derivatives. So, at least

local identifiability could be checked for the corresponding subset

of parameters, as represented in Figure 5.(a). For this model

formulation, uniqueness of solution was obtained for g1,k1,g2,
n2,k4,p3,m4.

Additional information could also be obtained using the

generating series approach. The corresponding identifiability

tableau for this method had rank 17, using 8 derivatives (see the

corresponding reduced tableau in Figure 5.(b)). For this model

formulation it was possible to compute unique solutions for

g1,k1,g2,k4,n2,m4,p3,p2,q2,k7,m7. Therefore, even though pure
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polynomial forms result in greater computational costs, they

usually provide more informative results.

It should be noted that some parameters (m2,m3,k2,k3,p1,r1 and

r2) did not appear in the identifiability tableaus despite the large

number of coefficients used in both Taylor and generating series

approaches (42 and 96, respectively). In addition, higher order

coefficients were always dependent on the same parameters, as it

was shown by the patterns appearing in the last rows of both

tableaus. To further illustrate this point, the complete identifiability

tableau obtained by means of the generating series approach is

presented in Figure 6.

These results can be complemented with a global sensitivity

analysis as proposed in [17]. For this example, the analysis was

performed under a pulse-wise experimental scheme and the

results revealed that those parameters are in fact slightly

influencing the model output, thus they are expected to be

structurally locally identifiable even though poorly practically

identifiable.

The application of the differential algebra approach resulted in

computational errors when trying to apply the initial conditions.

In order to apply the method for reaction networks the control

u(t) should be constant. This allows to derive a stoichiometric

matrix N[R16|7 with the matrix of measured states Nm of rank 7.

Five stoichiometric matrices of rank 4 could be achieved provided

we impose the condition q1~0. By using the generating series it is

then possible to confirm the global identifiability of m1,m2,
m3,k1,k2,k3,k6 and the local identifiability of m5 and k5. It should

be noted that the method fails when trying to use the initial

conditions.

The results for this case study reflect that a reduced number of

observables as compared to the number of parameters poses

serious problems for all methods. This will lead, in the best case, to

partial solutions related to a sub-set of model parameters. In

addition, as for the case of Goodwin’s model, results help to decide

on the type of experiment to be performed, in this case how to

stimulate the system, to improve structural identifiability.

Case study 6: NFkB model
The model of the NFkB regulatory module, as proposed by [4],

is characterised by two compartment kinetics of the activators IKK
and NF{kB, the inhibitors A20 and IkBa, and their complexes.

The model is described by the differential system:

_xx1~kprod{kdegx1{k1x1u tð Þ,
_xx2~{k3x2{kdegx2{a2x2x10zt1x4{a3x2x13

zt2x5z k1x1{k2x2x8ð Þu tð Þ,
_xx3~k3x2{kdegx3zk2x2x8u tð Þ,
_xx4~a2x2x10{t1x4,

_xx5~a3x2x13{t2x5,

_xx6~c6ax13{a1x6x10zt2x5{i1x6,

_xx7~i1kvx6{a1x11x7,

_xx8~c4x9{c5x8,

_xx9~c2zc1x7{c3x9,

_xx9~c2zc1x7{c3x9,

_xx10~{a2x2x10{a1x10x6zc4ax12{c5ax10{i1ax10ze1ax11,

_xx11~{a1x11x7zi1akvx10{e1akvx11,

_xx12~c2azc1ax7{c3ax12,

_xx13~a1x10x6{c6ax13{a3x2x13ze2ax14,

_xx14~a1x11x7{e2akvx14,

_xx15~c2czc1cx7{c3cx15:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

In their paper, Lipniacki et al. fixed some of the model parameters

by using values from the literature. In order to assign values to the

following unknown parameters:

p~ t1,t2,c3a,c4a,c5,k1,k2,k3,kprod ,kdeg,i1,e2a,i1a

� 	T
: ð28Þ

Figure 5. Arabidopsis Thaliana model: Reduced identifiability tableaus. Reduced identifiability tableau obtained by means of the (a) Taylor
series and (b) generating series methods applied to the polynomial form of the model.
doi:10.1371/journal.pone.0027755.g005
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They used experimental data from previous works by Lee et al.

[57] and Hoffmann et al. [58] which corresponded to the

observation of y1~x7,y2~x10zx13,y3~x9,y4~x1zx2zx3,
y5~x2,y6~x12.

The application of the Taylor and generating series approaches, with

the help of the identifiability tableaus, to analyse the structural

identifiability of the parameters in the vector p was discussed in

Balsa-Canto et al. [17]. These authors found that the complexity

of the equations resulting from the Taylor series approach

prevented drawing conclusions on the identifiability of most of

the parameters. The application of the generating series approach

resulted, as expected, in a simpler system of equations. In fact it

was possible to obtain as many coefficients as necessary to

guarantee full rank Jacobian. In addition, the iterative solution of

the set of non-linear equations resulted in the structural global

identifiability of the parameters in p.

Figure 6. Arabidopsis Thaliana model: Full identifiability tableau. Identifiability tableau obtained by means of the generating series method
applied to the polynomial form of the model. Despite the large number of terms included in the tableau some parameters are not appearing. The
analysis may be complemented with global sensitivity analysis.
doi:10.1371/journal.pone.0027755.g006

Structural Identifiability in Systems Biology

PLoS ONE | www.plosone.org 12 November 2011 | Volume 6 | Issue 11 | e27755



Since the observability rank condition is not satisfied in this case,

the similarity transformation method was not applicable. Since the

system is controlled, the direct test method could not be applied.

The differential algebra approach was not successful in providing

results for this example. Both implementations of the method, the

one based on MAPLE and DAISY, resulted in computational

errors (lack of memory problems) and were unable to calculate the

characteristic set. The same reason precluded the application of

the implicit function theorem based method.

For this example, it was possible to apply the identifiability analysis

for dynamic reaction networks approach. The stoichiometric matrix was

formed, N[R32|15, with the matrix of measured states Nm of rank

7. Five stoichiometric matrices of rank 7 were required to test the

identifiability of the parameters in p. The first matrix indicated the

identifiability of k3,kprod ,kdeg,i1. The second matrix showed the

identifiability of t1,k1,k2; the third, t2,c4a,e2a; the fourth, c5,i1a and

the fifth, c3a.

As a summary, it can be concluded that the generating series

approach, and the chemical reaction network theory combined

with the generating series method, are the most suitable methods

to handle generalised mass action models, particularly when the

number of observables is limited and the number of derivatives

required is too large for the Taylor and differential algebra

methods (which are computationally not feasible for those cases).

Discussion

The selected examples include small and medium-size models

which incorporate the typical non-linear terms found in systems

biology models, such as generalised mass action, Michaelis-

Menten or Hill kinetics. The analysis was performed taking into

account realistic measured variables (observables) available in

experimental labs. For the case of the Goodwin oscillator, a

hypothetical situation with full observation was also considered to

illustrate how the addition of observables can improve structural

identifiability.

The results (summarised in Table 1) reveal some apparent

conflicting conclusions regarding the local or global identifiability

of the models considered. This may be explained by taking into

account that the Taylor and generating series approaches use

initial conditions and symbolic quantities to solve the final

algebraic system of equations on the parameters. Local identifia-

bility is concluded when a) several solutions are found for the

parameters (in the whole set of real numbers) or b) the system of

equations is too complex to be fully solved. Note that in these cases

local identifiability could be transformed into global identifiability

when knowing the domain of definition of the parameters (for

example, positive real numbers).

Differential algebra based methods use randomly generated

numerical values to handle complicated systems of equations in the

parameters. Thus they may conclude global identifiability in the

cases where Taylor or generating series are concluding at least

local identifiability. In addition in some cases DAISY does not use

initial conditions for the calculations despite their critical role in

the analysis [59] being then possible that results may change from

local to global. This is clearly the case when some initial conditions

are zero.

Regarding a comparison of the performance of the different

methods the following criteria have been used: a) range of

applicability, b) computational complexity and c) information

provided by the method. A general overview of the requirements,

advantages and disadvantages of all methods considered is

presented in Table 2.

The Taylor series approach is probably the most general method

since it can be applied to any type of non-linear model. It is also

conceptually simple as it relies on the uniqueness of a Taylor

expansion of the observables around t0. Thus the implementation

and the application of the method do not require advanced

mathematical knowledge. Its major drawback is that the number

of required derivatives is generally unknown and it may become

rather large particularly for the cases where the number of

observables is small as compared to the number of parameters. In

addition, final algebraic symbolic manipulations can become too

complicated when solving the resulting systems of equations in the

parameters. Even though, this may be partially solved by means of

the identifiability tableaus, for some particular examples the method

may be ultimately unable to provide exact information on the

local/global identifiability of the parameters.

The differential algebra based method is based on the definition of the

observables dynamics as functions of the observables by manip-

ulating the original model. Possibly the major advantage with

respect to series based methods is that it is conclusive for

Table 1. Summary of results obtained by the different methods.

T.S. G.S. S.T. D.T. D.A. I.F.T. I.D.R.N.

Goodwin one obs NR NR NA NC NR NA NA

Goodwin full obs SLI SLI NA NC SNI SLI (s.2) SLI (s, A fixed)

Goodwin poly. form, 1 obs SLI SLI NA NC NR NA NA

Goodwin poly. form,
full obs

SGI SGI NA NC SNI no i.c. SLI no i.c. NA

Pharma. one obs SLI SLI NA NC NR NR SLI some pars.

Pharma. two obs SLI SLI NA NC SGI NR NA

Glycolysis SLI SGI NA NA SGI no i.c. SLI SGI

High dim. model SGI SGI NR NC SGI SLI SGI

Arabidopsis clock SLI 14 pars. SLI 16 pars. NA NA NR NA SLI 12 pars.

NFkB SLI some pars. GLI NA NA NR NR GLI

T.S.:Taylor series approach; G.S.: generating series approach; S.T.: Similarity transformation approach; D.T.: Direct test; D.A.: differential algebra based approach; I.F.T.:
method based on the implicit function theorem; I.D.R.N.: identifiability analysis based on the reaction network theory; SGI: structural global identifiable, SLI: (at least)
structural local identifiable, SNI: structural non-identifiable, NA: not applicable, NC: not conclusive and NR: no results were reported due to computational errors or
requirements.
doi:10.1371/journal.pone.0027755.t001
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structurally non-identifiable models. Even though advanced

mathematical skills are required so as to understand and

implement the method, the recently developed DAISY software

[25] enables its application to non-expert users. The major

drawbacks appear in the analysis of models incorporating

Michaelis-Menten and Hill kinetics, even when transforming the

models to pure polynomial forms as suggested by Margaria and

coworkers [39]. In addition, the method presents serious

difficulties when the number of observables is low as compared

to the number of parameters and the computation of the

characteristic polynomial requires high order derivatives.

The applicability of the similarity transformation approach relies on

the verification of the observability and controllability conditions

and the local state isomorphism theorem. Despite many

mathematical packages incorporate functions to check the

observability and controllability of a given model, in home

implementations are required to verify the local state isomorphism

conditions. In addition, in many cases, such as most of the

Table 2. Summary of requirements, advantages and disadvanges for all methods.

T.S. Requirements - f; g; h may be non-linear with any dependency on u

- x; y; f; g; h allow for infinite derivatives w.r.t. time/states

Advantages - conceptually simple

- enhanced performance with identifiability tableaus

Disadvantages - unknown number of required derivatives

- computationally demanding for low number of observable or when the initial conditions are not informative

G.S. Requirements - f; g; h may be non-linear but linear dependency on u

- x; y; f; g; h allow for infinite derivatives w.r.t. time/states

Advantages - conceptually simple

- simpler algebra and less computational cost than T.S.

- enhanced performance with identifiability tableaus

- software available (GenSSI)

Disadvantages - unknown number of required derivatives

- computationally demanding for low number of observables or when the initial conditions are not informative

S.T. Requirements - linear dependence on u that must be bounded and measured

- controllability and observability conditions

Advantages - software available for part of the analysis

Disadvantages - results in a complicated set of partial differential equations

- computationally demanding

D.T. Requirements - uncontrolled systems

Advantages - conceptually simple

Disadvantages - requires complicated algebraic manipulations

- computationally demanding

D.A. Requirements - f; g; h polynomial or rational and u differentiable

- generic controllability

Advantages - software available (DAISY)

- conclusive non-identifiability

Disadvantages - rational models are to be reduced to polynomial form

- computationally demanding

- limited performance when the number of observables is low

I.F.T. Requirements - f; g; h non-linear, differentiable and u differentiable

Advantages - characteristic set may be obtained with existing software

Disadvantages - complicated identifiability matrix

- limited performance when the number of observables is low

I.D.R.N. Requirements - chemical reaction networks

- combined with other methods

Advantages - analysis by groups of reaction rates

- computationally simple

- efficiency in combination with generating series (G.A.)

Disadvantages - only suitable for chemical reaction networks

- reaction rates needed for identifiability analysis

doi:10.1371/journal.pone.0027755.t002
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examples considered in this contribution, the observability

condition may not be fulfilled or the associated computational

burden may be too large thus precluding its application.

Additional difficulties might arise when trying to analytically solve

the differential equations (10)-(14).

The direct test method is only applicable to autonomous and

uncontrolled systems. Although it is conceptually the simplest

approach, for the examples considered, no reliable results could be

achieved due to the complexity of the associated algebraic

manipulations.

The implicit function theorem based method is, in principle, applicable

to any differentiable. As for the case of the differential algebra

approach, the method relies on the derivation of the characteristic

polynomial. Thus, its complexity grows rapidly when the number

of observables is low as compared to the number of parameters. In

addition, it only provides information about local identifiability.

The CRNT based method is applicable to models that can be

written in the CRNT form. This may be difficult for some

particular cases with Michaelis-Menten or Hill kinetics or when

the corresponding reaction network is unknown (as in some

examples considered here). Results rely on the application of

another identifiability analysis method, in particular the use of the

generating series approach enhances the overall efficiency of the

method.

The generating series approach in combination with the identifia-

bility tableaus offers the most advantageous compromise regarding

applicability, computational complexity and information provided.

Its computational requirements are significantly lower than the

Taylor or the differential algebra approaches, and the information

provided is often more precise. This is mainly due to the following

facts: i) the required number of derivatives is usually lower than for

the other methods and ii) the identifiability tableaus are sparser,

meaning that the system of non-linear equations on the parameters

is simpler, thus providing more information to distinguish between

local and global identifiability. The recently developed toolbox

GenSSI [52] eases the application of this methodology, offering

access to intermediate results throughout the process and allowing

for the easy incorporation of known numeric or symbolic initial

conditions to the analysis.

Since the structural identifiability analysis will be embedded in a

larger systems biology work flow, the selection of the most

adequate approach for the model under consideration will be

critical. In this concern, we would suggest the use of the generating

series approach in combination with the identifiability tableaus as

implemented in GenSSI [52] exploiting the CRNT structure when

possible. To get conclusive results on the possible structural non-

identifiability of a sub-set of parameters for a given model the use

of DAISY is suggested. The use of the Taylor approach is only

recommended for those rare cases where control dependence is

non-linear. Unfortunately remaining methods seem not be

adequate to handle typical systems biology models.

Conclusions
The unique identification of parameters in systems biology

models is a very challenging task. The problem becomes especially

hard in the case of large and highly non-linear models. In fact, in

some cases it will be impossible to compute a unique value for the

parameters independently of the available experimental data. This

is particularly true for models where the ratio between the number

of observables and the number of parameters is low, or when

complicated non-linear terms, such as Michaelis-Menten or Hill

kinetics, are present. This frequently results in a lack of structural

identifiability, which is therefore a key property of these models.

In this work, we have presented a critical comparison of the

available techniques for the analysis of structural identifiability of

non-linear dynamic models by means of a collection of models

related to biological systems of increasing size and complexity.

Results reveal that the combination of the generating series

approach with identifiability tableaus [17] offers the best compro-

mise between range of applicability, computational complexity

and information provided.
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