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Abstract

Multiple physiological systems interact throughout the development of a complex disease.

Knowledge of the dynamics and connectivity of interactions across physiological systems

could facilitate the prevention or mitigation of organ damage underlying complex diseases,

many of which are currently refractory to available therapeutics (e.g., hypertension). We

studied the regulatory interactions operating within and across organs throughout disease

development by integrating in vivo analysis of gene expression dynamics with a reverse

engineering approach to infer data-driven dynamic network models of multi-organ gene reg-

ulatory influences. We obtained experimental data on the expression of 22 genes across

five organs, over a time span that encompassed the development of autonomic nervous

system dysfunction and hypertension. We pursued a unique approach for identification of

continuous-time models that jointly described the dynamics and structure of multi-organ net-

works by estimating a sparse subset of *12,000 possible gene regulatory interactions. Our

analyses revealed that an autonomic dysfunction-specific multi-organ sequence of gene

expression activation patterns was associated with a distinct gene regulatory network. We

analyzed the model structures for adaptation motifs, and identified disease-specific network

motifs involving genes that exhibited aberrant temporal dynamics. Bioinformatic analyses

identified disease-specific single nucleotide variants within or near transcription factor bind-

ing sites upstream of key genes implicated in maintaining physiological homeostasis. Our

approach illustrates a novel framework for investigating the pathogenesis through model-

based analysis of multi-organ system dynamics and network properties. Our results yielded

novel candidate molecular targets driving the development of cardiovascular disease, meta-

bolic syndrome, and immune dysfunction.
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Author summary

Complex diseases such as hypertension often involve maladaptive autonomic nervous sys-

tem control over the cardiovascular, renal, hepatic, immune, and endocrine systems. We

studied the pathogenesis of physiological homeostasis by examining the temporal dynam-

ics of gene expression levels from multiple organs in an animal model of autonomic dys-

function characterized by cardiovascular disease, metabolic dysregulation, and immune

system aberrations. We employed a data-driven modeling approach to jointly predict con-

tinuous gene expression dynamics and gene regulatory interactions across organs in the

disease and control phenotypes. We combined our analyses of multi-organ gene regula-

tory network dynamics and connectivity with bioinformatic analyses of genetic mutations

that could regulate gene expression. Our multi-organ modeling approach to investigate

the mechanisms of complex disease pathogenesis revealed novel candidates for therapeu-

tic interventions against the development and progression of complex diseases involving

autonomic nervous system dysfunction.

Introduction

Complex disease conditions characterized by co-morbidities involve pathological dysregula-

tion that evolves across multiple organ systems and over time. Thus, a holistic approach is

required to deconvolve the spatiotemporally distributed mechanisms of multifactorial disease

pathogenesis at the tissue, cellular, and molecular levels of analysis. From this systems perspec-

tive, time-series analyses of multiple organs are essential to determining the biological mecha-

nisms of disease progression [1–4].

New insights into complex disease mechanisms have been derived from analyses of gene

expression across multiple human organs [5–7]. The temporal dynamics of human multi-

organ gene expression profiles have provided insight into the distributed mechanisms of dis-

eases including hypertension [8]. Such studies of animal models can be used to study disease

pathogenesis by examining time points both before and after disease onset. Existing studies

have provided valuable information regarding the contributions of various organs to cardio-

vascular disease [9, 10], but the absence of global longitudinal studies precludes our under-

standing of the molecular mechanisms underlying disease pathogenesis.

Even when time-series data are available, complications with conventional analysis

approaches often preclude new insights. Common statistical methods that account for time as

a categorical variable often fail to detect significant differences between the dynamics of phe-

notypes, necessitating an explicit consideration of time as a continuous variable in statistical

analysis [11]. Analytical techniques available to infer the network interactions underlying the

gene expression dynamics require extensive experimental assessments of responses to targeted

gene perturbations [12]. The utility of combining time-series analysis with network-based

approaches has been demonstrated extensively in developmental biology [13, 14], immunology

[15–17], neural systems [18, 19], and critical care medicine [20, 21]. Interactions between

dynamics and structure have also been studied in mechanical, electrical, telecommunication,

social, and economic networks [22]. However, such approaches have been relatively underuti-

lized in controlled studies of organismal physiology [23].

It has been proposed that a triangular pattern of positive feedback—with vertices represent-

ing autonomic nervous system (ANS) activity, systemic inflammation (INF), and renin-angio-

tensin system (RAS) signaling—underlies the pathogenesis of cardiovascular dysfunction in

hypertension [24]. Accordingly, cardiovascular function can be modulated by perturbations of
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peripheral T-cells [25], bone marrow cells [26], renal [27, 28] and hepatic systems [29], the

adrenal gland [30], as well as neurons and glial cells in the brain [31, 32]. Because of the posi-

tive feedback interactions amongst physiological systems involved in cardiovascular regulation

[24], it is difficult to determine causal mechanisms of disease pathogenesis. The attribution of

disease mechanisms can be facilitated by the temporal reconstruction of events underlying the

multi-organ system’s evolution toward a pathological state [23, 33]. We performed such a tem-

poral reconstruction by integrating experimental measurements with novel data-driven

modeling and network analysis.

We profiled the temporal dynamics of ANS, INF, and RAS gene expression in the adrenal

gland, brainstem, kidney, liver, and left ventricular muscle to characterize the multi-organ

contributions to disease etiology. We utilized a rat model of complex disease—involving car-

diovascular, metabolic, and cognitive impairments—in which autonomic dysfunction is

believed to be a key factor in controlling the development and persistence of the disease state

[24, 34]. Hence, we refer to this model as an “autonomic dysfunction” phenotype. Extensive

evidence supports the relevance of this animal model to the pathogenesis of human hyperten-

sion. For instance, pharmacological perturbations of ANS and RAS signaling, and surgical

manipulations of ANS signaling, exert anti-hypertensive effects in both humans and the

autonomic dysfunction model. Other commonalities include elevated inflammation and ele-

vated sympathetic activity that appears to precede hypertension in both humans and rats

[24, 35–38]. Hence, it is plausible that the autonomic dysfunction animal model recapitulates

key features of human disease pathogenesis. We applied a robust technique for system identifi-

cation to estimate the strength, direction, and sign of interactions amongst genes within and

between organs. We utilized a Hartley Modulating Function (HMF)-based system identifica-

tion approach, which allowed us to estimate both continuous mathematical models of gene

expression dynamics and corresponding network models of multi-organ gene regulatory inter-

actions. We analyzed the model structure and simulation results to test whether the temporal

dynamics and gene regulatory interactions were globally affected during the pathogenesis of

autonomic dysfunction. We analyzed the model to identify disease-specific network motifs

associated with aberrant temporal dynamics. We were interested in identifying whether the

gene expression dynamics and network interactions were prominently dysregulated in partic-

ular organs, suggesting an anatomical basis for disease development. We further investigated

whether single nucleotide variants were significantly associated with the transcription factor

binding sites upstream of ANS, INF, and RAS genes. Our analyses utilized a novel investigative

framework to identify new candidate therapeutic targets for ANS-related diseases based on

aberrant expression dynamics and network interactions involving genes in multiple organs.

Materials and methods

Ethics statement

All experimental work was performed according to protocols approved by the Thomas Jeffer-

son University Institutional Animal Care and Use committee.

Animal procedures

All protocols were approved by the Thomas Jefferson University (TJU) Institutional Animal

Care and Use Committee. Study subjects included male rats from the Spontaneously Hyper-

tensive Rat (SHR/NHsd) and Wistar Kyoto (WKY/NHsd) strains, corresponding to auto-

nomic dysfunction and control phenotypes, respectively. Rats were purchased from Harlan

Laboratories and experimental procedures were carried out one week following animal arrival

at our facility. All animals were housed socially in the TJU animal facility. The facilities were
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maintained at constant temperature and humidity with 12/12 hour light cycles (lights on at

Zeitgeber time = 0). We harvested organ tissues at five time points: 4, 6, 8, 12, and 16 weeks of

age. Rats were humanely sacrificed via rapid decapitation. CNS tissue was excised and the

brainstem was isolated in ice-cold artificial cerebral spinal fluid (10mM HEPES; 140mM NaCl;

5mM KCl; 1mM MgCl2; 1mM CaCl2; 24mM D-glucose; pH = 7.4). We simultaneously har-

vested the adrenal gland, kidney, liver, and left ventricle of the heart. Tissue samples were flash

frozen and stored at -80˚C. Our original study was designed to include 50 animals (2 geno-

types, 5 time points, 5 replicates). One animal deceased prior to the designated time point for

organ harvest. Thirty-five animals were included in our study and 2–5 organ samples per

strain were obtained at each time point for organs other than the brainstem (S1A Fig); 12 week

brainstem tissues (from n = 10 animals) were not included in the present study as these sam-

ples were utilized for a parallel study that precluded the gene expression analysis employed

here. Five other animals were excluded from our study prior to performing qPCR analysis

because either the respective RNA did not pass our quality criteria (see below) or because the

tissue was used for other purposes. S1A Fig shows the tissue samples included in our study for

each animal.

Molecular biology

Total RNA was extracted from 10–50 mg tissue samples using the Direct-Zol RNA extraction

kit, which captures all RNA greater than 18 nucleotides in length (ZYMO Research, Irvine,

CA). Samples were DNAse treated and stored at -80˚C. Concentration and integrity were

assessed with a spectrophotometer (ND-1000 from NanoDrop, Philadelphia, PA). RNA sam-

ples with 260/280 (nm/nm) ratio <1.8 and 260/230 ratio 1.8–2.0 were purified with RNA

Clean and Concentrator-100 (ZYMO Research, Irvine, CA). High-throughput PCR was imple-

mented as described previously [39, 40]. Intron-spanning PCR primers were designed for 24

assays (see Table 1 in S1 Text). For each sample, 30 ng of total RNA was used. The standard

BioMark protocol (Fluidigm, South San Francisco, CA) was employed to reverse transcribe

and pre-amplify cDNA samples for 12 cycles using TaqMan PreAmp Master Mix based on the

manufacturer’s protocol (Applied Biosystems, Foster City, CA). The qPCR reactions were per-

formed using a 192.24 BioMark Rx Dynamic Array for multiplex gene expression measure-

ment (Fluidigm, South San Francisco, CA). Quantitative PCRs were implemented with 30

cycles (95˚C for 15s, 70˚C for 5s, 60˚C for 60s).

Data processing

We quantified qPCR products by determining threshold cycle (Ct) values. We designed our

study with Actb and Gapdh assays as potential reference genes for normalization. To determine

whether these assays were appropriate for normalization, we assessed the stability of these

genes across samples, as in our previous studies [39], based on a well established method for

evaluation of putative reference genes [41]. Our analysis revealed that Actb and Gapdh expres-

sion profiles were highly variable across samples, as has been shown previously. No single gene

showed consistent stability across all samples. However, the median Ct across all genes was sta-

ble across samples, indicating superior utility of the median Ct as a ‘pseudo reference gene’ for

data normalization (S1B Fig). Hence, we normalized the raw Ct data based on median expres-

sion levels, which were considered to represent reference gene expression levels. For each sam-

ple (s) obtained from a specific organ (r) at a specific time point (t), we subtracted the median

Ct computed across all genes (g) in that organ: DCtsrgðtÞ ¼ CtsrgðtÞ � medðCtsrðtÞÞ where med(.)

is the median of the argument. We next centered the data for comparison across genes based

on the median expression level across all samples for each gene:
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DDCtsrgðtÞ ¼ DCtsrgðtÞ � medðDCtrgðtÞÞ. We used −ΔΔCt values for analyses of gene expression.

We omitted Actb and Gapdh from all subsequent analysis due to ambiguity in the functional

interpretation of the results. Missing data based on our QC analysis were rare (median = 1.8%,

sd = 10% of samples per gene with NA values; median = 4.2%, sd = 9.1% of genes per sample

with NA values). Thus, missing data were imputed according to established approaches [6, 42]

by replacing missing values with the mean across 10 samples with most similar expression pro-

files according to Euclidean distance using the impute package in R [43]. Note that we did not

impute Brainstem data at age = 12 weeks because we did not obtain the gene expression data

from the brainstem samples at this time point. Both raw Ct and normalized data are available

(S1 and S2 Files). To examine whether specific samples imparted systematic biases in our

results, we implemented Principal Components Analysis in R using the princomp function.

Timeseries analysis

To test whether the temporal dynamics of gene expression differed between autonomic dys-

function and control phenotypes, we applied the Optimal Discovery Procedure (ODP) using

the EDGE package in R [44]. Temporal profiles were modeled as natural cubic splines which

connect a series of smooth polynomials between knots defined by the degrees of freedom for

the spline fit [11, 45] (function ns with df = 3 in the splines package for R [46]). The ODP anal-

ysis involved a comparison of a null model to an alternative model. The null model was charac-

terized by a single spline fit to the aggregated autonomic dysfunction and control time-series

data for each gene. The alternative model consisted of two splines fit to the respective pheno-

types. For each gene, errors between data points and fitted values were summed and squared

for the null model (SS0) and the alternative model (SSA). An analogue of the conventional F
statistic was computed to evaluate the goodness of fit obtained for the null versus alternative

model: F = (SS0 − SSA)/SSA. The estimated distribution for this statistic was utilized to compute

an estimate of the probability of the alternative model under the null hypothesis (p value) with

correction for multiple testing (q value). Complete details can be found in [11, 44].

Dynamic network and continuous-time system identification from

discrete time-series data

We scaled the data to the range (0, 1) prior to implementing the HMFmethod. To implement

this scaling for expression profile E, we applied the following transformation: Escaled = (E −min
(E))/(max(E) −min(E)). We use E to represent Escaled in the context of our system identifica-

tion studies. The following description details the basic theory and procedure underlying the

system identification approach using Hartley Modulating Functions (HMF). A signature attri-

bute of this approach is that interaction coefficients can be estimated that jointly describe net-

work dynamics and structure. From a mathematical perspective, a principal advantage of the

HMF-based system identification approach is that it obviates the need to compute temporal

derivatives of the raw data [47, 48]. Instead, the interaction coefficients k (see Fig 1D) are

determined by estimating inner products between both the expression data (and the deriva-

tives thereof) and a set of basis functions—the carefully chosen Hartley modulating functions—
and approximating these inner products using the Hartley transform to transform the data

into the frequency domain. This procedure facilitates the accurate and robust identification of

continuous-time models from discretely sampled data, another principal advantage of the

HMFmethod, as we have demonstrated previously [48].

Furthermore, our approach entailed the use of powerful regularization techniques that miti-

gate against overfitting the interaction coefficients [45]. Whereas frequency domain transfor-

mations of data have been previously been employed to implement systems identification,
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Fig 1. Conceptual, experimental, and analytic framework for examining multi-organ pathogenesis of

autonomic function. (A, B) The etiology of autonomic dysfunction involves (A) multiple organs in which positive

feedback processes involve (B) inflammatory mediators, renin-angiotensin signaling, and sympathetic activity.

(C) A number of well studied genes underlie the molecular basis of maladaptive network feedback processes.

(D-F) Analysis pipeline for examination of expression patterns of the genes listed in (C) in multiple organs listed

in (A). (D) Gene expression measurements were obtained and the data were analyzed using time series

statistics and novel network identification approaches. (E) The network identification analysis reconstructed
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these approaches relied on optimization-based estimates of the interaction coefficients [49]. In

contrast, using HMFmethod, we directly estimated the interaction coefficients via regularized

regression. Thus, our approach, in principle, can overcome difficulties in parameter estimation

that result from non-convex solution spaces characterized by local minima [50].

The remainder of this section starts with a description of the mathematical underpinnings

and implementation details underlying our use of the HMFmethod to identify multi-organ

gene regulatory networks. Following this description, we detail further analyses that demon-

strate the robustness of our approach.

The expression level E of gene g in organ r at time t was modeled as follows for a data set

with samples obtained between time t = 0 and time t = T:

d
dt

ErgðtÞ ¼
XNr

i

XNg

j

kðrgÞij EijðtÞ � grgErgðtÞ

where Nr is the number of organs and Ng is the number of genes. The degradation coefficient

for Erg is referred to as γrg. For simplicity, we avoided using the degradation term explicitly

such that degradation was implicitly incorporated in kij for i = r and j = g:

d
dt

ErgðtÞ ¼
XNr

i

XNg

j

kðrgÞij EijðtÞ ð1Þ

The full network can be compactly expressed in matrix form as

d
dt

E11

d
dt

E12

..

.

d
dt

ENrNg
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NrNg
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with the following simplified representation:

d
dt

EðtÞ ¼ KEðtÞ ð2Þ

Note that that parameter matrix K from Eq (2) is equivalent to the Jacobian matrix corre-

sponding to this linear system: J = [Jij] where Jij = @fi/@Ej, fi = dEi/dt, and (i, j) each refer to a

particular gene-organ combination. Thus, this matrix gives the influence of a gene in column j
on a gene in row i.

We estimated the interaction coefficients k by applying the HMFmethod [47, 48].

This method entails the multiplication of Eq (1) by M different modulation functions ϕm

gene expression dynamics and gene regulatory interactions underlying autonomic dysfunction and control

phenotypes. (F) Bioinformatic analyses were integrated with analyses of network structure and dynamics to

generate novel hypotheses regarding the molecular mechanisms underlying autonomic dysfunction.

https://doi.org/10.1371/journal.pcbi.1005627.g001
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(m = 1, 2,. . ., M). Integrating these products gives the following relation:

Z T

0

�m
d
dt

Erg

� �

dt ¼
XNr

i

XNg

j

Z T

0

�mEijdt
� �

kðrgÞij ð3Þ

where ϕm = f(t) is chosen such that d
dt �mðtÞ = 0 for t = 0 and t = T. Note that the times t = 0 and

t = T corresponding to sampled ages of 4 and 16 weeks, respectively, such that T = 12 in our

computations. The modulating functions ϕ are chosen as follows:

�mðtÞ ¼
Xn

j¼0
ð� 1Þ

j
ð
n
kÞcasððnþm � jÞo0tÞ

where n is the order of the highest derivative of the system described by Eq (1) (i.e., n = 1),

cas(x) = sin(x) + cos(x), and o0 ¼
2p

T . The integrals on the right and left hand sides of Eq (3)

can be estimated using the Hartley transform [51], the m-th HMF spectral component of gene

expression profile E(t), and the HMF spectra for the i-th derivative of E(t) [47]. These compu-

tations are defined respectively as follows:

HrgðoÞ ¼

Z T

0

ErgðtÞcasðotÞdt ð4Þ

Hrgðmo0Þ ¼
Xn

j¼0

ð� 1Þ
j
ð
n
j ÞHrgððnþm � jÞo0Þ ð5Þ

Hi
rgðmo0Þ ¼

Xn

j¼0

f1f2f3 ð6Þ

where

f1 ¼ ð� 1Þ
j n

j

� �
d
dt

cas
ip
2

� �� �

f2 ¼ ðnþm � jÞioi
0

f3 ¼ Hrg ð� 1Þ
i
ðnþm � jÞo0

� �

Importantly, given a solution to Eq (4), numerical solutions to Eqs (5 and 6) can be obtained.

The numerical solutions to Eqs (5 and 6) can be used to compute the interaction coefficients

based on the following relations:

Hrgðmo0Þ ¼

Z T

0

�mErgdt ð7Þ

H i
rgðmo0Þ ¼

Z T

0

�m
di

dti
Erg

� �

dt ð8Þ

Then Eq (2) can be written as follows

H 1

rgðmo0Þ ¼
XNr

i

XNg

j

Hrgðmo0Þk
ðrgÞ
ij ð9Þ
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where the only unknowns are the interaction coefficients, which can be determined by linear

regression. However, Eq (4) must be computed first. Following our previous work [48], we

computed Eq (4) by linearly interpolating between average gene expression values at adjacent

time points and analytically evaluating the integral:

Z tf

ti

EðtÞcasðotÞdt ¼
Z tf

ti

ðmt þ bÞcasðotÞdt

m ¼
Eðtf Þ � EðtiÞ

tf � ti
; b ¼ EðtiÞ � mti

Then we computed the values in Eqs (5 and 6) given n = i = 1 [48]. Note that the analytical

solution to the integral in Eq (4) evaluates to zero for n + m − j = 0 (m = −1, j = 0 and m = 0,

j = 1). However, allowing Eq (4) to be zero resulted in poor fits of the model to the data. For

these cases, we arbitrarily set n + m − j = � with � = 10−6. This choice of � resulted in robust

model fits as detailed below.

The set of interaction coefficients can be obtained for interactions regulating the expression

dynamics of each organ/gene combination by solving Eq (9) using a range of m values:

H 1
rgðm1o0Þ ¼

XNr

i

XNg

j
Hrgðm1o0Þk

ðrgÞ
ij

H 1
rgðm2o0Þ ¼

XNr

i

XNg

j
Hrgðm2o0Þk

ðrgÞ
ij

..

.

H 1
rgðmMo0Þ ¼

XNr

i

XNg

j
HrgðmMo0Þk

ðrgÞ
ij

In matrix notation, this relation can be expressed as

yrg ¼ Xrgb
ðrgÞ

ð10Þ

where y is a column vector of �H 1
rg terms in which each row entry is computed with a different

m value, X is a matrix of �Hrg terms with a row for each m value and a column for each term

corresponding to a particular organ/gene combination, and β is a vector of interaction coeffi-

cients with the same length as the number of columns in X. Solving the linear system for β pro-

vides interaction coefficients that determine the dynamic regulation of a gene in a given organ,

based on the expression profiles of all genes in all organs. However, we wanted to perform sys-

tem identification for gene regulatory networks spanning multiple organs and genes. To glob-

ally estimate the entire set of interaction coefficients using the HMFmethod, a matrix of the

form Eq (11) was utilized. The full matrix was established using instances of Eq (10) for each

organ/gene combination considered in the system:

y11

y
12

..

.

yNrNg

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

X11 0 � � � 0

0 X12 � � � 0

..

. ..
. . .
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.

0 0 � � � XNrNg

2
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5

b
ð11Þ

b
ð12Þ

..

.

b
ðNrNg Þ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð11Þ

where 0 represents a matrix of zeros with the same dimensionality as X. In this formulation,

y11 = X11 β
(11), y12 = X12 β

(12), and yNr Ng
= XNr Ng

β(Nr Ng). Thus, the solution to Eq (11) provides
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a global fit to the interaction network including all assayed genes in all sampled organs. The

regression problem can be described compactly as y = X β and solved using linear regression.

To circumvent overfitting of the model, we applied well established regularization techniques

in which the regression coefficients were determined by solving an optimization problem with

the following objective function:

Jreg ¼ min
b
jjy � Xbjj

2
þ l ajjbjj1 þ ð1 � aÞjjbjj

2

2

� �� �
ð12Þ

where ||x||1 = ∑|x| and jjxjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P
jxj2

q

. The regularization parameters α 2 [0, 1] and

λ 2 [λmin, λmax] (see below) impose sparsity on the network by forcing the interaction coeffi-

cients towards zero [45]. This form of regularization is known as the ‘elastic net’ [52], where

the ||β||1 term represents the ‘lasso’ penalty [53] and ||β||2 term represents the ‘ridge’ penalty

[54]. Thus, α weights the lasso penalty and (1−α) weights the ridge penalty. The elastic net for-

malism exhibits positive attributes of both regularization techniques with respect to enhance-

ment of network interpretation, based on sparsity of connectivity, and augmentation of

prediction accuracy [45].

We performed network identification as described above using a range of m value sets. The

regression problem represented by Eq (11) requires that the number of m values exceeds the

number of interaction coefficients, Nr � Ng. Each m value set had the form m = 0, ±1, ±2, . . .,

±(M − 1), ±M, where M was varied between Mmin ¼
Nr �Ng

2
and Mmax ¼

Nsamples
2

[48]. Initial simula-

tions showed that the regression results were not sensitive to the range of the m values, given

M�Mmin. We selected ten sets of m values that were evenly spaced within the M range. For

each of the ten m value sets, we performed the regression analysis for α = 0, 0.2, 0.4, 0.6, 0.8, 1,

and we used 10 λ values for each α. The λ values were also varied over a range. The λ range was

bounded by λmax, the minimal λ value associated with a particular α that resulted in all zero

coefficients. That is, for λ = λmax there was no network connectivity. The λ values were incre-

mentally varied from λmin = λmax × 10−4 to λmax on a logarithmic scale according to the default

functionality of the glmnet package used for elastic net regression in R [46, 55].

Optimal solutions to the regularized regression problems (11 and 12) were determined

based on simulation results. We simulated the identified network models (2) using MATLAB’s

ode45 and ode15s functions, or with R using the lsoda function from the deSolve package [56].

Differences in simulation results, with respect to the choice of numerical integrator, were not

visually detectable. To select the optimal fits, we initially considered the sum of squared residu-

als as an objective function for minimization,
P
ðŷ � �yÞ2, where ŷ is the simulation result and

�y is the average for the corresponding gene expression data set. However, according to this

objective, the best fits could be those with all zero coefficients. Hence, we revised our objective

to penalize fits with low variability:

Jsim ¼
P
ðŷ � �yÞ2

Var ðŷÞ þ �
ð13Þ

and set � = 10−10 (the choice of � did not make a detectable difference in the selection of the

best fit).

Molecular networks underlying the physiology of blood pressure control have been shown

to be distinct for autonomic dysfunction versus control [40]. For all network reconstructions,

we considered autonomic dysfunction and control phenotypes separately. We initially

performed our system identification analysis of a network with all organs (Nr = 5) and genes

(Ng = 22) with (Nr � Ng)
2 = 12,100 possible connections. We implemented 600 iterations of the

system identification algorithm with distinct combinations of the m value range (n = 10),
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λ value (n = 10), and α value (n = 6). In general, for both phenotypes, small λ values were asso-

ciated for good fits (i.e., Jsim * min(Jsim)) irrespective of the α value for α> 0 (S2 Fig). For the

control, Jsim = min(Jsim) for α = 0.2 at λ = 6.5�10−5 (221 m values). For autonomic dysfunction,

Jsim = min(Jsim) for α = 0.4 at λ = 8.3�10−7 (111 m values). Based on these pilot studies, further

analyses were implemented with ten λ values, ten sets of m values, and α = 0.2.

System identification robustness analysis

To evaluate the robustness of the HMFMethod, we compared the ‘best fit’ network with multi-

ple subnetworks characterized by log(Jsim)< 10 (see S2 Fig). For these comparisons, we consid-

ered interaction coefficients that were larger in absolute magnitude than two standard

deviations from the median (median * 0 in all cases). Further, we only considered the coeffi-

cients for which jkj > j2ŝk � medðkÞj in each phenotype-specific best fit network and compar-

ison network, and analyses were completed for coefficients that met this criterion for both the

best fit network and the comparison network. Spearman rank correlation coefficients were

determined and we investigated whether the coefficient sign was sensitive to the regularization

parameters using the Fisher’s exact test (FET). For the FET analysis, we computed the sign

(i.e., +1 or −1) of the coefficients considered in the correlation analysis. The contingency table

illustrated in S3 Fig was formulated for the FET. Both Spearman rank and FET p-values were

corrected for multiple testing according to the Benjamini-Hochberg method using the qvalue
package [57]. We also computed the odds ratio, based on the same data, to quantify the degree

of agreement between networks (S3 Fig).

To further evaluate robustness, we examined graph theoretic metrics. A path through a

network consists of the sequence of edges between two nodes or vertices. The shortest path

length refers to the minimal number of edges connecting two nodes, and the average path

length< ℓ> is the mean of all shortest paths between every pair of nodes. This measure is an

index of the efficiency with which the network can be navigated. The clustering coefficient Ci

generally quantifies the connectivity among all nodes connected to node i. The number

of nodes with links to node i is ni and the number of links amongst the ni nodes is nc: Ci = 2nc/
(ni � (ni−1)) [58]. We computed a variant of this measure, the global clustering coefficient,

which is the number of closed node triplets (i.e., ‘triangles’) divided by the total number of

connected triplets. The global clustering coefficient is also known as the ‘transitivity’ metric

[59]. Finally, we assessed the distribution of degrees kc; that is, the distribution for the number

of edges connecting a node to its neighbors, which follows a power law of the following form

for many biological networks: PðkcÞ � k� g
c . This distribution gives the probability that a given

node has kc connections [58, 60]. To characterize the degree distribution, we fit a power law to

the vector of degree frequencies and utilized a Kolmogorov-Smirnov (K-S) test of the null

hypothesis that the data were distributed according to the power law. The fit returned an esti-

mate of γ and a p-value indicating the probability of the test statistic given the null hypothesis.

Thus, high p-values indicate the absence of evidence in support of the conclusion that the

graph under consideration does not exhibit a power law degree distribution. Network analyses

were implemented using the igraph package for R [59].

Dynamic pattern analysis

We assessed the patterns of gene expression dynamics across and within organs by temporally

ordering the expression profiles identified using the HMFmethod. We used temporal ordering

schemes based on peak timing and valley timing, which were established as follows. The

dynamic profiles Ei of each gene i were scaled to Esc 2 [0, 1]. We then determined all local

extrema for the scaled waveform Esc. We refer to local maxima as peaks and local minima as
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valleys, with associated times denoted as tp and tv. Putative peaks and valleys (t̂p and t̂v )

were considered as veritable extrema if their expression levels relative to the initial time point

(i.e., t0 = 4 weeks) exceeded a given threshold (Eth):

if jEðt̂xÞ � Eðt0Þj > Eth;

then tx ¼ t̂x ; x ¼ p; v

For profiles with both peaks and valleys, we determined the first peak or valley that satisfied

this condition. We also classified monotonically decaying or increasing profiles as profiles

without peak or valleys as defined above. Further, monotonicity required the additional condi-

tion that

jEðt̂xÞ � Eðt0Þj < Eth0

for all x = (p, v). Monotonic increases versus decays were distinguished based on estimates of

the profile’s first time derivative; tp = t0 and tv = t0 for monotonically decaying and increasing

profiles, respectively. For visualization, scaled profiles were sorted and plotted according to

peak or valley time. For this analysis, we set Eth = 0.5 and Eth0 = 0.1.

Differential network analysis

We evaluated the differences in the multi-organ gene-gene interaction networks between auto-

nomic dysfunction versus control phenotypes. We describe our analyses based on conven-

tional graph theoretic terminology, according to which the network is considered to be a graph

G with vertices or nodes V that refer to genes which are connected by edges E: G = (V, E). The

edges E are characterized by the interaction coefficients k described above. In particular, we

addressed whether edges were added, removed, or switched in sign from autonomic dysfunc-

tion to control. We focused on the strongest network connections by considering edges for

which the following condition was met:

jEijj > medðEÞ þ 2sdðEÞ

where Eij is an edge from node Vi to node Vj, med(.) is the median, and sd(.) is the standard

deviation. Median values computed across all edges were exactly zero. Edges that did not

meet our criteria were set to zero. All edge values were scaled to the interval (−1, 1) by applying

Esc = E/max(|E|). We evaluated differential network properties as follows. For each edge in G,

we first computed the difference between unscaled edge values for control (WKY)- versus

autonomic dysfunction (SHR)-specific networks as

DEij ¼ ESHR
ij � EWKY

ij

and we defined a threshold edge difference as follows:

Eth ¼ max 2sdðEWKYÞ; 2sdðESHRÞð Þ

Then we evaluated each edge for a set of conditions. Edges were considered to be added to the

autonomic dysfunction network (absent for control but present for the autonomic dysfunction

Data-driven modeling of multi-organ networks driving physiological dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005627 July 21, 2017 12 / 39

https://doi.org/10.1371/journal.pcbi.1005627


phenotype) if the following conditions were satisfied:

jEsc;SHR
ij j > 0

jEsc;WKY
ij j ¼ 0

jDEijj > Eth

Note that the third condition ensured that an edge could not be considered to be added to the

SHR network if that edge was slightly larger than Eth for SHR but slightly smaller than Eth for

WKY, such that the actual difference was negligible. Hence, only edge differences that

exceeded Eth were considered. Edges were considered to be removed from the SHR network

(absent for SHR but present for WKY) if the following conditions were satisfied:

jEsc;SHR
ij j ¼ 0

jEsc;WKY
ij j > 0

jDEijj > Eth

Finally, edges were considered to be switched in sign from WKY to SHR (e.g., Eij = −1 for

WKY and Eij = 1 for SHR) if the following conditions were satisfied:

jEsc;SHR
ij j > 0

jEsc;WKY
ij j > 0

signðEsc;SHR
ij Þ 6¼ signðEsc;WKY

ij Þ

jDEijj > Eth

We further filtered the data by analyzing count histograms of ΔEij values for added, removed,

and switched edges and applying the following respective cutoffs to exclude edges with the

smallest differences between SHR and WKY: 0.15, 0.15, and 0.2 (See S4 Fig). Networks charac-

terized by edges that met the aforementioned criteria were visualized using Cytoscape [61].

Bioinformatic analyses

We completed a number of analyses in which we utilized publicly available data and software

tools, as described in detail below.

Network motif analysis: We used the mfinder tool to search for specific network motifs asso-

ciated with cellular adaptation [62, 63]. We visualized the detected subnetworks using Cytos-
cape [61].

Genetic analysis: The genomes of numerous rat strains have been sequenced, including the

strains used in our study: the Wistar Kyoto (WKY/NHsd) and the Spontaneously Hypertensive

Rat (SHR/NHsd) [64]. For these strains, single nucleotide variants (SNVs) have been identified

relative to the Brown Norway (BN) founder rat strain (genome build RGSC3.4) [64]. We

downloaded the SNV data set in the VCF format from the Rat Genome Database during

December 2015 (ftp://ftp.rgd.mcw.edu/) [65]. We isolated SNVs that were found in SHR/

NHsd but not in WKY/NHsd. To test whether SHR-specific SNVs were present in the coding
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regions of the genes analyzed in this study, we downloaded the genomic coordinates for exons

of interest from the UCSC genome table browser (rn4 rat genome, https://genome.ucsc.edu/)

[66] and evaluated the presence of SNVs in these regions using BEDTools [67]. Similarly, to

examine gene-proximal regulatory regions, we used the UCSC genome table browser to

obtain the genomic coordinates of regions 2kb upstream of the transcription start sites (TSSs)

[68, 69]. We identified SNVs in these regions using BEDTools. We further examined whether

SNVs in TSS-proximal upstream regions, which are likely to contain regulatory elements [70],

could potentially dysregulate gene expression by disrupting transcription factor (TF) binding.

We considered regions ±60 bp relative to SNVs identified within 2kb of TSSs, and used the

Genomatix software (https://www.genomatix.de/) to evaluate TF binding site (TFBS) enrich-

ment [71, 72]. We identified putative TFBSs by computing Z-scores associated with the differ-

ence in counts of TF motif binding site nucleotide matches in the regions of interest as

compared to the entire genome (see analysis details in [73]). We considered TFBSs to be statis-

tically significant if Z> 2 was obtained, under the assumption that the Z scores were normally

distributed and Z = 2 corresponds to P = 0.045. Visualizations of TFBS motifs were acquired

from the Genomatix software interface.

Results

Time-series analysis of multi-organ gene expression reveals differential

dynamics underlying disease progression

We characterized the pathogenesis of physiological dysregulation in autonomic dysfunction

by examining organs anatomically integrated with the ANS. We temporally profiled the

expression of genes implicated in ANS activity, peripheral/central INF, and RAS signaling

(Fig 1A–1C). We acquired data over a span of animal ages encompassing the development of

cardiovascular and metabolic disease. Arterial hypertension is a key feature of this animal

model of autonomic dysfunction. We selected assay time points characterized by pre-

hypertension (4, 6, and 8 wk), hypertension-onset (10 and 12 wk), and robust hypertension

(16 wk) [40]. To determine whether specific samples or animals included in our study

imparted systematic biases in our results, we utilized Principal Components Analysis (PCA).

First, we reasoned that if specific samples or groups of samples were systematically biasing our

results, such samples would appear to be distinct from the bulk of our samples in the subspace

defined by the first two PCs. Such a finding was not obtained. Rather, all samples grouped

together in a large aggregate (S1C Fig). To further examine whether specific animals selectively

contributed to bias, we implemented PCA separately for each organ. We reasoned that if spe-

cific animals were biasing our results, such animals would be associated with pronounced vari-

ation across multiple organs. Our analysis showed that animals with pronounced gene

expression differences in one organ were often similar to the majority of the other animals

when considering the other organs (S1D and S1E Fig). These analyses did not suggest any

systematic sample outliers, and hence, all samples analyzed using qPCR were included in

our downstream computational analysis. Our analysis framework consisted of statistical

approaches, dynamics analysis, network modeling and analysis, and bioinformatics

(Fig 1D–1F).

To examine whether gene expression dynamics were distinct in autonomic dysfunction, as

compared to the control phenotype, we performed statistical analyses of gene expression

dynamics. We implemented the Optimal Discovery Procedure [11] to address whether the tem-

poral profiles for a given gene in a given organ differed significantly between autonomic dys-

function and control phenotypes. In this analysis, temporal profiles of gene expression were

characterized by cubic splines fitted to the data (Fig 2). The time series analysis identified
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numerous statistically significant differences in the temporal dynamics of gene expression

(Fig 2, S5 Fig). In particular, all temporal expression profiles from the brainstem showed sig-

nificant differences in autonomic dysfunction (false discovery rate <0.1, S5 Fig). Overall, these

results highlight the extensive differences in dynamics of gene expression between disease and

control phenotypes. Note the apparent gene expression differences observed at the 4 wk time

point; we address this finding in the discussion. Importantly, at time points in which the dis-

ease and non-disease phenotypes exhibited similar gene expression levels, discrepancies in the

underlying dynamic trajectories indicated divergent properties of the underlying gene regula-

tory networks.

Robustness analysis of the HMF method

We thoroughly evaluated the robustness of the HMFmethod for identifying network models

of multi-organ gene regulatory networks. We have previously shown that the HMFmethod
achieves robust performance in the identification of gene regulatory network dynamics and

structure [48]. We further evaluated the robustness of our network identification results with

respect to regression regularization parameters λ and α, structural properties of the identified

networks, and sensitivity to exclusion of data subsets.

We performed the following analyses to compare identified networks with the ‘best fit’ net-

work characterized by Jsim = min(Jsim):

1. Spearman rank correlation of interaction coefficient values

2. Fisher’s exact test for counts of coefficient signs (±1)

For each phenotype, we compared the ‘best fit’ network with many subnetworks. For these

comparisons, we evaluated Spearman rank correlation coefficients, Fisher’s exact test (FET) p-

values, and odds ratios. For the autonomic dysfunction phenotype, a total of 272 comparison

Fig 2. Divergent patterns of dynamic gene expression across organs and genes correspond to autonomic dysfunction. (A)

Expression dynamics of pro-inflammatory gene Il1b across organs and phenotypes. (B) Expression dynamics of angiotensin precursor gene

Agt. Error bars indicate standard error of the mean. Smooth curves depict natural cubic splines fit to the data.

https://doi.org/10.1371/journal.pcbi.1005627.g002
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networks were identified and we obtained Spearman rank correlation� 0.77 (P< 2.2 × 10−16,

S6A Fig left) along with FET P� 2.1 × 10−35. All odds ratios approached infinity. For the con-

trol phenotype, 289 networks met our criteria for comparison, Spearman rank correlations

exceeded 0.79 (P< 2.2 × 10−16, S6A Fig right), and the FET indicated a high degree of interac-

tion coefficient sign similarity (P� 1.0 × 10−22). The corresponding odds ratios approached

infinity due to the absence of coefficient sign discrepancies. In general, for both autonomic

dysfunction and control, with α> 0 there was a negligible influence of λ on network correla-

tions for λ* λmin (S6B Fig). While the control network correlations were generally insensitive

to the α value, the autonomic dysfunction networks showed a small degree of sensitivity to α.

Finally, the range of m values exerted a negligible influence on network correlations. This is

illustrated by the aggregates of data points, of each λ/α combination, corresponding to the ten

m value ranges assessed (S6B Fig).

We further examined the robustness of out network identification procedure, with respect

to regularization parameters λ and α, by determining three key features of network topology

[74]:

1. Average path length: < ℓ>

2. Clustering coefficient: Ci

3. Degree distribution: γ

In general, our network analyses revealed that autonomic dysfunction and control networks

were characterized by similar topological properties that were largely consistent with those of

other biological networks. We observed < ℓ>* 1.5 − 3 (S7A Fig), well within the typical

range for biological networks [75, 76]. Similarly, the clustering coefficient values Ci * 0.1 − 0.4

were consistent with previous observations (S7B Fig) [76, 77]. For our analysis of the power

law exponent, we considered only fits for which a K-S p-value of P> 0.8 was obtained, as

this was consistent with reasonable evidence supporting the power law degree distribution

(S7C Fig). The exponent values generally fell in the range of γ* 2−8. Exponent values of

2< γ< 3 are typically observed for biological networks [60], in partial agreement with our

findings. The discrepancy, however, is not surprising given that our analysis included a limited

number of functionally related genes, while global networks on the genomic scale would be

expected to have distinguishable properties. Further, the elevated values of γ we observed

are consistent with the small-world topology associated with the power law distribution. In

general, our correlation-based and graph theoretic analyses support the robustness of our sys-

tem identification approach with respect to reliability of edges identified and global network

properties.

While the findings so far support the robustness of our approach to variation in regression

parameterization, we wanted to further address whether we could identify similar edges if sub-

sets of the full network were considered. We considered subsets of both organs and genes.

Eight organ subsets were considered:

1. Adrenal gland, Brainstem

2. Brainstem, Kidney

3. Brainstem, Left ventricle

4. Kidney, Left ventricle

5. Brainstem, Kidney, Left ventricle

6. Adrenal gland, Kidney, Left ventricle
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7. Adrenal gland, Brainstem, Kidney, Left ventricle

8. Adrenal gland, Brainstem, Kidney, Liver, Left ventricle

For each organ subset, we considered four combinations of gene annotations:

1. Inflammation, Autonomic

2. Inflammation, RAS

3. Autonomic, RAS

4. Inflammation, Autonomic, RAS

Thus, we evaluated 32 separate iterations of our network identification approach, with dis-

tinct network subsets, for both autonomic dysfunction and control phenotypes. We provide

compact examples of identified network structures via parameter heatmap representations

(Fig 3A) and corresponding connectivity illustrations (S8 Fig). We considered the coefficient

data for the best fit over ten λ values and ten m-value ranges. As described above, we compared

each sub-network to the full network based on the Spearman rank correlation and FET,

including normalized interaction coefficients k 2 (−1, 1) that exceeded two standard devia-

tions from the median in both the full network and the comparison network. We also required

that at least five coefficient values meet the stated criteria for both networks. For the control

network comparisons, our comparison criteria were satisfied in all of the comparisons. Our

results showed Spearman rank correlation� 0.77 (P� 3.8 × 10−4), FET P� 8.1 × 10−5, and all

odds ratios approached infinity. For the autonomic dysfunction phenotype, all sub- networks

satisfied our comparison criteria, Spearman rank correlation� 0.71 (P� 4.2 × 10−5), FET P�
7.4 × 10−7, and all odds ratios approached infinity.

In considering our correlation-based and graph theoretic analyses across regularization

conditions, along with our correlational analyses of subnetwork comparisons, we concluded

that our approach is robust to regression parameterization and the inclusion/exclusion of

dynamic variables.

System identification yields dynamic model-based phenotype specific

regulatory networks

To examine the dysregulation of physiological homeostasis, we applied systems identification

to infer network models corresponding to the autonomic dysfunction and control phenotypes.

We utilized the HMFmethod, which entailed the application of the Hartley transform and asso-

ciated Hartley modulating functions, to infer data-driven dynamic network models. The princi-

pal advantages of the HMFmethod, in comparison to related methods, are that (1) this

approach facilitates the identification of continuous-time mathematical models of gene expres-

sion from discrete data, and (2) this approach obviates the need to compute temporal deriva-

tives of discrete data by instead utilizing a frequency domain transformation of the data [48].

The network dynamics were represented by ordinary differential equations (ODEs) that

described continuous models of gene expression. The network structures were represented by

interaction coefficients that describe either gene regulatory interactions in which one gene’s

activity promotes the activity of another gene (‘upregulation’), or interactions in which one

gene inhibits the activity of another gene (‘downregulation’, Fig 1E). We consider the terms

upregulation and downregulation to represent indirect influences in most cases, rather than

direct mechanistic influences.

The network models identified for autonomic dysfunction and control phenotypes

depicted the topology of gene-gene influences within and across organs (Fig 3A, S8 Fig). It is
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Fig 3. Data-driven model-based network identification shows that connectivity differences are associated with dynamic

differences in autonomic dysfunction. (A) Phenotype-specific network topology representations of gene-gene interaction coefficients. A

given coordinate represents the magnitude of influence of the organ-gene in the corresponding column on the organ-gene in the

corresponding row (see Fig 1E). (B) Sample dynamic profiles obtained from the simulation of the mathematical models associated with the

interactions described in (A). (C) Degree distributions for both in and out degree. These data show that differences in network topology are

associated with differential dynamics in autonomic dysfunction versus control.

https://doi.org/10.1371/journal.pcbi.1005627.g003
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noteworthy that regulatory interactions within the brainstem were relatively absent in the con-

trol phenotype as compared to autonomic dysfunction. Moreover, brainstem genes showed

extensive cross-organ influence patterns in autonomic dysfunction, whereas these interactions

were comparatively under-represented in the control (S9 and S10 Figs). It is also worth noting

that because we did not have 12 wk data for the brainstem samples the identified brainstem

networks were more prominently constrained by the earlier time points; we return to this

potential limitation in the discussion.

The gene-gene influences underlying the multi-organ network were determined by using

our time-series data to computationally infer the interaction coefficients of a mathematical

model formulated by ODEs. According to this approach, the HMFmethod was utilized to infer

phenotype-specific regulatory interactions and expression dynamics. Our simulated dynamic

models showed considerable agreement with the experimental data (Fig 3B; see S3 File for all

time series data along with dynamic model simulations). We refer to each simulated timeseries

as an “expression profile” (smooth traces in Fig 3B). Code and annotation information for

implementing our models in Matlab, R, and Systems Biology Markup Language are available

(S4, S5, S6, S7, S8, S9 and S10 Files).

To further characterize the properties of phenotype-specific networks, we evaluated the

respective degree distributions [74]. The in degree of gene x indicates the number of genes that

influence gene x (i.e., the number of non-zero values of a given row in Fig 3A). The out degree
of gene x denotes the number of genes that gene x influences (the number of non-zero values

in the column corresponding to gene x in Fig 3A). Our analysis showed that the autonomic

dysfunction network exhibits a similar though distinct degree distribution, as compared to the

control network (Fig 3C). Overall, the gene-gene influence matrices (Fig 3A) along with the

degree distribution analysis (Fig 3C) showed that differential network topology is associated

with dynamic disturbances in autonomic dysfunction that were identified by timeseries analy-

sis (Fig 2, S5 Fig).

Aberrant gene expression cascades underlie the pathogenesis of

autonomic dysfunction

Developmental processes are often characterized by coordinated waves of precisely timed gene

expression patterns [13, 78]. We hypothesized that an analogous coordinated cascade of

dynamic transcriptional patterns regulates disease progression. We investigated whether tem-

poral sequencing of gene expression corresponded to the development of autonomic dysfunc-

tion. We analyzed the sequence of peak times observed in the temporal profiles for the

autonomic dysfunction and control phenotypes (Fig 4). In this analysis, we considered genes

for which prominent expression peaks were not preceded by prominent expression valleys.

Profiles with monotonically decreasing expression levels were considered to exhibit peaks at

the initial time point of four weeks [13]. Several brainstem profiles showed peak activity at

early pre-hypertensive ages including Adrb2, Agt, Il1a, and Il10 (Fig 4A). Similarly, early peaks

were observed for kidney Tgfb1, liver Adra1b, and ventricle Th and Ccl5 (Fig 4A). By compari-

son with the control expression profiles, our analysis revealed a coordinated cascade of gene

expression activation patterns that was specific to the autonomic dysfunction phenotype

(Fig 4B).

We expanded our analysis by examining gene expression profiles with valleys in autonomic

dysfunction (S11 Fig). Similar to the results for the peak analysis, we found that disease devel-

opment was associated with a cascade of valleys that was specific to the autonomic dysfunction

phenotype. Moreover, when we completed peak and valley analyses and ordered the expres-

sion profiles according to the control phenotype, we found that distinct dynamic patterns were
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Fig 4. Autonomic dysfunction is associated with a disease-specific regulatory cascade of gene expression

patterns. (A) Gene expression profiles from the autonomic dysfunction phenotype were sorted according to the time that

the expression profile showed a peak. The analysis shows a cascade or peak times associated with autonomic

pathogenesis and corresponding hypertension development (left). Comparison with control profiles (right) show that the

autonomic dysfunction cascade is disease-specific. (B) Examples of temporal profiles with relatively early, intermediate,

and late peaks corresponding to the autonomic dysfunction (left) and control (right) phenotypes.

https://doi.org/10.1371/journal.pcbi.1005627.g004

Data-driven modeling of multi-organ networks driving physiological dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005627 July 21, 2017 20 / 39

https://doi.org/10.1371/journal.pcbi.1005627.g004
https://doi.org/10.1371/journal.pcbi.1005627


control phenotype-specific (S12 and S13 Figs). Our dynamic pattern analyses showed that dis-

tinct sets of temporal profiles exhibit early peaks/valleys, and the respective peak/valley times

were associated with various temporal offsets relative to disease onset. To summarize these

findings, we analyzed the peak and valley times for autonomic dysfunction versus control

(S14 Fig). This analysis highlighted genes that showed similar versus divergent dynamic pat-

terns of peak/valley timing with respect to phenotype (S14 Fig). Our findings indicate that dif-

ferent subsets of the multi-organ network exhibit distinct aberrations in gene expression

dynamics, thereby indicating that gene regulatory networks are re-wired under disease

conditions.

Differential gene regulatory network wiring is associated with autonomic

dysfunction

Given our finding of kinetic and network structure differences corresponding to the develop-

ment of autonomic dysfunction (Figs 3 and 4), we wanted to further examine the specific

molecular underpinnings of these differences. Divergent molecular networks have been associ-

ated with cardiovascular disease and aberrant ANS function [40, 79]. Such connectivity differ-

ences reflect re-wiring of the molecular networks that determine the gene regulatory

interaction dynamics which underly cell, tissue, and organismal physiology [80]. To interro-

gate the molecular underpinnings of disease-relevant multi-organ network modifications, we

examined the network degree distribution, differential network module structure, and specific

gene regulatory influences that were re-wired in the disease phenotype [79, 81, 82].

We analyzed the disease-specific out degree distribution and examined the ordering of out
degree across genes (Fig 5A). Genes with the highest out degrees included adrenal Ren and

brainstem Il10. Interestingly, adrenal Ren showed an pre-hypertensive valley in autonomic

dysfunction (Fig 6B) and brainstem Il10 showed a pre-hypertensive peak (Fig 7D), whereas

differential dynamics were observed for the control phenotype. These results suggest the possi-

bility that changes in adrenal Ren and brainstem Il10 are key early events that critically influ-

ence the pathogenesis of autonomic dysfunction by virtue of their respective kinetics and

substantial participation in the regulation of gene expression within and across organs.

Modules of highly interconnected subnetworks or modules of gene regulatory interactions

are critical for the regulation of biological networks [82]. We tested whether we could identify

a highly connected module in the autonomic dysfunction network that would be expected to

critically regulate autonomic (dys)function. We detected such a module (Fig 5B) which

highlighted some of the key influences of genes with high out degrees (Fig 5A). For instance,

adrenal Ren upregulated the expression of several genes including liver Adrb1, ventricular

Agtr1, and brainstem Il10. In contrast, adrenal Ren downregulated the expression of these

genes in the control phenotype (Fig 5B, right). Moreover, adrenal Ren downregulated genes

including brainstem Agtr1 in autonomic dysfunction but exerted a corresponding upregula-

tory influence in the control network (Fig 5B).

To further define the network differences between the autonomic dysfunction and control

phenotypes, we queried the networks for gene-gene interactions that were present on only one

network as well as interactions that exert opposing influences with respect to phenotype (e.g.,

interactions that are upregulating in autonomic dysfunction but downregulating in the control

network) [83]. We applied a conservative approach that identified only the interactions that

showed relatively large differences, yielding a high confidence set of network differences

(Methods, “Differential network analysis”). Our analysis revealed that a number of gene regu-

latory interactions were present exclusively in the autonomic dysfunction network (Fig 5C).

For instance, brainstem Adra1b expression dynamics influenced the temporal patterns of Agt
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Fig 5. Differential network structure in autonomic dysfunction. (A) Out degree is shown according to the degree order

of the autonomic dysfunction network. The control network exhibited a divergent out degree pattern. (B) A highly

connected module in the autonomic dysfunction network with genes that have prominent influences (columns, regulators)

and their targets (rows). Each row and column of the full network matrix (Fig 3A) contains more than 15% of non-zero

entries. The corresponding control subnetwork is comparatively sparse. (C) Diagram illustrating gene-gene interactions

that are present only in the autonomic dysfunction network. (D) Interactions that are only present in the control network. (E)

Autonomic dysfunction-specific interactions that have the opposite sign of the corresponding control interactions (e.g.,

adrenal Ren upregulates brainstem Tnf in the autonomic dysfunction phenotype but downregulates brainstem Tnf in the

control phenotype).

https://doi.org/10.1371/journal.pcbi.1005627.g005
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and Gja1 expression in the brainstem for the autonomic dysfunction phenotype. To determine

if the observed gene regulatory network differences in autonomic dysfunction could be related

to differential dynamics of gene expression, we examined the phenotype-specific brainstem

expression profiles. This analysis showed that, for the autonomic dysfunction phenotype,

Adra1b exhibited a valley following and early peak in Agt and an early valley in Gja1 expression

(Fig 6A). Further analysis showed that the decrease in Adra1b preceded decrease in Agt and

increase in Gja1. Considered together, these temporal profiles from the autonomic dysfunction

phenotype were consistent with the topological interactions amongst these brainstem genes

based on the identified network.

We next examined whether there was evidence for control–specific network interactions

(Fig 5D). Our analysis revealed that control adrenal Ren upregulated brainstem Il1b and kid-

ney Adrb1 expression. We studied the respective temporal profiles and found that a decrease

in adrenal Ren preceded a decrease in brainstem Il1b and kidney Adrb1 in the control pheno-

type, presumably through reduction of an upregulating influence (Fig 6B). In contrast, for the

autonomic dysfunction phenotype, brainstem Il1b and kidney Adrb1 dynamics showed

Fig 6. Divergent dynamics corresponding to differential network structure in autonomic disease. (A) Dynamic profiles related to

gene-gene interactions exclusive to the autonomic dysfunction network. (B) Dynamic profiles related interactions exclusive to the control

network. (C) Dynamic profiles related inverted interactions in the autonomic dysfunction phenotype as compared to the control.

https://doi.org/10.1371/journal.pcbi.1005627.g006
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increases during the pre-hypertensive and hypertension-onset time frames, respectively, which

could be related to the absence of Ren-mediated influence (Fig 6B).

We concluded our differential network analysis with an evaluation of whether we could

identify gene-gene influences that switched sign (e.g., from positive upregulation to negative

downregulation) in the autonomic dysfunction phenotype relative to the control network. Our

analysis showed evidence for inverted interactions, the majority of which involved adrenal Ren
(Fig 5E). For example, adrenal Ren upregulated Tnf but downregulated Agtr1 in the brainstem

of the autonomic dysfunction phenotype. The respective expression profiles showed that the

attenuation of adrenal Ren expression in autonomic dysfunction preceded a decrease in brain-

stem Tnf and an increase in brainstem Agtr1. These results could be due to attenuated upregu-

lation and downregulation influences of adrenal Ren on brainstem Tnf and Agtr1, respectively

(Fig 6C). Consistent with the inversion of these interactions, the temporal patterns of brain-

stem Tnf and Agtr1 expression was inverted in the control phenotype relative to that of

Fig 7. Dynamic profiles support specific network interactions in the brainstem of the autonomic dysfunction phenotype. (A)

Brainstem subnetwork for the autonomic dysfunction phenotype. (B) Interactions involving Agtr1 are highlighted. (C) Example of a three

node ‘adaptation motif’ from the autonomic dysfunction phenotype. (D) Dynamic profiles corresponding to the motif from (C) show expected

behavior only for the autonomic dysfunction phenotype.

https://doi.org/10.1371/journal.pcbi.1005627.g007
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autonomic dysfunction (Fig 6C). In sum, our studies on differential dynamics and network

structure illustrate that our integrated analyses can be applied to identify potential disease

mechanisms associated with the organ-specificity and timing of gene expression.

Network motif analysis-based identification of a core module involving

the brainstem angiotensin-II receptor transcript

Because our differential network analysis was designed to impose strict criteria for the attribu-

tion of phenotypic differences in gene-gene interactions, we elaborated on this analysis. Given

the phenotypic disparity in intra-organ gene-gene connectivity in the brainstem (Fig 3A), we

specifically focused on the brainstem subnetwork. Further, because connectivity was largely

absent in the control brainstem network (S15 Fig), we focused exclusively on the autonomic

dysfunction brainstem network (Fig 7A). In particular, we posed the question of whether we

could identify network motifs associated with the adaptation to prolonged stimuli [84]. Net-

work motifs that support adaptation have important biological functions and the motif

dynamics are readily interpret-able [84, 85]. Hence, we tested whether we could identify three

node motifs capable of adaptation in the brainstem network of the autonomic dysfunction

phenotype (Fig 7A).

Our analysis of the autonomic dysfunction brainstem subnetwork showed numerous three

node feed-forward motifs, many of which could support adaptation according to topological

considerations [84] (S16 Fig). Brainstem expression of the angiotensin-II type-1 receptor,

encoded by Agtr1, is known to exert prominent influences on ANS function. Hence, we

focused on motifs including Agtr1 (Fig 7B). We examined the expression profiles of 3-node

motifs including Agtr1. This analysis showed that it was difficult to interpret many of the

motifs in terms of the corresponding dynamic expression profiles. For instance, consider a

motif in which Dbh upregulates both Agtr1 and Ccl5, while Ccl5 downregulates Agtr1 (S17A

Fig). The similarity between the temporal profiles of Ccl5 and Agtr1 is inconsistent with the

downregulation of Agtr1 by Ccl5 (S17B Fig, left).

Many other motifs were associated with similar ambiguities regarding interpretation of the

dynamics. In contrast, a motif involving Adra1a, Il10, and Agtr1 was associated with temporal

dynamics that agreed well with predictions based on motif topology (Fig 7C). Elevated levels

of Adra1a were followed by increased levels of Il10 and decreased levels of Agtra1 (Fig 7D,

left), consistent with the respective upregulating and downregulating influences of Adra1a on

Il10 and Agtr1, as defined by the motif topology (Fig 7C). As Adra1a levels were decreased

with time, a subsequent reduction of Il10 and increase of Agtr1 was observed, consistent with

the motif structure (Fig 7C and 7D). Despite the existence of numerous feedback loops and

complex arrangements of interactions, our analyses revealed that structural features of our

multi-organ model could be related to the underlying dynamics in a context-dependent man-

ner. Taken together with our differential network analysis findings, our results suggest that

there are core modules that exhibit dynamic behavior consistent with isolated subsets of gene-

gene interactions both within and across organs.

Bioinformatic identification of regulatory elements modified by genetic

variants associated with autonomic dysfunction

Disease-specific genetic aberrations can contribute to, rather than respond to, the disease state

[86]. We tested whether autonomic dysfunction was associated with disease-specific single

nucleotide variations (SNVs) that could be related to either protein sequence or regulatory

regions of DNA that function as putative transcription factor binding sites (TFBSs). Mutations

in TFBSs have been shown to be implicated in complex disease pathology [87], and
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identification of novel regulatory SNVs could yield important insight as to the mechanistic

basis of the alterations of network dynamics and connectivity we observed in autonomic

dysfunction.

We initially focused on examining the presence of SNVs in coding regions of genes for

which expression was analyzed in our study. We identified several coding SNVs that were all

synonymous, such that the corresponding amino acid sequence remains unchanged by the

SNV. These SNVs have been previously annotated (rs8154045, rs10546839, rs198233992,

rs199262884, rs197275571, rs198523377, rs8174203) [88]. While it is possible that synonymous

SNVs could alter gene expression, the functional implications of such variants are currently

unclear [89].

Next, we determined whether 2 kb regions upstream of the transcription start sites for our

genes of interest contain SNVs in the autonomic dysfunction phenotype. The analysis revealed

several SNVs in these gene-proximal upstream regions, which are putative regulatory sites

associated with TF binding. Recent analyses have shown that SNVs either within or in proxim-

ity to TFBSs can modulate transcriptional regulation [90], with relevance to disease pheno-

types [91]. To examine whether the SNVs we identified could potentially disrupt TF binding

in gene-proximal regulatory regions, we evaluated the statistical enrichment of TFBSs in the

vicinity of the SNVs within these regions (SNV ±60 bp [71]). Our analysis revealed four SNVs

with statistically significant enrichment for TFBSs. We found that the upstream region of

Adrb1 contains a autonomic dysfunction-specific SNV within a putative binding site for

Tfap2a (Fig 8A). Similarly, we found other TFBS enriched sequences near gene-proximal

SNVs in the autonomic dysfunction phenotype (Fig 8C, S18 Fig). In addition to Tfap2a, the

analysis identified TFBSs for Ebf1 and Ybx1, with sites proximal to SNVs associated with

Adrb1, Agt, Il1b, and Tnf in the autonomic dysfunction phenotype (Fig 8C, S18 Fig). Our anal-

yses suggest that altered connectivity and dynamics in autonomic dysfunction could be related

to genetic variations that influence the expression of functionally important genes.

Fig 8. Autonomic dysfunction-specific single nucleotide variants in regulatory regions upstream of prominent genes. (A) Example

spatial relations amongst an SNV, TFBS, and transcription start site. (B) Transcription factor binding motif associated with Tfap2a along with

the respective sequences in the autonomic dysfunction and control phenotypes. A single nucleotide variation (SNV) occurs in a key element

of the putative binding site for the autonomic dysfunction phenotype. (C) Summary of TFs with bioinformatically identified TFBSs in or near

autonomic dysfunction-specific SNVs upstream and proximal to genes implicated in physiological homeostasis.

https://doi.org/10.1371/journal.pcbi.1005627.g008
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Discussion

Chronic diseases evolve over time scales from weeks to years, and involve multiple physiologi-

cal systems. Thus, co-morbidities involving impairments of multiple organs are common in

complex chronic conditions such as cardiovascular disease [1, 2]. In this study we focused on a

disease phenotype associated with autonomic dysfunction and co-morbidities including

hypertension, metabolic disorder, and cognitive impairment. Neurogenic hypertension has

also been associated with numerous disease conditions including sleep apnea, renal failure,

and heart disease [92]. We implemented a unique and novel synthesis of experimental and

computational approaches involving molecular biology, time series analysis, system identifica-

tion, dynamic network analysis, and bioinformatics. While the identification and analysis of

gene regulatory networks is common, such studies typically do not include the identification

of continuous-time models in which the network dynamics and structure are jointly described

by a single mathematical formalism [93]. Importantly, while previous studies have examined

multi-organ network dynamics at acute time scales [20, 23, 94], we focused on the pathogene-

sis of a chronic disease state. Our investigation yielded convergent lines of evidence suggesting

that aberrant brainstem function is a key initiating process in the pathogenesis of autonomic

dysfunction.

Our analyses showed that a disease-specific cascade of molecular activation patterns is asso-

ciated with dysregulated multi-organ network connectivity. Initial transients in the molecular

expression cascades were observed for brainstem genes. Further, the brainstem network asso-

ciated with autonomic dysfunction exhibited a high degree of connectivity in comparison to

the control brainstem network. The disease-specific network included autonomic, inflamma-

tory, and RAS genes. These results are consistent with the hypothesis of neurogenic hyperten-

sion, which predicts that augmented sympathetic drive promotes hypertension through

mutual interactions amongst the autonomic, immune, and RA systems [24]. Data aligned with

this hypothesis showed that hypertension is associated with the augmentation of catechol-

aminergic signaling, neuroinflammation, and RAS signaling in the brainstem [95, 96]. Our

results provide an integrative network based framework for interpreting these previous obser-

vations. Our analyses revealed putative network-level influences spanning a set of organs that

collectively maintain physiological homeostasis.

Our network analyses revealed a prominent dysregulation of renin expression dynamics in

the adrenal gland, and dysregulation of multi-organ interactions involving adrenal renin in

the autonomic dysfunction phenotype. Renin showed an expression decrease that preceded

the onset of hypertension in the autonomic dysfunction phenotype. This result suggests the

possibility that the disinhibition of adrenal renin targets, coincident with the decrease in renin

expression, is implicated in the pathogenesis of autonomic dysfunction. However, as noted

below, our current study did not conclusively establish whether specific molecular events were

strictly causal for subsequent regulation of molecular expression or physiological function.

Nevertheless, our hitherto unobserved findings suggest that local RAS signaling in the adrenal

gland may elicit systemic endocrine signaling to regulate gene expression in multiple organs.

For instance, our network analysis showed that adrenal renin downregulated the brainstem

type-1 angiotensin receptor (AT1R) expression the autonomic dysfunction phenotype, but

upregulated AT1R expression in the control phenotype. Combined with the data showing a

decrease of adrenal renin expression during the development of autonomic dysfunction, our

analyses suggest that adrenal renin downregulation may drive the onset of autonomic dysfunc-

tion through the disinhibition of AT1R expression in the brainstem.

We identified that specific brainstem network motifs involving the transcript encoding

AT1R, an important target of antihypertensive therapeutics [97, 98]. Our analyses suggested

Data-driven modeling of multi-organ networks driving physiological dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005627 July 21, 2017 27 / 39

https://doi.org/10.1371/journal.pcbi.1005627


that AT1R is prominently influenced the α1 adrenergic receptor and IL-10 in the hypertensive

brainstem. Both the α1 adrenergic receptor and IL-10 have been previously implicated in auto-

nomic influences on blood pressure control [99, 100]. Our results suggest that, even though

AT1R could be regulated in a complex manner by a number of regulatory influences, α1

adrenergic receptor and IL-10 may regulate sympathetic outflow through prominent influ-

ences on AT1R expression. The examination of the intracellular pathways coupling α1 adren-

ergic receptor and IL-10 to AT1R expression could improve our understanding of the

molecular and cellular mechanisms of neurogenic hypertension, and could elucidate novel

approaches for therapeutic treatments based on an understanding of network topology and

molecular expression dynamics. For example, network-based pharmacological interventions

directed at the regulation of AT1R prior to hypertension could prevent or slow disease pro-

gression [101].

We utilized available sequencing data from a number of rat strains [64] and performed a

bioinformatic analysis to determine putative regulatory nucleotide variations between the dis-

ease and control rat strains utilized in our experiments. Our analysis identified several novel

disease-specific nucleotide variants in promoter-proximal regions upstream of genes impli-

cated in autonomic, inflammatory, and RAS functions. We found that genes encoding ango-

tensinogen, TNFα, IL-1β, and the β1 adrenergic receptor were associated with upstream

nucleotide variants either in or adjacent to putative binding sites for transcription factors

including Ebf1 and Tfap2. Single nucleotide variants in the vicinity of a TFBS could modulate

transcription in a disease-specific manner. Hence, our data suggest that regulatory variants

could influence the network dynamics and structure underlying autonomic dysfunction. In

the context of our differential network analysis, all of these genes appeared to be differentially

regulated in autonomic dysfunction. For example, adrenal angiotensinogen was shown to be

activated by adrenal renin in autonomic dysfunction. However, our network identification

analysis did not reveal evidence for the activation of adrenal angiotensinogen by adrenal renin

in the control phenotype.

The transcription factor early B-cell factor-1 (Ebf1), also known as olfactory-1 (Olf1), was

associated with a putative binding site adjacent to the disease-specific nucleotide variation

upstream of the angiotensinogen and IL-1β genes. Ebf1 is reported to be expressed in several

CNS regions and has been implicated in CNS function and development [102–105]. This fac-

tor has also been implicated in B-cell development and peripheral inflammation [106–108].

Furthermore, Ebf1 may exert a role in the pathophysiology of multiple sclerosis [109]. How-

ever, Ebf1 function has not been previously assessed in the context of cardiovascular disease,

hypertension, or neuroinflammation. Both our data and the available published research sup-

port a role for Ebf1 in the mechanisms underlying autonomic dysfunction, thereby suggesting

a novel hypothesis for a genetic contribution to autonomic dysfunction development.

Given our results, and the established connection between genetic variations and gene

expression dynamics [110, 111], our novel hypotheses regarding the genetic correlates of auto-

nomic dysfunction suggest a genetic basis for dynamic network modulation that can be lever-

aged for the design of therapeutic approaches. The translational relevance of animal model

findings could be established by identifying whether overlapping cis-regulatory variants are

both linked to human disease through genome wide association studies and implicated in reg-

ulation of organ-specific gene expression based on expression quantitative trait locus analysis

[112]. Because inherited genetic variations can only be causes, as opposed to consequences, of

gene expression dynamics, identifying genetic variations that regulate organ-specific func-

tional processes could facilitate the identification of novel therapeutics [113]. It has been

argued that incorporating information from human genetics in the drug discovery pipeline

could mitigate against compound attrition [114]. Focused studies of animal models—which
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allow for the investigation of pathogenesis and temporal dynamics in multiple organs—could

be combined with human genetics data to identify novel biomarkers therapeutic targets with

enhanced potential.

Because our inferred signed directed networks exhibit extensive feedbacks, we make no

explicit assumptions regarding the causal influences of a given network node. Each gene con-

tinuously regulates and is regulated by other genes. Compensatory responses to the initiating

pathological events could be epiphenomena, or could further propagate regulatory influences

on pathogenesis. Disambiguating the time-dependent regulatory control of homeostasis and

response to disease-initiating events will be critical for defining the mechanisms of pathogene-

sis. Such issues can be addressed computationally through simulated perturbations or sensitiv-

ity analyses [115], and experimentally using pharmacological interventions or conditional

knockouts [116]. It will also be critical to define the coupling between molecular events

(e.g., gene/protein expression variations) and features of systemic homeostasis. Moreover, its

is generally important to establish the role of initial conditions, independent of other regula-

tory features such as network structure, in coordinating the evolution of a system’s behavior

[117].

It is noteworthy that apparent gene expression differences between the autonomic dysfunc-

tion and control conditions were observed at the earliest time point of our study, which pre-

ceded disease initiation. Hence, it could be argued that molecular network and gene

expression trajectory differences between the autonomic dysfunction and control phenotypes

could reflect genetic differences that are unrelated to disease pathogenesis. Because the auto-

nomic dysfunction model utilized in our study recapitulates several features of human hyper-

tension and metabolic dysfunction, the supposition that our findings reflect pathogenic

mechanisms is not inconsistent with available evidence. It is a general shortcoming of cur-

rently available research on human hypertension that there are not more prospective longitu-

dinal data available to delineate temporal mechanisms [24, 38]. It is generally a problem that

the temporal trajectories and variability thereof across human populations is not well under-

stood for complex diseases [118]. However, extensive focused analyses are required to disam-

biguate the relative interactions amongst genetics, molecular network structure, expression

dynamics, physiological processes, and disease manifestation.

Conclusion

Our process dynamics-based approach presents a novel experimental and analytic paradigm

for the dissection of mechanisms underlying disease pathogenesis. Our analyses yielded several

hypotheses for novel mechanisms of autonomic dysfunction development. Our dynamic and

network analyses are based on a mathematical model that can be further utilized for simula-

tions and computational analyses directed to unravel new disease mechanisms and optimize

treatment strategies [94, 119]. Our data-driven model can also serve as a basis for identifying

putative biomarkers for prediction of disease onset [20]. Future directions include refining the

temporal resolution of the time series analysis, examining a broader range of ages, and utilizing

an expanded repertoire of molecular and functional assays. Investigation into whether network

interactions undergo re-wiring throughout the progression of disease [76] will be important

for understanding the mechanisms underlying how therapeutic interventions can restore path-

ological molecular networks to a healthy state [120]. Targeted perturbations will be critical to

confirming mechanistic influences of gene regulatory interactions. In sum, our novel inte-

grated approach can be more broadly applied to examine the developmental dynamics of

numerous chronic disease states. Such analyses are expected to yield novel mechanistic knowl-

edge that can facilitate the identification of novel biomarkers and therapeutic treatment
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strategies based on the structure and dynamics of multi-organ interactions underlying organis-

mal homeostasis.
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in comparison with the stability levels for individual genes. (C) PCA was applied to the entire

data set (all genes/organs) and plotted along with the variability accounted for by the first two

PCs. The smooth circle shows the 99% confidence interval for the mean of a bi-variate Gauss-

ian distribution characterized by the displayed data. Note that this interval contains the major-

ity of the data, and the few value outside of this interval are in close proximity. (D) PCA was

implemented separately for each organ. Specific colors refer to the same animals in all plots.

For instance, the three gray dots in the Adrenal PCA plot refer to three animals that are rela-

tively distant from the other animal samples in this analysis. However, observation of the PC

projections of these specific animals in the PCAs applied to the data from other organs shows

that these animal samples are not imposing consistent biases. Panel (E) shows sample expres-

sion data labeled as in (D) for animal samples marked in the Adrenal and Ventricle PCAs.

(TIF)

S2 Fig. Robustness of regularized regression-based system identification. Error between

simulated gene expression levels and experimentally measured mean expression values varies

minimally with respect to regularization parameters. Log error is plotted with respect to the

log λ value for a range of α levels.

(TIF)

S3 Fig. Evaluation of sign consistency of interaction coefficients across multiple iterations

of system identification. The equation illustrates the computation of the odds ratio based on

the contingency table.

(TIF)

S4 Fig. Differential network analysis of changes in gene-gene interactions in autonomic

dysfunction. Black bars correspond to edges considered to be differentially regulated in auto-

nomic dysfunction.

(TIF)

S5 Fig. Timeseries analysis of gene expression dynamics. Many genes showed significantly

different expression patterns between autonomic dysfunction and control phenotypes

(q< 0.1, -log q> 1).

(TIF)

S6 Fig. Correlational analysis of system identification robustness. High correlations (> 0.7)

between identified networks were observed over an expansive range of regularization parame-

ter space. (A) Spearman rank correlation coefficient histogram and (B) Correlation values as a

function of regularization parameter values for λ and α.

(TIF)

S7 Fig. Graph theoretic analysis of network identification robustness. (A) Path length, (B)

clustering coefficients, and (C) power law exponents are shown for a range of regularization

parameters.

(TIF)

S8 Fig. Graphical representations of network interactions. (A) Phenotype-specific multi-

organ networks. (B) Subnetworks including interactions between the brainstem and adrenal

gland.

(TIF)

S9 Fig. Network illustrating influences of the brainstem on the other organs in the auto-

nomic dysfunction phenotype. Note that the nodes are organized as in S10 Fig for comparison.

(TIF)
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S10 Fig. Network illustrating influences of the brainstem on the other organs in the control

phenotype. Note that the nodes are organized as in S9 Fig for comparison.

(TIF)

S11 Fig. Organized sequence of gene expression valleys in autonomic dysfunction. Expres-

sion profiles were organized according to the sequence of valleys observed for the autonomic

dysfunction phenotype (left).

(TIF)

S12 Fig. Organized sequence of gene expression peaks is disrupted in the autonomic dys-

function phenotype. Expression profiles were organized according to the sequence of peaks

observed for the control phenotype (left).

(TIF)

S13 Fig. Organized sequence of gene expression valleys is disrupted in the autonomic dys-

function phenotype. Expression profiles were organized according to the sequence of valleys

observed for the control phenotype (left).

(TIF)

S14 Fig. Dynamics comparison for autonomic dysfunction and control phenotypes.

Genes are shown that exhibit (A) peaks in both phenotypes, (B) peaks in autonomic dysfunc-

tion but valleys for the control phenotype, (C) valleys for autonomic dysfunction but peaks

for the control phenotype, and (D) valleys for both phenotypes. Straight black lines corre-

spond to the unity line. (E) Conceptual overview of the profiles observed in panel (A, peaks

on both axes) and panel (D, valleys on both axes). The top left quadrant of panel (E) shows

two sets of profiles: in the first, the control profile shows an early peak while the disease pro-

file shows a late peak; in the second, the control shows an early valley and the disease profile

shows a late valley. Respectively, these two profiles in the upper left quadrant of panel (E)

correspond to the upper left quadrants of panels (A) and (D). These sets of profiles corre-

spond to preserved waveforms but temporal shifts between the expression in control versus

disease phenotypes. Panel (F) can be interpreted as for panel (E). Each quadrant of (F) exhib-

its pairs of dynamic profiles corresponding to either panel (B, top pair) or (C, bottom pair).

The extreme off-diagonal profiles depict instances in which the dynamics patterns are

inverted for disease relative to control.

(TIF)

S15 Fig. Control brainstem network. This representation is shown for comparison with main

text Fig 7A.

(TIF)

S16 Fig. Autonomic dysfunction brainstem feedforward motifs. All three node feedforward

motifs were identified by motif analysis.

(TIF)

S17 Fig. Example three node network with inconsistent kinetics. (A) Network motif and (B)

simulation traces.

(TIF)

S18 Fig. Autonomic dysfunction-specific SNVs in regulatory regions. Motif signatures for

transcription factors and spatial proximities between TFBSs, TSSs, and SNVs.

(TIF)
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107. Somasundaram R, Prasad MAJ, Ungerbôck J, Sigvardsson M. Transcription factor networks in B-cell

differentiation link development to acute lymphoid leukemia. Blood. 2015; 126:144–152. https://doi.

org/10.1182/blood-2014-12-575688 PMID: 25990863

108. Bhatty M, Fan R, Muir WM, Pruett SB, Nanduri B. Transcriptomic analysis of peritoneal cells in a

mouse model of sepsis: confirmatory and novel results in early and late sepsis. BMC Genomics. 2012;

13:509. https://doi.org/10.1186/1471-2164-13-509 PMID: 23009705

109. Martı́nez A, Mas A, de las Heras V, Arroyo R, Fernández-Arquero M, de la Concha EG, et al. Early B-

cell Factor gene association with multiple sclerosis in the Spanish population. BMC Neurology. 2005;

5:19. https://doi.org/10.1186/1471-2377-5-19

110. Francesconi M, Lehner B. The effects of genetic variation on gene expression dynamics during devel-

opment. Nature. 2014; 505:208–211. https://doi.org/10.1038/nature12772 PMID: 24270809

111. Ackermann M, Sikora-Wohlfeld W, Beyer A. Impact of natural genetic variation on gene expression

dynamics. PLoS Genetics. 2013; 9:e1003514. https://doi.org/10.1371/journal.pgen.1003514 PMID:

23754949

112. Franzén O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar HA, et al. Cardiometabolic risk loci

share downstream cis- and trans-gene regulation across tissues and diseases. Science (New York,

NY). 2016; 353(6301):827–830. https://doi.org/10.1126/science.aad6970

113. Schadt EE, Björkegren JLM. NEW: network-enabled wisdom in biology, medicine, and health care.

Science Translational Medicine. 2012; 4(115):115rv1. https://doi.org/10.1126/scitranslmed.3002132

PMID: 22218693

114. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nature

Reviews Drug Discovery. 2013; 12(8):581–594. https://doi.org/10.1038/nrd4051 PMID: 23868113

115. Cook D, Ogunnaike BA, Vadigepalli R. Systems analysis of non-parenchymal cell modulation of liver

repair across multiple regeneration modes. BMC Systems Biology. 2015; 9. https://doi.org/10.1186/

s12918-015-0220-9 PMID: 26493454

Data-driven modeling of multi-organ networks driving physiological dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005627 July 21, 2017 38 / 39

https://doi.org/10.1097/CRD.0b013e3181b18e03
http://www.ncbi.nlm.nih.gov/pubmed/19690472
https://doi.org/10.1038/npp.2010.225
https://doi.org/10.1038/npp.2010.225
https://doi.org/10.1016/0002-9149(86)90716-2
http://www.ncbi.nlm.nih.gov/pubmed/2869681
https://doi.org/10.1186/s12974-015-0306-8
https://doi.org/10.1186/s12974-015-0306-8
http://www.ncbi.nlm.nih.gov/pubmed/25935397
https://doi.org/10.1097/HJH.0b013e3280102bff
https://doi.org/10.1097/HJH.0b013e3280102bff
http://www.ncbi.nlm.nih.gov/pubmed/17143193
https://doi.org/10.1016/j.bbrc.2011.09.108
http://www.ncbi.nlm.nih.gov/pubmed/21971554
https://doi.org/10.1016/j.neuroscience.2008.01.090
http://www.ncbi.nlm.nih.gov/pubmed/18403128
https://doi.org/10.1242/dev.00166
https://doi.org/10.1242/dev.00166
http://www.ncbi.nlm.nih.gov/pubmed/12421703
https://doi.org/10.1523/JNEUROSCI.5569-08.2009
https://doi.org/10.1523/JNEUROSCI.5569-08.2009
https://doi.org/10.1074/jbc.M113.491936
http://www.ncbi.nlm.nih.gov/pubmed/24174531
https://doi.org/10.1182/blood-2014-12-575688
https://doi.org/10.1182/blood-2014-12-575688
http://www.ncbi.nlm.nih.gov/pubmed/25990863
https://doi.org/10.1186/1471-2164-13-509
http://www.ncbi.nlm.nih.gov/pubmed/23009705
https://doi.org/10.1186/1471-2377-5-19
https://doi.org/10.1038/nature12772
http://www.ncbi.nlm.nih.gov/pubmed/24270809
https://doi.org/10.1371/journal.pgen.1003514
http://www.ncbi.nlm.nih.gov/pubmed/23754949
https://doi.org/10.1126/science.aad6970
https://doi.org/10.1126/scitranslmed.3002132
http://www.ncbi.nlm.nih.gov/pubmed/22218693
https://doi.org/10.1038/nrd4051
http://www.ncbi.nlm.nih.gov/pubmed/23868113
https://doi.org/10.1186/s12918-015-0220-9
https://doi.org/10.1186/s12918-015-0220-9
http://www.ncbi.nlm.nih.gov/pubmed/26493454
https://doi.org/10.1371/journal.pcbi.1005627


116. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, et al. Timing of expression of the core

clock gene Bmal1 influences its effects on aging and survival. Science Translational Medicine. 2016;

8(324):324ra16–324ra16. https://doi.org/10.1126/scitranslmed.aad3305 PMID: 26843191

117. Aldridge BB, Gaudet S, Lauffenburger DA, Sorger PK. Lyapunov exponents and phase diagrams

reveal multi-factorial control over TRAIL-induced apoptosis. Molecular Systems Biology. 2014;

7(1):553–553. https://doi.org/10.1038/msb.2011.85

118. Anderson WD, Vadigepalli R. Modeling cytokine regulatory network dynamics driving neuroinflamma-

tion in central nervous system disorders. Drug Discovery Today: Disease Models. 2017;.

119. Meyer-Hermann M, Figge MT, Straub RH. Mathematical modeling of the circadian rhythm of key neu-

roendocrine-immune system players in rheumatoid arthritis: a systems biology approach. Arthritis and

Rheumatism. 2009; 60:2585–2594. https://doi.org/10.1002/art.24797 PMID: 19714618

120. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using

gene-expression signatures to connect small molecules, genes, and disease. Science (New York,

NY). 2006; 313:1929–1935. https://doi.org/10.1126/science.1132939
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