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Abstract: Simulation of cellular processes is achieved through a range of mathematical modelling approaches. Deterministic
differential equation models are a commonly used first strategy. However, because many biochemical processes are inherently
probabilistic, stochastic models are often called for to capture the random fluctuations observed in these systems. In that
context, the Chemical Master Equation (CME) is a widely used stochastic model of biochemical kinetics. Use of these models
relies on estimates of kinetic parameters, which are often poorly constrained by experimental observations. Consequently,
sensitivity analysis, which quantifies the dependence of systems dynamics on model parameters, is a valuable tool for model
analysis and assessment. A number of approaches to sensitivity analysis of biochemical models have been developed. In this
study, the authors present a novel method for estimation of sensitivity coefficients for CME models of biochemical reaction
systems that span a wide range of time-scales. They make use of finite-difference approximations and adaptive implicit tau-
leaping strategies to estimate sensitivities for these stiff models, resulting in significant computational efficiencies in comparison
with previously published approaches of similar accuracy, as evidenced by illustrative applications.

1 Introduction
The dynamics of reaction networks in living organisms have been
extensively studied in Systems Biology [1, 2]. Dynamics in such
complex networks is driven by random thermal agitation.
Consequently, stochastic modelling is a preferred approach for
studying the behaviour of these biochemical reaction networks [3–
7].

The most widely used stochastic model for describing spatially
homogeneous biochemical reaction dynamics is the Chemical
Master Equation (CME). State trajectories for the CME can be
simulated via Gillespie's [8, 9] stochastic simulation algorithm
(SSA), a Monte Carlo method. When describing systems with large
molecular populations or widely varying time-scales, Gillespie's
algorithm is computationally expensive. To reduce computational
costs, Gillespie [10] introduced a variant of his algorithm method
called tau-leaping, in which time steps are selected dynamically to
avoid exhaustive calculations, with tolerable loss of accuracy.

The time steps for the explicit tau-leaping strategy are limited to
the fastest mode. Consequently, this strategy is not suitable for stiff
biochemical systems. Specifically, the explicit tau-leaping
technique generalises the explicit Euler method for ordinary
differential equations to discrete stochastic systems. Similar to
Euler's method, when taking large time steps, the explicit tau-
leaping scheme shows instability for very stiff biochemical
systems. Rathinam et al. [11] proposed the implicit tau-leaping
technique to overcome the stability issues of the explicit strategy,
thus allowing larger time steps. The implicit tau-leaping scheme
employs larger stepsizes than the explicit tau-leaping strategy for
stiff discrete stochastic systems while producing a solution of
similar accuracy as the explicit tau-leaping scheme for the slow
manifold and for the mean of the fast variables on the slow
manifold [11]. The implicit tau-leaping may damp the noise for
some systems, as illustrated in [11] for systems reaching steady
state.

Sensitivity analysis, which describes how model parameters
related to system dynamics, is a key tool for model development
and analysis [12]. Sensitivity analyses can be characterised as
global (sampling over a broad region of the parameter space) or
local (describing behaviour in the neighbourhood of a nominal
operating point). Global approaches are computationally

demanding because they require many samples from a (typically
high-dimensional) parameter space [13]. In contrast, local
sensitivity analysis involves only small perturbations about a
nominal parameterisation. Sensitivity analysis is a powerful tool
for investigating the dynamic properties of a biochemical system.
A small sensitivity reflects robustness, while large sensitivities can
indicate parameters that have significant effects on outputs of
interest. For biochemical reaction systems, the parameters of
interest include the initial conditions, kinetic rate constants of the
reactions, and environmental parameters (such as temperature). For
deterministic models, local sensitivity analysis is rarely
computationally demanding [14]. However, the corresponding
analysis of stochastic models requires large ensembles of simulated
sample paths.

Local sensitivity coefficients are usually determined as finite
differences. The sensitivity of the expected value of an output f of a
stochastic system to a parameter c can be described as
[E( f (Xc + h(t))) − E( f (Xc(t)))]/h, where Xc(t) represents the state of
the system at time t and parameter c. The perturbation h is small
compared to the nominal value of parameter c. To determine the
sensitivity coefficient, two ensembles of sample paths are
generated, corresponding to the parameter values c and c + h. A
number of approaches to the calculation of such finite-difference
estimators have appeared recently in the literature, including the
common random number (CRN) and common reaction path (CRP)
approaches [15], the coupled finite-difference (CFD) scheme [16],
and the coupled tau-leaping (CTL) algorithm [17].

For each of these sensitivity methods, sample paths of the
nominal (Xc) and perturbed (Xc + h) systems are simulated, using a
common random seed to reduce variance. Anderson's CFD method,
in which trajectories of the two systems are strongly coupled, was
found to produce the smallest estimator variance of these
approaches [18] and can be used effectively for non-stiff models.

For stiff models, exact stochastic simulation is computationally
expensive. The CTL [17] scheme was introduced to address this
issue by applying an explicit tau-leaping in the context of trajectory
coupling. Because it uses the explicit tau-leaping strategy, this
method works well for moderately stiff problems.

In this paper, we propose a novel finite-difference method for
estimating sensitivities of stiff stochastic models of biochemical
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reaction networks. This approach, described below as the Coupled
implicit-Tau (CIT) algorithm, makes use of an implicit-tau leaping
scheme to efficiently generate sample trajectories of systems in
which some reactions are in effective equilibrium. This adaptive
time leaping bears similarities to an algorithm proposed by Cao et
al. [19]. Similar to the CFD method mentioned earlier, an
important property of the τ-leaping scheme for perturbation
analysis is that the nominal and perturbed systems are strongly
coupled. A similar method was developed by Anderson and
Higham [20] for continuous time Markov Chains. This coupling
reduces the variance in the finite-difference estimator, allowing for
a more precise measure of sensitivity.

The remaining of this paper is organised as follows. Section 2
gives an introduction to stochastic modelling and simulation of
well-stirred biochemical systems. In Section 3, we discuss the
finite-difference approximation of sensitivity for stochastic models
of biochemical networks. The new CIT algorithm is presented in
Section 4. Numerical tests comparing the CIT and the CFD
methods are given in Section 5. Finally, we summarise our
conclusions in Section 6.

2 Stochastic biochemical kinetics
We consider a well-stirred system of biochemical reactions kept in
a constant volume, at a constant temperature. The chemical species
S1, …, SN are involved in the biochemical reactions R1, …, RM. The
state vector X(t) = (X1(t), …, XN(t))T indicates the species
abundance at each time t.

Each reaction Rj is characterised by a propensity function aj( ⋅ )
and a state change (stoichiometry) vector νj. The propensity aj(x)
is defined as follows: aj(x)dt is the probability that a single
reaction Rj fire in the interval [t, t + dt), provided that X(t) = x.
The stoichiometry vector νj describes the change in molecule
abundance as a consequence of reaction Rj occurring: if the system
is in the state x, and then a reaction Rj occurs, the system state
becomes x + νj. The matrix v = (νj) j = 1, …, M is the stoichiometry
matrix.

The conditional probability of the system being in state x at
time t, X(t) = x, provided that X(t0) = x0 is denoted by P(x, t | x0, t0).
This probability obeys:

dP(x, t | x0, t0)
dt

= ∑
j = 1

M

[aj(x − νj)P(x − νj, t | x0, t0)

−aj(x)P(x, t | x0, t0)]

(1)

which is known as the Chemical Master Equation.

2.1 Stochastic simulation algorithm

Gillespie proposed a Monte Carlo method, the SSA [9], for
simulating sample paths with a probability in exact agreement with
the solution of the CME. This algorithm is summarised below:

Initialise the system state X(t0) = x0 at t0 = 0.
while t < T

1. Calculate the propensities {ak(X(t))}k = 1
M  and set

a0(X(t)) := ∑k = 1
M

ak(X(t)).
2. Sample ξ1 and ξ2 from a uniform distribution on [0, 1], denoted

by U(0, 1).
3. Set j, the smallest integer satisfying ∑k = 1

j
ak(X(t)) > ξ1a0(X(t)),

be the index of the next reaction.
4. Set τ = ln(1/ξ2)/a0(X(t)) as the time for the next reaction.
5. Update X(t + τ) = X(t) + νj and t = t + τ.

end while

2.2 Tau-leaping methods

Exact Monte Carlo simulation algorithms [8, 9, 21] for the CMEs
are often computationally expensive for problems of practical

interest. An approximate strategy that reduces the computational
cost of solving the CME is the tau-leaping method, proposed by
Gillespie [10]. In the tau-leaping scheme, the system is advanced
over many reactions with a preassigned stepsize τ. The step τ must
satisfy the leap condition, which states that the propensities
aj(X(t)) remain approximately constant over [t, t + τ]. When the
leap condition is met, the number of reactions Rj occurring
between [t, t + τ] can be approximated by a Poisson random
variable, Pj(aj(x), τ), with mean and variance a(x)τ, when
X(t) = x. Then the system state in may be calculated as

X(t + τ) = x + ∑
j = 1

M

νjPj(aj(x), τ), (2)

given that X(t) = x. Here Pj, with 1 ≤ j ≤ M, are independent
Poisson random variables. Formula (2) is called the (explicit) tau-
leaping method and was introduced by Gillespie [10].

Many biochemical systems arising in applications are stiff,
displaying both slow and fast dynamics, with the fast modes being
stable. The explicit tau-leaping strategy is impractical for stiff
systems, as its time step is limited to the fastest mode. To deal with
this challenge, Rathinam et al. [11] proposed the implicit tau-
leaping method. The implicit tau-leaping technique overcomes the
stability issue of the explicit strategy, allowing larger steps in time.
Consequently, for stiff stochastic biochemical systems, it is more
efficient than the explicit method while maintaining a similar
accuracy. In fact, the scheme is semi-implicit, being implicit only
in the mean part of each term Pj(aj, τ), i.e. ajτ. If X(t) = x, the
implicit tau-leaping method updates the system state as

X(t + τ) = x + ∑
j = 1

M

νjaj(X(t + τ))τ

+ ∑
j = 1

M

νj Pj(aj(x), τ) − aj(x)τ .

(3)

2.3 Stepsize selection for implicit tau-leaping

A reversible reaction can come to equilibrium between reactants
and products. When this occurs for some reversible reactions while
the rest of the system is still undergoing significant variation, the
system is said to be in partial equilibrium. Partial equilibrium
occurs when the forward and backward propensities of a reversible
reaction are approximately equal, i.e. their difference is much
smaller than the propensities themselves. More precisely, if the
propensities of the reversible reactions are denoted by a+(x) and
a−(x), the partial equilibrium condition is

|a+(x) − a−(x) | ≤ δ min {a+(x), a−(x)}, (4)

for some small quantity δ > 0. (In the implementations below we
used δ = 0.05.)

We make use of the stepsize selection strategy introduced by
Cao et al. [19]. For those reactions that are not in partial
equilibrium, we demand that the mean and variance of each
reactant population Xi should satisfy

|Xi(t + τ) − xi | ≤ max {εxi/gi, 1} (5)

where ε is the given tolerance. The scalar gi represents the highest
order in which species Si reacts (see [22] for further details)

(A) If ψi = 1, take gi = 1
(B) If ψi = 2, take gi = 2, unless the left hand side of the reaction is
Si + Si, in which case take gi = 2 + (1/(x1 − 1)) .
(C) If ψi = 3, take gi = 3, unless the left hand side of the reaction is
Si + Si + S j, in which case take gi = (3/2) 2 + (1/(xi − 1)) , or the
reaction is Si + Si + Si, in which case take
gi = 3 + (1/(xi − 1)) + (2/(xi − 2)) .
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Following [22], we arrive at an efficient implementation of this
leap condition by classifying all reactions that are not in partial
equilibrium as critical or non-critical, as follows. We begin by
specifying the value of a control parameter, nc. Typically
nc ∈ [2, 20], see [22]. If some molecular amounts approach zero
during the integration, then there is a trade-off between maintaining
these population numbers positive and the efficiency of the
algorithm. A larger nc decreases the chance of negative population
numbers while reducing the efficiency of the method. If a reactant
is within nc firings of producing a zero population, it is called a
critical reaction. Let us denote by Jcr, Jncr, and Jne the set of indices
of critical, non-critical and not in partial equilibrium reactions,
respectively. Let Jnecr = Jncr⋂Jne be the index set of the reaction
channels that are non-critical and not in partial equilibrium. Also,
Incr denotes the set of indices of species that are the reactants of
non-critical reactions.

Non-critical, not in partial equilibrium reactions: The implicit
tau-leaping method is applied to the leap condition (5)
implemented using the time-step τ:

τ1 = min
i

max {εxi/gi, 1}
|μ^ i(x)|

,
max {εxi/gi, 1}2

δ
^

i

2
(x)

, (6)

with the auxiliary quantities

μ^ i(x) = ∑
j ∈ Jnecr

νi jaj(x), (7)

δ
^

i

2
(x) = ∑

j ∈ Jnecr

νi j
2
aj(x) . (8)

Critical reactions: These reactions are implemented on the nominal
or perturbed trajectory using the SSA, one critical reaction at a
time. For advancing a critical reaction on the nominal trajectory
two samples of the uniform random variable on the unit interval,
U(0,1) are computed, ξ1

(c) and ξ2, along with the sum of all
propensities of the critical reactions a0

cr, (c)(Xc)). Then, the index of
the next critical reaction of the nominal trajectory is the smallest
integer jcr satisfying

∑
ℓ ≤ jcr, ℓ ∈ Jcr

aℓ
c(X(c)) > ξ2a0

cr, (c), (9)

and the time to the next reaction is

τ2
(c) = (1/a0

cr, (c)(Xc))ln(1/ξ1
(c)) . (10)

Similarly, for finding the next critical reaction on the perturbed
trajectory, two samples of the uniform random variable on the unit
interval are computed, ξ1

(c + h) and ξ2, and the sum of all propensities
of the critical reactions a0

cr, (c + h)(Xc + h)). The next reaction on the
perturbed trajectory has index jcr given by the smallest integer
obeying

∑
ℓ ≤ jcr, ℓ ∈ Jcr

aℓ
c + h(X(c + h)) > ξ2a0

cr, (c + h)

(11)

and occurs after a time step

τ2
(c + h) = (1/a0

cr, (c + h)(Xc + h))ln(1/ξ1
(c + h)) . (12)

2.4 Finite-difference methods for sensitivity analysis of
stochastic biochemical systems

Each of the techniques described above for approximating
parametric sensitivities for stochastic discrete models of
biochemical kinetics involves the forward finite-difference
estimator [E( f (Xc + h(t))) − E( f (Xc(t)))]/h, where h represents a
perturbation, c is the parameter of interest, X is the state of the

chemical reaction system, and f is the output of interest. This finite-
difference estimator approximates the local sensitivity of the
expected value of the quantity f (Xc(t)) with respect to a parameter
c, given a polynomial function f. (Note that higher-order moments
can be determined by appropriate combinations of expected
sensitivities.)

Among the existing finite-difference strategies [15, 16] for
stochastic discrete models of biochemical kinetics, the CFD
method due to Anderson in [16] was shown to produce the smallest
estimator variance. It simulates the coupled trajectories with the
next reaction method. This sensitivity estimator is based on the
following tight coupling between the nominal process, X

c(t), and
the perturbed process, Xc + h(t),

X
c(t) = X

c(0) + ∑
j = 1

M

νjY j, 1 ∫
0

t

mj, c, h(s) ds

+ ∑
j = 1

M

νjY j, 2 ∫
0

t

aj
c(Xc(s)) − mj, c, h(s) ds

X
c + h(t) = X

c + h(0) + ∑
j = 1

M

νjY j, 1 ∫
0

t

mj, c, h(s) ds

+ ∑
j = 1

M

νkY j, 3 ∫
0

t

aj
c + h(Xc + h(s)) − mj, c, h(s) ds

(13)

with mj, c, h(t) = min aj
c(Xc(t)), aj

c + h(Xc + h(t)) . Here Y j, 1, Y j, 2 and
Y j, 3 are independent unit rate Poisson processes.

3 CIT method
In this section, we propose a new technique for approximating
local sensitivities for stochastic discrete models of biochemical
systems. This method is effective and accurate for stiff models
(involving multiple scales in time). Stiff systems are often
encountered in applications, as biochemical systems regularly
involve both fast and slow reactions. In contrast with the CRN,
CRP and CFD finite-difference schemes, which use exact SSAs to
generate the nominal and perturbed trajectories, our strategy
computes coupled paths using the (approximate) implicit tau-
leaping strategy. The coupling we employ is related to [23], which
is used in the CFD method [16]. This coupling shares similarities
to the coupling in [24] and is applied in [20] for designing multi-
level Monte Carlo methods for well-stirred stochastic biochemical
systems. The CTL method for sensitivity [17] uses finite-
differences to estimate the sensitivities and the (approximate)
explicit tau-leaping strategy to generate the coupled trajectories.
However, the CTL was designed for biochemical networks that are
at most moderately stiff. As opposed to these approaches, the novel
CIT technique involves solving implicit equations. For stiff to very
stiff models, the proposed CIT strategy allows much larger time-
steps than the previous methods. Consequently, the CIT algorithm
is expected to be significantly more effective that the existing
finite-difference estimators for such systems.

In the CIT algorithm, the coupled (i.e. nominal and perturbed)
implicit tau-leaping trajectories are generated as follows

X
c(t + τ) = x

c + ∑
j = 1

M

νj[(aj
c(Xc(t + τ)) − aj

c(x
c))τ

+P1, j(mj, c, h(x
c, x

c + h)τ)

+P2, j((aj
c(x

c) − mj, c, h(x
c, x

c + h))τ)]

(14)

X
c + h(t + τ) = x

c + h + ∑
j = 1

M

νj[(aj
c + h(Xc + h(t + τ))

−aj
c + h(x

c + h))τ + P1, j(mj, c, h(x
c, x

c + h)τ)

+P3, j((aj
c + h(x

c + h) − mj, c, h(x
c, x

c + h))τ)]

(15)

IET Syst. Biol., 2018, Vol. 12 Iss. 4, pp. 123-130
This is an open access article published by the IET under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/)

125



with Xc + h(t) = x
c + h and Xc(t) = x

c. The Poisson random variables
P1, j, P2, j and P3, j are independent. Here
mj, c, h(x

c, x
c + h) = min aj

c(x
c), aj

c + h(x
c + h) . The contribution of the

shared term, P1, j(mj, c, h(x
c, x

c + h)τ), is expected to be significant,
thus leading to a strong coupling. A consequence of this strong
coupling is the tendency for reduced variance observed for this
method (as illustrated in the next section). Once the Poisson terms
are generated, Newton's method is applied to solve numerically
both implicit equations: (14) for Xc(t + τ) and (15) for Xc + h(t + τ),
respectively.

For advancing the numerical solution, the CIT utilises an
extension of the adaptive time-stepping strategy introduced by Cao
et al. [19], for the implicit tau-leaping method, as outlined in the
previous section. A candidate leap is computed for the critical and
non-critical reactions, independently, on each of the nominal and
perturbed trajectories, and then the smallest leap size is chosen as
the next step.

CIT algorithm

1. Set simulation parameters: the tolerance for tau-leaping ε, the
tolerance for Newton's method, TOL, the critical threshold nc,
the final time T and the partial equilibrium parameter δ.

2. Initialise sample paths: the time t ← 0 and the states
X

c + h ← x0 and Xc ← x0.
3. While t < T

(a) Compute propensity functions: aj
c + h(Xc + h) and aj

c(Xc).
(b) Partial equilibrium condition: for each set of reversible
reactions in both systems, use (4) to check if they are in partial
equilibrium.
(c) Find set of critical reactions for nominal and perturbed
paths: for each non-partial equilibrium reaction Rj in the two
systems, with aj

c(Xc) > 0 or aj
c + h(Xc + h) > 0, compute

Lj = min
i ∈ [1, N]; vi j < 0

xi

|νi j|
,

where ⌊ ⋅ ⌋ is the ‘greatest integer in’ and set
Jncr = { j:Lj ≥ nc}.
(d) Compute candidate stepsizes, τ1

(c) and τ1
(c + h), for non-critical

and not in partial equilibrium reactions: If no non-critical
reactions occur, τ1

(c) = τ1
(c + h) = ∞. Else, determine Incr. For

i ∈ Incr on each of nominal and perturbed paths find:

(I) ψi, the highest order at which Si appears in a non-critical
reaction.
(II) gi, the highest order at which species Si reacts.

(III) μ^ i(x), δ^i

2
(x) using (7) and (8) and τ1

(c), τ1
(c + h) employing (6).

(e) Compute candidate stepsizes, τ2
(c) and τ2

(c + h), for critical
reactions: calculate a0

cr, (c)(Xc), a0
cr, (c + h)(Xc + h), sample ξ1

(c), ξ1
(c + h)

from U(0, 1), and find τ2
(c), τ2

(c + h), using (10) and (12).
(f) Determine next stepsize and critical reaction index: Let
τ1 = min {τ1

(c), τ1
(c + h)} and τ2 = min {τ2

(c), τ2
(c + h)}. Set

k j
c = k j

c + h = 0 for all critical reactions.

(I) If τ1
(c) < τ2

(c) and τ1
(c + h) < τ2

(c + h), set τ = τ1.

(II) else if τ2
(c) < τ2

(c + h), a sample ξ2 from U(0, 1). Choose jcr as
smallest integer satisfying (9). Take τ = τ2, k jcr

c = 1.
(III) else if τ2

(c + h) < τ2
(c), a sample ξ2 from U(0, 1). Choose jcr as

smallest integer satisfying (11). Take τ = τ2, k jcr
c + h = 1.

(IV) else sample ξ2 from U(0, 1). Choose jcr as smallest integer
satisfying (9). Take τ = τ2, k jcr

c = k jcr
c + h = 1.

(g) Step over non-critical reactions: For each j ∈ Jncr,

mj = min (aj
c(Xc), aj

c + h(Xc + h))

(I) Generate samples from Poisson distributions

P1, j = Poisson(mjτ),

P2, j = Poisson((aj
c(Xc) − mj)τ),

P3, j = Poisson((aj
c + h(Xc + h) − mj)τ),

(II) Apply Newton's method to solve each of the systems

U = X
c + ∑

j ∈ Jncr

{[aj
c(U) − aj

c(Xc)]τ + P1, j + P2, j}νj,

V = X
c + h + ∑

j ∈ Jncr

{[(aj
c + h(V) − aj

c + h(Xc + h)]τ + P1, j + P3, j}

(III) Update Xc ← U, Xc + h ← V .
(g) Implement the step: update time t ← t + τ and system states

X
c ← X

c + ∑
j ∈ Jcr

k j
c
νj,

X
c + h ← X

c + h + ∑
j ∈ Jcr

k j
c + h

νj .

(h) Approximate sensitivity on the sample path:
Z = ( f (Xc + h) − f (Xc))/h at the current time.

4 Numerical results
In this section, we compare the CIT method with the CFD strategy
on some examples of stiff biochemical systems. Recall that, of the
published finite-difference techniques for estimating the
sensitivities, the CFD technique provides estimates with the lowest
variance [16].

In our comparisons, we use ensembles of 10,000 paths of the
CFD and of the new CIT methods, respectively. We apply the CIT
algorithm as described above with tolerance ε = 0.05, TOL = 0.01,
and δ = 0.05. We show that the CIT method produces smaller
variances than the CFD strategy for the first two models and
similar variances for the third model. The CIT estimator is found to
be significantly faster than the CFD. The efficiency is measured by

Speed‐up over CFD =
CPU(CFD)
CPU(CIT)

,

where the CPU time to simulate 10,000 trajectories is considered in
each case.

4.1 Decay-dimerisation model

The decay-dimerisation model of [11] consists of three molecular
species involved in four chemical reactions (Fig. 1). The reactions
and propensities are given in Table 1, along with a set of nominal
values for the rate constants. 

The system was simulated on the time-interval [0, 1], with
initial conditions (X1(0), X2(0), X3(0)) = (400, 800, 0) and the
parameter nc = 10. The mean of the state variable X2 (i.e. the
number of S2 molecules), for the adaptive implicit tau-leaping
algorithm and for the next reaction method (used for the CFD), are
plotted in Fig. 2a. Fig. 2b shows the standard deviation of this state
variable. The estimated sensitivity of S2 with respect to the
parameter C2 and its standard deviation are shown in Figs. 2c and
d. The perturbation parameter is h = 0.05 (i.e. 0.1% of the nominal

Fig. 1  Decay-dimerisation model reaction chain
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parameter value). Fig. 2d demonstrates that the variance of the CIT
estimator is small compared to that of the CFD, demonstrating

accuracy. Moreover, the speed-up of the CIT scheme over the CFD
technique for estimating sensitivities for this particular simulation
is

Speed‐up over CFD = 9632.70. (16)

4.2 Genetic positive feedback loop

We next consider a simple model of positive feedback in gene
expression (Fig. 3), as presented in [25]. Referring to Table 2, x
represents a monomeric protein, y the protein dimer, d0 the
unoccupied regulatory site on the gene coding for x, dr the dimer-
occupied site, and m, the mRNA transcript. The reactions,
propensities and a set of nominal parameter values are included in
the table. 

We ran simulations from initial molecular amounts of
(X1(0), X2(0), X3(0), X4(0), X5(0)) = (10, 20, 10, 40, 0) over the time-
interval [0,2], with nc = 10.

Fig. 4a presents the evolution of the mean amount of the x
molecules over 10,000 paths, generated with the CIT algorithm and
the next reaction method, respectively. The standard deviation of
the molecular count of x as a function of time, for each of the two
algorithms, is shown in Fig. 4b. The behaviours of the estimated
sensitivity of the x molecular numbers with respect to the
parameter C1, using the CIT and the CFD methods are presented in
Fig. 4c, whereas the corresponding standard deviations of the CIT
and CFD estimators are given in Fig. 4d. The simulations are
performed with a perturbation h = 0.5 (i.e. 0.01% of the nominal
parameter value). From Fig. 4d, we observe that the CIT estimator
variance is low compared to the variance of the CFD estimator,

Table 1 Decay-dimerisation model
Reaction Propensity Nominal rate constant

R1 S1 ⟶
C1

⊘ a1 = C1X1 C1 = 0.05

R2 S1 + S1 ⟶
C2

S2
a2 = C2X1(X1 − 1)/2 C2 = 50

R3 S2 ⟶
C3

S1 + S1
a3 = C3X2 C3 = 1, 000, 000

R4 S2 ⟶
C4

S3
a4 = C4X2 C4 = 0.05

 

Fig. 2  Decay-dimerisation model: 10,000 trajectories were generated on
the time-interval [0,1], with initial condition
(X1(0), X2(0), X3(0)) = (400, 800, 0) and parameters in Table 1
(a), (b) Mean and standard deviation of the number of molecules for species S2 were
calculated by the next reaction method and the adaptive implicit tau-leaping algorithm,
(c), (d) Finite-difference estimates of the sensitivity of the abundance of S2 with
respect to C2, and the standard deviation of the estimators, for the CFD and CIT

 

Fig. 3  Schematic diagram of genetic positive feedback loop model
 

Table 2 Genetic positive feedback loop model
Reaction Propensity Nominal rate constant

R1 x + x ⟶
C1

y
a1 = C1X(X − 1)/2 C1 = 5000

R2 y ⟶
C2

x + x
a2 = C2Y C2 = 106

R3 y + d0 ⟶
C3

dr
a3 = C3YD0 C3 = 5000

R4 dr ⟶
C4

y + d0
a4 = C4Dr C4 = 106

R5 d0 ⟶
C5

d0 + m
a5 = C5d0 C5 = 10

R6 dr ⟶
C6

dr + m
a6 = C6Dr C6 = 20

R7 m ⟶
C7

m + x
a7 = C7M C7 = 1

R8 x ⟶
C8

⊘ a8 = C8X C8 = 0.8

R9 m ⟶
C9

⊘ a9 = C9M C9 = 7
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therefore the sensitivity estimation of the new CIT method is more
accurate. This low variance is confirmed as shown in Fig. 4c. For
the set of parameters used, the speed-up, on time interval [0, 2], of
the CIT over the CFD is significant

Speed‐up over CFD = 2656.43. (17)

4.3 Collins toggle switch model

The Collins toggle switch [26] is a gene regulatory network that
exhibits bistability: it consists of two genes, each encoding a
repressor of the other. Referring to Fig. 5, the species p1 and p2 are
the gene's protein products, while m1 and m2 denote the
corresponding mRNA transcripts. The parameters α1 and α2 denote
the maximal transcription rates. Furthermore, β and γ are the
degrees of non-linearity in the repression mechanisms. The system
exhibits bistable-like behaviour when α1 ≃ α2 and the maximal
expression rates are adequately large. We introduce a scaling factor
k on the propensity of mRNA transcription and degradation to
allow tuning of the model stiffness. For Figs. 6 and 7, we used k = 
1000. Table 3 lists the reactions, their propensities and nominal rate
constants. This illustrative parameterisation was chosen to achieve
regular transitions between well-separated quasi-steady states and
significant stiffness. 

This system was integrated on the time-interval [0, 2000], with
initial conditions X(0) = (76, 75, 60, 60) and nc = 5. Sample
trajectories for the species p2 and m1, simulated with the underlying
implicit tau-leaping method are shown in Figs. 6a and b. Bistable
behaviour is also observed for the species m2 and p1 (not shown).
The mean and standard deviation number of the number of p1

molecules for the implicit tau-leaping algorithm and for the next
reaction method are plotted in Figs. 7a and b, respectively. We
remark that, for this bistable model, the variance of the implicit
tau-leaping technique matches well the variance of the (exact) next
reaction method, in contrast with the behaviour of the implicit tau-
leaping scheme observed by Rathinam et al. [11] for systems
reaching a steady state, where the implicit scheme reduced the
variance of the numerical solution. Figs. 7c and d present the finite-
difference estimation of the sensitivity of the p1 molecule count
with respect to the parameter C1 and the estimator's standard
deviation for each of the CIT and CFD algorithms. In these
simulations, the perturbation parameter is h = 0.05 (i.e. 0.2% of the
nominal parameter value). The estimation of the sensitivity is
similar for the CIT and the CFD methods, while the standard
deviation of the CIT estimator is slightly larger than that of the
CFD estimator. However, for the set of parameters in Table 3, the
speed-up of the CIT over the CFD is 74-fold.

To gauge the performance of the method as stiffness increases,
the performance of the CIT and CFD methods was studied for
various values of scaling parameter k. The chosen range produced
stiff to very stiff model formulations, resulting in speed-up of the
new CIT strategy compared to the existing CFD method of up to
468 times, as reported in Table 4. For non-stiff models, the CIT
algorithm will perform no better than the CFD method. For this
model, a similar computational time for the two algorithms is
obtained when the propensities of the fastest and slowest reactions
are separated by about two orders of magnitude. 

As shown in panel (d) of Figs. 1, 4 and 7, the variance of the
CIT estimator is not always comparable to that of the CFD
estimator (smaller in the first two examples, larger in the third). For
first two models, we observe that our CIT method is more accurate
and far more efficient than the existing CFD strategy.

Fig. 4  Genetic positive feedback loop model. 10,000 sample paths with
initial condition (X1(0), X2(0), X3(0), X4(0), X5(0)) = (10, 20, 10, 40, 0) and
parameters as given in Table 2 were generated on the time-interval [0,2]
(a), (b) Mean and standard deviation of the number of molecules for species x were
calculated by the next reaction method and the adaptive Implicit tau-leaping algorithm,
(c), (d) Mean and standard deviation of the finite-difference estimators determined via
the CFD and implicit tau-leaping methods, of the sensitivity of the abundance of x to
the parameter C1

 

Fig. 5  Collins toggle switch model reaction scheme diagram
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For the third model, when the value of stiffness parameter k
grows, our CIT method becomes increasingly more efficient than
the CFD scheme. On the other hand, for the Collins toggle switch
model, the variance of the CIT estimator is slightly larger than that
of the CFD. The implicit tau-leaping scheme damps the noise for
systems reaching a steady state [11]. However, for the toggle
switch model, the implicit tau-leaping scheme does not cause noise
reduction. Trajectories frequently switch between two states, the
model exhibiting bistable behaviour. This behaviour restricts the

noise damping property of the implicit tau-leaping scheme and
leads to a slightly larger variance of the CIT algorithm than that of
the CFD, unlike for the previous two models. According to our

Fig. 6  Collin's toggle switch model: a sample path of species p2 and m1,
with initial condition (X1(0), X2(0), X3(0), X4(0)) = (76, 75, 60, 60) and the
parameters in Table 3 generated with the implicit tau-leaping method on
the time-interval [0, 8000]

 

Fig. 7  Collins toggle switch model. 10,000 sample paths with initial
condition (X1(0), X2(0), X3(0), X4(0)) = (76, 75, 60, 60) and parameters as
given in Table 3 were generated on the time-interval [0, 2000]
(a), (b) Mean and standard deviation of the number of molecules for species p1 were
calculated by the next reaction method and the adaptive Implicit tau-leaping algorithm,
(c), (d) Mean and standard deviation of the finite-difference estimators determined via
the CFD and implicit tau-leaping methods, of the sensitivity of the abundance of p1 to
the parameter C1

 

Table 3 Collins toggle switch model
Reaction Propensity Nominal rate constant

R1 ⊘ ⟶
C1

m1 a1 = k
α1

1 + (X2)
β

α1 = C1 = 28.98

β = 4

R2 m1 ⟶
C2

⊘ a2 = kC2X3 C2 = 0.23

R3 m1 ⟶
C3

p1 + m1
a3 = C3X3 C3 = 0.23

R4 p1 ⟶
C4

⊘ a4 = C4X1 C4 = 0.23

R5 ⊘ ⟶
C5

m2 a5 = k
α2

1 + (X1)
γ

α2 = C5 = 28.98

γ = 4

R6 m2 ⟶
C6

⊘ a6 = kC6X4 C6 = 0.23

R7 m2 ⟶
C7

p2 + m2
a7 = C7X4 C7 = 0.23

R8 p2 ⟶
C8

⊘ a8 = C8X2 C8 = 0.23
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numerical experiments, we conclude that our CIT method is
expected to be more accurate and significantly more efficient than
the CFD technique when the stiff system reaches a steady state. A
theoretical study of the properties of the finite-difference CIT
sensitivity estimator and appropriate values of the perturbation
parameter h leading to optimal convergence rates will be
considered in our future work.

5 Conclusion
Noise plays an important role in the behaviour of well-stirred
biochemical systems when some species have low molecular
counts. Usually, such systems are represented using the discrete
stochastic CME model. For the class of biochemical systems that
are mathematically stiff, implicit τ-leaping schemes are preferred
over exact Monte Carlo SSAs; implicit methods are considerably
more efficient for accurately determining the slow stochastic
variables of the system, and for determining the mean behaviour of
the fast variables. Indeed, the implicit tau-leaping strategy allows
large stepsizes while maintaining the solution close to the slow
manifold. By contrast, exact stochastic simulation techniques are
forced to take very small time-steps when stiffness is encountered.

This work developed a new finite-difference estimator of
sensitivities for stochastic discrete models of biochemical kinetics.
The new sensitivity estimator, the CIT or CIT, employs an adaptive
implicit τ-leaping method to simulate the nominal and perturbed
paths. To enhance the accuracy of the estimation, the CIT applies a
strong coupling between the nominal and perturbed trajectories.
The new sensitivity estimator is superior to Anderson's CFD
estimator [16] for models of biochemical systems that are stiff to
very stiff. We demonstrated that the CIT has a considerably
reduced computational cost compared to the CFD while retaining
an equivalent accuracy. Thus, for the class of stiff to very stiff
biochemical reaction networks, the coupled implicit τ-leaping
method is a preferred choice for sensitivity analysis.
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Table 4 Collins toggle switch model: the speed-up of the
CIT compared to the CFD for estimating the sensitivity of p1

with respect to C1 for h = 0.05 on time interval [0, 2000]
Method Stiffness parameter k Speed-up
CIT 300 10.16
CIT 1000 74.71
CIT 3000 468.43
CFD — 1
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