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Abstract: Proof of concept of a new real-time metasurface sensor for micropoison monitoring in
aqueous solutions is proposed in this study. The sensor comprises a perfect absorber metasurface and
gold nanoparticle layer on the front side of it. Frequency-domain terahertz spectroscopy system was
used to measure the resonance frequency shift due to the presence of the micropoison. The perfect
absorber metasurface sensor was fabricated using a double-sided FR4 substrate printed board circuit,
which is very inexpensive. A significant increase in the metasurface sensor sensitivity was achieved
by adding a gold nanoparticle layer to the gap of the double split rectangular resonator on the front
side of the metasurface sensor.

Keywords: metasurface; double split rectangular resonator; gold nanoparticles; micropoisons in
aqueous solutions; frequency-domain spectroscopy

1. Introduction

Contamination of drinking water by micropoisons is a well-known issue. There are
many water micropoison contamination sources, including naturally occurring sources
and local land-use practices such as fertilizers, pesticides, organophosphates, and concen-
trated feeding operations. Manufacturing processes and sewer overflows or wastewater
releases are contamination sources [1]. The wide use of organophosphates in agriculture
and industry in the last few decades caused contamination in groundwater and water
infrastructures.

Some of these organophosphates are harmful to humans and animals, even in negli-
gible quantities since they can cause cumulative damage. In addition, organophosphates
interfere with healthy neurodevelopment, causing behavioral and cognitive problems [2].
Thus, real-time detection and recognition of micropoisons in drinking water are required
to protect the world’s population.

There are chemical detection methods such as HPLC [3], ELISA [4], and GCMS [5]
on the one hand, and there are optical methods such as mid-infrared (MIR) spectroscopy,
attenuated total reflection (ATR) crystal, and fiber-optic ATR on the other hand [6,7]. How-
ever, the chemical measurement systems are costly, require complex material preparations,
and take too long to receive the results. On the other hand, the spectroscopic methods [8,9]
are fast and can be done in real time. However, the FTIR-ATR method is less sensitive and
requires special coatings for the ATR crystal [10,11].

This study proposes a new detection concept for real-time drinking water quality
monitoring. The measurement system is based on a combination of an advanced CW
frequency-domain terahertz spectrometer and a perfect absorber metasurface (MS) sensor
coated with a thin layer of gold nanoparticles. The perfect absorber metasurface [12,13]
was fabricated on double-sided FR4 substrate using printed board circuit (PCP) technol-
ogy, which is very inexpensive (see Figure 1) [14]. The resonance frequency, f res, of the
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perfect absorber is determined according to the geometrical metal shape dimensions and
the dielectric constant of the substrate (see Equations (1)–(4)). The designed resonance
frequency of the perfect absorber MS shifts slightly from its designed value due to the
presence of micropoisons in proximity to the perfect absorber MS, especially near the gap of
the double split rectangular resonator (DSRR) (see Figure 1a). The higher the micropoison
concentration in the water, the more significant the shift in the resonance frequency, f res, of
the MS sensor. The resonance frequency, f res, shift due to the presence of micropoisons is
measured using a high-resolution compact terahertz CW frequency-domain spectrometer.
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Adding a gold nanoparticle coating on the MS surface, especially in the gap of the
DSRR, causes the micropoisons such as OPs to adhere to the MS, increasing the detection
sensitivity significantly [11]. In this study, we present a full proof of concept of malathion
detection using a perfect absorber MS manufactured by well-known and very inexpensive
printed circuit board (PCB) technology. The spectral measurements were carried out using
a high-resolution terahertz spectroscopy system [15].

2. Metasurface Design, Simulations, and Experimental Setup

There are many geometries to realize perfect absorber MS, including fishnet, split
rectangular, and cut wire [16,17]. In this work, we used the double split rectangular
resonator (DSRR) geometry on the front side of the FR4 substrate and cut wire geometry
on the back side.

The proposed MS sensor detection mechanism is based on shifting of the MS sensor
resonance frequency, f res, due to the presence of micropoisons near the gap of the DSRR of
the MS, rather than the MIR spectroscopic signature of the micropoison [18]. Furthermore,
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significant improvement in the MS sensor sensitivity can be achieved by adding a thin
layer of gold nanoparticles on the front side of the MS sensor, especially in the gap of the
DSRR [11].

2.1. Metamaterial Design and Simulations

The sensor design is based on a perfect absorber metasurface structure. The unit cell
of the perfect absorber consists of a double split rectangular resonator (DSRR) [19] at the
front side and a cut wire (CW) [20] at the back side of the metasurface structure. Figure 1
shows the perfect absorber geometry and its equivalent circuit.

The double split rectangular resonator (DSRR) can be modeled as an array of parallel
LC resonance creating a perfect absorber metasurface. The equivalent LC model of the MS
sensor is shown in Figure 1d. The resonance frequency, f res, is determined according to the
well-known resonance formula:

ω =
1√
LC
⇒ fres =

1
2π
√

LC
(1)

The inductance, L, is due to the two current loops of the DSRR rectangles and is given
approximately by [21]:

L ≈ µ0rm

[
ln
(

8rm

c + d
− 0.5

)]
(2)

where c and d are the DSRR strip width and copper thickness, respectively. rm = (w + l)/2
is the approximate value of the loop radius. The permeability constant µ0 = 1.2566 µh/m;
µr = 1. The capacitance, C, is composed of the split capacitance, Csplit, and the surface
capacitance, Csurf, in series (see Figure 1d) [21]. Approximate formulas for the values of the
split capacitances are given in [19]:

Csplit = ε0

 cd
s
+

2πd

ln
(

2.4d
c

)
 (3)

csur f = ε0
2d
π

ln
(

2rm

s

)
(4)

where is the DSRR gap. The vacuum permittivity is ε0 = 8.8541878 pF/m, and the per-
mittivity of FR4 is εr = 4 at 100 GHz. The DSRR unit cell design parameters are given in
Table 1.

Table 1. Unit cell parameters.

Parameter Description Value (mm)

a Unit cell length 1.6
b Unit cell width 0.6
l DSRR length 0.5

w DSRR half width 0.25
c DSRR strip width 0.1
s DSRR gap 0.1
g CW width 0.2
h CW length 1.2
t FR4 substrate thickness 0.1
d Copper thickness 0.035

Based on the unit cell parameters given in Table 1 and Equations (1)–(4), the resonance
frequency, f res, was calculated and found to be on the order of 125–145 GHz, depending on
the estimated value of rm.

The physical dimensions of the fabricated MS sensor are 135 mm × 135 mm, and the
total number of unit cells was 21,960. A microscopic photo of the MS is shown in Figure 1e.



Sensors 2022, 22, 1279 4 of 11

2.2. Experimental Setup

The CW frequency-domain spectroscopic terahertz system is based on the TeraScan
CW terahertz spectrometer of Toptica Inc. [17,21].

The terahertz spectrometer has two programmable distributed feedback diode (DFB)
lasers that generate two adjacent frequencies, λ1 and λ2, around 1.5 µm. A 50% fiber-optic
coupler/splitter is used to couple the two laser beams λ1 and λ2, with λ1 + λ2 exiting at
two split fibers. The difference frequency generation (DFG) process is realized by a state-
of-the-art InGaAs photomixer (TOPTICA Photonics AG, Munich, Germany) generating
the terahertz radiation. The second InGaAs photomixer is used for the detection of the
terahertz radiation (see Figure 2). Applying a bias voltage to the metal electrodes of the
Tx photomixer generates a photocurrent that oscillates at the beat frequency (see Figure 2).
A bow-tie antenna on the photomixer emits an electromagnetic wave at the terahertz
difference frequency (see Tx in Figure 2) [15]. Rx, a second photomixer, is used at the
receiver side to detect the transmitted terahertz signal using look-in detection [13,21]. The
advantages of this technique include high spectral resolution selectivity, a superior dynamic
range of up to 100 dB, and a substantial spectral range of 50–1200 GHz. Figure 2 shows the
block diagram of the whole spectroscopic system [21]. This spectrometer has a high spectral
resolution of better than 10 MHz and high SNR due to the coherent detection. The terahertz
radiation departing from the transmitter is linearly polarized. In this experimental work,
the terahertz radiation power at the 100–200 GHz range is approximately 3.5 microwatts,
and the SNR in this range is −80 dB [21]. This spectrometer has a high spectral resolution
of better than 10 MHz and high SNR due to the coherent detection. The terahertz radiation
departing from the transmitter is linearly polarized. In this experimental work, the terahertz
radiation power at the 100–200 GHz range is approximately 3.5 microwatts, and the SNR
in this range is −80 dB [21].
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Figure 2. The measurement setup. A Terahertz frequency-domain spectroscopic system with a
four-mirror configuration was used to measure the MS sensor transmittance.

The MS sensor was placed at the focal point of a configuration of four off-axis parabolic
mirrors, where the incident beam is normal to the MS, as shown in Figure 2. All measure-
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ments were performed with a half-inch aperture. The relative measurement method was
used in this experimental setup. At first, measurements were performed only for a clear
aperture as a reference; then, they were performed for the MS sensor without the OP (pure
MS). The polarity of the terahertz spectroscopy system is perpendicular to the scheme
plane. Therefore, the MS was positioned along the Y-axis (see Figure 1a). In addition to
signal processing, the relation between measurements provided the transmission character-
istic of the MS sensor. After achieving the original transmission characteristic, malathion
pesticide was dropped on the MS sensor. Then, the measurement procedure was repeated,
for two different periods of time, to investigate the MS sensor response to the presence
of malathion.

3. Experimental Results

Simulation results of the designed MS were obtained using CST 3D electromagnetic
simulation code [22]. Figure 3 shows the transmittance of the designed perfect absorber MS
shown in Figure 1 for the parameters given in Table 1. The spike effects in the measurement
curve (solid black line in Figure 3) are due to measurement procedure and calibration to
the reference measure, which is typical for measurement using the TeraScan CW terahertz
spectrometer of Toptica [21].
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The influence of malathion on the terahertz spectral results is given in Figure 4. The
black curve describes the transmittance, T, of the perfect absorber metamaterial frequency
in an aqueous environment without toxins, the red curve represents the MS absorber
frequency response in an aqueous environment with malathion, and the green curve shows
the frequency of absorption after one hour in free space outside the toxin environment.
Malathion is known as an evaporating material. These experimental results provide an
encouraging and real-time method for malathion detection in an aqueous environment.
The detection is based on the resonance frequency shift of the perfect absorber MS due to
the presence of malathion.
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and the red line and the green line are the transmission measurement immediately after exposure to
malathion and one hour after the exposure, respectively.

4. Discussion

The simulation and the experimental results proved that the MS sensor described
above (see Figure 1) could be used as a real-time sensor for micropoison detection in
aqueous solutions. Further improvement in the detection sensitivity can be achieved by
adding a thin layer of gold nanoparticles in the gap of the DSRR, as shown in Figure 5.

In recent years, nanoparticles have played an essential role in manufacturing sophis-
ticated products [23–25]. Products such as inductors, capacitors, and tuned circuits have
low-resistance conductors based on nanotechnology. In the biological and imaging industry,
nanotechnology has significantly improved the quality of the products [24,25]. Nowadays,
this technology is available, and the shelves, components, and materials are commercially
available. For example, we can increase the sensitivity of detection technologies such
as “ATR FTIR” measurement [13]. Furthermore, the nanoparticle technology enables a
new concept of preconcentration using ATR crystal coatings of gold nanoparticles. In this
study, we propose the addition of a thin layer of gold nanoparticles in the gap of the DSRR,
attracting the malathion molecules, as shown in Figure 5.

Figure 6 shows the effect of gold ATR coatings on the detection of malathion [11].
There are two important conclusions: The first is that metal nanoparticles attract malathion
and probably other micropoisons in aqueous solutions. The second is that the attraction of
the micropoison to the gold nanoparticles increases the sensitivity and recognition by ATR
FTIR measurement [11]. Based on those conclusions, we simulated the influence of adding
gold nanoparticles to the DSRR gap on the sensor sensitivity.
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There are two resonances in the designed MS: one in X polarization and the second in
Y polarization, as shown in Figure 7. The resonance frequency is 132 GHz for X polarization
and 136 GHz for Y polarization, as shown by the solid blue and black lines, respectively.
This includes the addition of a gold nanoparticle (GNP) coating. These simulation results
are in excellent agreement with the approximate calculation of Equations (1)–(4). Further-
more, the adhesion of the OP to the gold NP caused a shift in the resonance frequency, as
can be seen by the dashed red line only for Y polarization, thus significantly increasing
the sensitivity of the MS to the presence of OP in the aqueous solution. No influence of
the particles in X polarization was observed. The higher the concentration of the OP in
the solution, the more significant the resonance frequency shift will be (in Y polarization).
Figure 5a shows simulation results of the electric field intensity distribution on the MS.
Note that the maximum intensity is at the split edges. Thus, adding the GNP near the
split edges is expected to maximize the sensor’s sensitivity, as can be seen in Figure 5b.
Figure 6c shows the adhesion of malathion particles to the NGP, changing the resonance
frequency of the MS, as shown in the dashed red line of Figure 8. An estimation, based on
CST simulation, of the resonance frequency shift as a function of the OP concentration in
the solution is shown in Figure 8.
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Figure 5a represents the central concept—the gold nanoparticles on the DSRR gap. In
Figure 5b, we can see the gold nanoparticles in the gap between the copper edges. Figure 5c
shows the simulation of the toxic malathion molecules attracted by the gold nanoparticles.

Figure 7 represents the CST simulation results of MS with gold (red dashed and
green dashed lines) and without the covered gold DSRR (black line and blue line). The
simulations are in X and Y polarization, and the results clearly show the same transmittance
and absorption frequency.

Figure 8 represents the simulation results of the toxic aqueous environment and gold
nanoparticles. We can see clearly that the X polarization (the red dashed and green lines) is
without change in the absorption frequency, while in the Y polarization (the black line and
red lines), we can see the difference and the shift in absorption frequency.



Sensors 2022, 22, 1279 9 of 11

Sensors 2022, 22, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 7. Simulation results for the transmittance of the designed MS. The solid lines are without 
gold nanoparticles, and the dashed line is with gold nanoparticles in X and Y polarization. 

 
Figure 8. Simulation results for the transmittance of the designed MS. The red dashed line reflects 
the change in absorption frequency with gold nanoparticles in Y polarization. 

Figure 8. Simulation results for the transmittance of the designed MS. The red dashed line reflects
the change in absorption frequency with gold nanoparticles in Y polarization.

5. Conclusions

The MS coated with gold nanoparticles, whose results are presented in Figure 8,
proves three critical principles. The first is that metal nanoparticles attract micropoisons in
aqueous solutions. We can see these results in Figure 5. The second is that the micropoison
attracted to the gold nanoparticles can be detected and recognized by the MS in real-time
measurement, and the last is that it is cheap and easy to use and manufacture. Thus, this
new concept can control and monitor toxic water or aqueous solutions. The performance
sensitivity of the MS in terahertz is excellent. Recently, we have witnessed the phenomenon
of us using nanoparticles in many articles to improve efficiency and sensitivity [26–28], as
can be observed in Figure 9. Because of this phenomenon, we can describe the amount and
concentration of toxic particles in an aqueous environment with high accuracy because
there is a good and stable correlation between the frequency and amount of toxins in the
aqueous environment, as described in Figure 9.
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In this work, we present a proof of concept of a new real-time sensor for micropoison
detection in aqueous solutions.

This concept led to an innovative idea for creating a terahertz frequency detector,
the creation and production of which is efficient and substantially cheaper than any other
solution method, such as chemical solutions, that are available today. The physical structure
is simple and can be applied to many applications in harsh aquatic environments.
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