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Graft-versus-host disease-free, relapse-free survival (GRFS) is a useful composite end point

that measures survival without relapse or significant morbidity after allogeneic hematopoietic

stem cell transplantation (allo-HSCT). We aimed to develop a novel analytical method that

appropriately handles right-censored data and competing risks to understand the risk for

GRFS and each component of GRFS. This study was a retrospective data-mining study on a

cohort of 2207 adult patients who underwent their first allo-HSCT within the Kyoto Stem Cell

Transplantation Group, a multi-institutional joint research group of 17 transplantation centers

in Japan. The primary end point was GRFS. A stacked ensemble of Cox Proportional Hazard

(Cox-PH) regression and 7 machine-learning algorithms was applied to develop a prediction

model. The median age for the patients was 48 years. For GRFS, the stacked ensemble model

achieved better predictive accuracy evaluated by C-index than other state-of-the-art

competing risk models (ensemble model: 0.670; Cox-PH: 0.668; Random Survival Forest: 0.660;

Dynamic DeepHit: 0.646). The probability of GRFS after 2 years was 30.54% for the high-risk

group and 40.69% for the low-risk group (hazard ratio compared with the low-risk group:

2.127; 95% CI, 1.19-3.80). We developed a novel predictive model for survival analysis that

showed superior risk stratification to existing methods using a stacked ensemble of multiple

machine-learning algorithms.

Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for hematolog-
ical malignancies, bone marrow (BM) failure syndromes, and immunodeficiency syndromes. Although the
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Key Points

� Stacked ensemble of
machine-learning algo-
rithms could establish
more accurate
prediction model for
survival analysis than
existing methods.

� Stacked ensemble
model can be applied
to personalized
prediction of HSCT
outcomes from
pretransplant
characteristics.
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improvement in outcome has been confirmed by several studies, 2
serious risk factors remain for poor outcome: transplantation-related
morbidity and mortality (TRM) and progression of diseases. Intensive
treatment to overcome disease progression often leads to severe
graft-versus-host disease (GVHD) and TRM; on the other hand,
reduced-intensity conditioning can reduce TRM but increase relapse
rate.1-4

Age, disease stage, donor type, and donor recipient gender combi-
nations were reported to influence survival, nonrelapse mortality
(NRM), and relapse risk. These pretransplant risk factors were iden-
tified from hypothesis-driven variable selection and validation using
conventional statistical analysis. Various predictive scoring systems
have also been established based on these findings. Hematopoietic
cell transplantation–specific comorbidity index is used for assess-
ment of pretransplant comorbidities.5 The European Group for
Blood and Marrow Transplantation risk score consists of 6 pretrans-
plant risk factors associated with relapse and GVHD.6 These scor-
ing systems are used for clinical decision-making for HSCT
indication or donor selection.

Machine learning is a field of computer science in which computer
algorithms that have the ability to improve from experience without
being explicitly programmed are studied. Machine-learning methods
provide statistical calculations without the assumptions needed for tra-
ditional statistical analysis, so machine-learning–based prediction
gives novel insights into clinical medicine. To predict prognosis of
HSCT patients, early studies demonstrated the feasibility of machine-
learning algorithms for binary outcomes, such as decision tree–based
learning, artificial neural networks, and support vector machines.7-11

Recent reports applied machine-learning methods developed for
right-censored data with or without competing risks for HSCT out-
comes.12-14 Machine-learning methods are a useful way to predict
time-dependent outcomes without assumptions, but how to improve
predictive accuracy is still an ongoing discussion.

In this study, we developed a novel prediction model that appropriately
handles right-censored data and competing risks using ensemble
learning to predict composite end point of GVHD-free, relapse-free sur-
vival (GRFS).15

Materials and methods

Population

All transplantation data in Japan are annually collected at the Japa-
nese Data Center for Hematopoietic Cell Transplantation. The Kyoto
Stem Cell Transplantation Group (KSCTG), which is a multi-center
group of 17 transplantation centers in Japan, received transplant
data from the Japanese Data Center for Hematopoietic Cell Trans-
plantation. From the registry database of KSCTG, we extracted clini-
cal data for 2207 patients who underwent their first HSCT for
hematologic malignancies between 1996 and 2016 in KSCTG hos-
pitals. The study was conducted according to the Declaration of
Helsinki and was approved by the institutional review boards at
Kyoto University Hospital and all other participating centers.

End point and definitions

The primary end point was GRFS, and the secondary end points
were overall survival (OS), relapse, NRM, and GVHD. GRFS was
defined as the time from transplant to the last date of follow-up or
event of grade III-IV acute GVHD, extensive chronic GVHD, relapse,

or death.16 Relapse was defined based on the morphological and
clinical evidence of disease activity, and NRM was defined as the
time to death without relapse. Acute and chronic GVHD were diag-
nosed and graded using standard criteria.17,18 The intensity of the
conditioning regimen was classified as myeloablative if total body
irradiation .8 Gy, oral busulfan $9 mg/kg, IV busulfan $7.2 mg/kg,
melphalan .140 mg/m2, or thiotepa $10 mg/kg was used in the
conditioning regimen; otherwise it was classified as reduced inten-
sity.19 We assessed disease risk using the refined disease risk
index (DRI) established by the Center for International Blood and
Marrow Transplant Research.20 The refined DRI does not establish
adult T-cell leukemia/lymphoma (ATL) as an individual risk group.
We regarded complete remission or partial remission ATL as inter-
mediate risk and advanced ATL as very high risk. We categorized
high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6
rearrangements into the same group with Burkitt lymphoma due to
its poor prognosis. DRI was retrospectively calculated based on the
available registry data about diagnosis, chromosomal alterations,
and staging before transplantation. Disease stage was defined as
previously described.21

Outline of statistics

The following is a summary of the analysis outline: (1) preprocessing-
data quality assurance and imputations of missing values, (2) con-
struction of each prediction model, (3) development of a stacked
ensemble model, and (4) assessment of the predictive performance
of a stacked ensemble model in accordance with the Type 2a (ran-
dom split-sample development and validation) of prediction model
studies covered by the Transparent Reporting of a prediction model
for Individual Prognosis Or Diagnosis statement.22 Missing values are
imputed with median value of the nonmissing data for categorical var-
iables and with mean value of the nonmissing data for continuous
variables. A dummy variable is also generated, indicating whether the
data were missing for that particular patient.

Establishment of stacked ensemble model

A stacked ensemble of multiple machine-learning algorithms for
right-censored data was applied to develop a model. Formally, an
ensemble model is a model that combines the predictions from mul-
tiple trained models. A stacked ensemble model is a variation of the
ensemble method and uses an algorithm that takes the outputs of
submodels as inputs and learns the optimal way to combine the
input predictions.23 Predictions are first generated using different
algorithms, including cause-specific Cox Proportional Hazard (Cox-
PH), Random Survival Forest, Dynamic DeepHit, ADABoost,
XGBoost, Extra Tree Classifier, Bagging Classifier, and Gradient
Boosting Classifier.12,24-31 A meta-model is subsequently trained,
using these predictions as inputs, to generate the final prediction.
Data were randomly split into the training set (70% of the dataset)
and the validation set (30%). The model was trained and tested
using a fivefold cross-validation on the training set. All models were
trained using 26 input variables available from the registry data con-
taining information on a patient’s underlying disease, donor source,
and patient and donor’s demographic characteristics. Patient sex,
source of stem cells, and diagnosis (Table 1) and variables (supple-
mental Table 1) were treated as categorical variables. Patient age
and time from diagnosis to transplant (Table 1) and variables (sup-
plemental Table 2) were treated as continuous variables.
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Cox model, Random Survival Forest, and Dynamic DeepHit can
directly handle competing risks. ADABoost, XGBoost, Extra Tree
Classifier, Bagging Classifier, and Gradient Boosting Classifier
belong to the class of multi-output tree-based ensemble algorithms.
To allow these models to handle competing risks, we use the First
Hitting Time model, which assumes that the individual hazard func-
tion is a form-fixed stochastic process.32 We then use these multi-
output tree-based algorithms to estimate the probability density
function of the first hitting time. In particular, for each patient, the
predicted value ŷ is a vector: ŷ ¼ ½ŷ1, . . . , ŷTmax, ŷTmaxþ1�, where Tmax
is the longest observed time and the time unit used in our study is
30 days (duration from ŷt to ŷtþ1). Given an individual with the
covariate x, these models estimate ŷt with the estimated probability
P̂ðt,di j xÞ, where di denotes the occurrence of the event of interest.

SHapley Additive exPlanations (SHAP) values were calculated for the
stacked ensemble model. First proposed by Lundberg and Lee,33

SHAP is a united approach to explain the output of any machine-
learning or deep-learning model. SHAP is based on Shapley values,
a concept from game theory that measures the average contribution
of a feature value to the prediction across all possible combinations
(or coalitions) of other features. The pseudocode to calculate the
SHAP value for feature X can be described as follows: (1) Get all
subsets of features S that do not contain X. (2) Compute the effects
of adding X to all those subsets on the predictions. (3) Average over
all the contributions to compute the marginal contribution.

We used the Cox-PH model as the benchmark case and evalu-
ated the models’ performance using inverse probability censoring

Table 1. Patient characteristics

Variable

Total Training set Validation set

Pn 5 2207 (%) n 5 1765 (%) n 5 442 (%)

Age group at transplant, y .327

#30 339 (15.4) 265 (15.0) 74 (16.7)

.30-40 340 (15.4) 277 (15.7) 63 (14.3)

.40-50 480 (21.7) 376 (21.3) 104 (23.5)

.50-60 631 (28.6) 509 (28.8) 122 (27.6)

.60 417 (18.9) 338 (19.2) 79 (17.9)

Sex .572

Male 925 (41.9) 734 (41.6) 191 (43.2)

Female 1282 (58.1) 1031 (58.4) 251 (56.8)

Source of stem cells .279

BM 1349 (61.1) 1061 (60.1) 288 (65.2)

Peripheral blood 356 (16.1) 292 (16.5) 64 (14.5)

BM 1 peripheral blood 7 (0.3) 6 (0.3) 1 (0.2)

Cord blood 495 (22.4) 406 (23.0) 89 (20.1)

Time from diagnosis to transplant .707

#6 mo 793 (35.9) 638 (36.1) 155 (35.1)

.6 mo 1392 (63.1) 1108 (62.8) 284 (64.3)

Uncertain/missing 22 (1.0) 19 (1.1) 3 (0.7)

Year of transplant .441

1996-2006 718 (32.5) 581 (32.9) 137 (31.0)

2007-2016 1489 (67.5) 1184 (67.1) 305 (69.0)

Diagnosis .652

AML 868 (39.3) 703 (39.8) 165 (37.3)

ALL 371 (16.8) 296 (16.8) 75 (17.0)

ATL 130 (5.9) 102 (5.8) 28 (6.3)

CML 124 (5.6) 94 (5.3) 30 (6.8)

MDS 342 (15.5) 274 (15.5) 68 (15.4)

Other leukemia 31 (1.4) 23 (1.3) 8 (1.8)

MPN 38 (1.7) 28 (1.6) 10 (2.3)

NHL/HL/other lymphoma 294 (13.3) 236 (13.4) 58 (13.1)

MM/PCD 9 (0.4) 9 (0.5) 0 (0.0)

Follow-up of survivors

Median time, month (range) 52.5 (0.5-244.6) 57.6 (0.5-244.6) 58.6 (0.7-235.4) .743

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CML, chronic myeloid leukemia; HL, Hodgkin lymphoma; MDS, myelodysplastic syndrome; MM, multiple myeloma;
MPN, myeloproliferative neoplasm; NHL, non-Hodgkin lymphoma; PCD, plasma cell disease.
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weighted version of the C statistic (C-index) for single-risk models
and the truncated C-index for competing-risk models.34,35 We
used the restricted cubic splines approach to calculate the
smoothed calibration curves and compute the integrated calibra-
tion index (ICI) and the median of the absolute difference between
the predicted survival probabilities and smoothed survival frequen-
cies (E50) to assess the calibration of different survival models.36

We first used the model to calculate the risk score for each patient
in the validation set and get the median risk score. The high-risk
group was defined as patients with a risk score above this median
risk score whereas the low-risk group was defined as patients with
a risk score below this median risk score. We also validated the
final risk scores in the validation set using the Cox regression
model or Fine-Gray competing risk model.

Other statistical considerations

Descriptive statistics were used to summarize patient characteris-
tics. Comparisons of intergroup distributions were performed with
the x-square test or Fisher’s exact test for categorical variables and
the Kruskal-Wallis test for continuous variables. The probability of
GRFS and OS was estimated using the Kaplan-Meier method.
Cumulative incidences for relapse, NRM, and GVHD were calcu-
lated using the cumulative incidence function to account for com-
peting risks.37 Competing events were death without relapse for
relapse, relapse for NRM, and death without GVHD for acute and
chronic GVHD. P values , .05 were considered significant. All sta-
tistical analyses were performed with Python version 3.7 (Python
Software Foundation, Fredricksburg, VA) and R version 3.6.1 (The
R Foundation for Statistical Computing, Vienna, Austria).

Results

Patient characteristics

We included and evaluated 2207 adult patients who underwent
their first allogeneic HSCT for hematologic malignancies (Table 1;
supplemental Tables 1 and 2). The median follow-up period for sur-
vivors was 52.5 months (range 0.5-244.6) after HSCT. The most
common indication of HSCT was acute myeloid leukemia (n 5 868;
39.3%) followed by acute lymphoblastic leukemia (n 5 371;
16.8%), myelodysplastic syndrome (n 5 342; 15.5%), and mature
lymphoid neoplasms (lymphoma/myeloma; n 5 294; 13.3%). The
graft source was mainly BM (61.1%) followed by cord blood
(22.4%) and peripheral blood (16.1%). Frequency of patients trans-
planted with HLA 1 antigen-mismatched patients was higher in the
validation cohort than in the training cohort (22.2% vs 15.8%; P 5

.011). There was no significant difference between the training
cohort and the validation cohort other than the number of HLA anti-
gen mismatches.

Comparison of predictive models

Prediction models were generated using a stacked ensemble con-
taining 1 classical statistical analysis, 1 deep-learning model, and 6
machine-learning algorithms (Figure 1). The novel stacked ensemble
model achieved a higher C-index for GRFS (C-index: 0.670) than
other competing risk models in the validation dataset (Table 2; Cox-
PH: 0.668; Random Survival Forest: 0.660; XGBoost: 0.602; Gra-
dient Boosting: 0.630; Component-wise Gradient Boosting: 0.663;
Dynamic DeepHit: 0.646). This model also showed the highest
C-index for OS (C-index: 0.763), relapse (C-index: 0.793), NRM

Dataset

...ADABoost
Random
survival
forest

Dynamic
DeepHit

Death
risk
1

Meta
model

Death
risk

Relapse
risk

GVHD
risk

Relapse
risk
1

GVHD
risk
1

Death
risk
8

Relapse
risk
8

GVHD
risk
8

Death
risk
1

Relapse
risk
1

GVHD
risk
1

Figure 1. Stacked ensemble model of machine-learning algorithms. Scheme of meta-model construction using stacking as an ensemble method.
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(C-index: 0.777), grade II-IV acute GVHD (C-index: 0.656), and
chronic GVHD (C-index: 0.583). We also calculated C-index for
patients who received transplant between 2007 and 2018 in valida-
tion dataset and confirmed that the stacked ensemble model
showed the highest C-index (supplemental Table 3; GRFS: 0.844;
OS: 0.716; relapse: 0.819; NRM: 0.770; grade II-IV acute GVHD:
0.536; chronic GVHD: 0.606). The stacked ensemble model
showed the smallest ICI for GRFS (0.023), OS (0.210), relapse
(0.044), grade II-IV acute GVHD (0.017), and chronic GVHD
(0.258) and achieved the smallest E50 other than for GRFS and
chronic GVHD, for which the stacked ensemble model showed the
second smallest E50 (Table 3; supplemental Figure 1). Compared
with other state-of-the-art competing risk models, the stacked
ensemble model achieves higher C-index and smaller ICI for GRFS,
OS, relapse, NRM, and GVHD, and we used this model for feature
extraction and prediction.

Feature extraction and explanation

Using the stacked ensemble model, we calculated SHAP feature
importance values for 26 variables that are used for model construc-
tion and ranked them according to their ability to discriminate
between high- and low-risk patients. The SHAP value could explain
the contribution of each variable to the estimate of GRFS for each
patient (Figure 2A). Mean absolute value of the SHAP values for
each variable could show the overall influence of each variable to
model construction and their importance (Figure 2B). Characteris-
tics about donors, including cell source, related donors or unrelated

donors, and siblings or nonsibling relatives, were the most influential
factors for GRFS. On the other hand, disease status before trans-
plantation was the most influential factor for OS, as shown by high
mean absolute SHAP value of DRI and disease stage.

Validation

To validate the risk scores, we applied this model to the validation
set. Based on the prediction score for each patient derived from the
stacked ensemble model, we classified the final risk scores in the
validation set into 2 groups: (1) high risk (above median) and (2)
low risk (below median) for each of the risk categories. The proba-
bility of GRFS after 1 year and 2 years was 44.80% and 30.54%
for the high-risk group and 57.47% and 40.69% for the low-risk
group, respectively (Figure 3; hazard ratio [HR] compared with the
low risk: 2.127; 95% CI, 1.19-3.80). The OS at 5 years was
52.58% for the high-risk group and 80.54% for the low-risk group
(HR: 2.67; 95% CI, 2.02-3.52). Cumulative incidence of relapse at
5 years was 34.78% for the high-risk group and 13.61% for the
low-risk group (Figure 4; HR compared with the low risk: 2.72;
95% CI, 1.85-3.99). The cumulative incidence of NRM at 5 years
was 22.13% for the high-risk group and 12.92% for the low-risk
group (HR compared with the low risk: 1.947; 95% CI, 1.24-2.74).
The cumulative incidence of grade II-IV acute GVHD at 100 days
was 46.61% for the high-risk group and 30.02% for the low-risk
group (HR compared with the low risk: 1.66, 95% CI, 1.22-2.27).
The cumulative incidence of chronic GVHD at 5 years was 35.20%
for the high-risk group and 22.50% for the low-risk group (HR:
1.97; 95% CI, 1.44-2.70).

Discussion

We successfully developed a novel prediction model for GRFS using
the stacked ensemble of classical statistical analysis and multiple
machine-learning algorithms. This study showed for the first time the
improvement of predictive accuracy for GRFS using ensemble learn-
ing applicable for right-censored medical record data.

Our ensemble model is designed to handle right-censored data, a
form of missing data problem specific for survival analysis. As a
result, its outputs can be directly compared with classical algorithms
such as Cox-PH or Fine-Gray model. Ignoring censored patients
could potentially give a bias to the outcome. The longer the follow-
up time, the larger this bias due to an increasing number of
censored patients. Shouval et al13 used Random Survival Forest to
analyze right-censored data and successfully established an umbilical

Table 2. Performance of each prediction model according to

C-index in the validation cohort

Risk category GRFS OS Relapse NRM aGVHD cGVHD

Cox-PH 0.668 0.740 0.770 0.664 0.651 0.564

Fine-Gray competing risk model NA NA 0.719 0.577 0.582 0.516

Random Survival Forest 0.660 0.745 0.788 0.761 0.580 0.577

XGBoost 0.602 0.712 0.756 0.543 0.540 0.573

Gradient Boosting 0.630 0.602 0.754 0.453 0.590 0.505

Component-wise Gradient Boosting 0.663 0.652 0.774 0.585 0.464 0.570

Dynamic DeepHit 0.646 0.710 0.730 0.691 0.537 0.555

Stacked Ensemble Model 0.670 0.763 0.793 0.777 0.656 0.583

aGVHD, grade II-IV acute GVHD; cGVHD, chronic GVHD; NA, not applicable.

Table 3. Comparison of the Integrated Calibration Index and the median of the absolute difference between the predicted survival

probabilities and smoothed survival frequencies for each prediction model

Integrated calibration index (EC50)

Risk category GRFS OS Relapse aGVHD cGVHD

Cox-PH 0.139 (0.151) 0.283 (0.248) 0.055 (0.029) 0.218 (0.212) 0.263 (0.208)

Random Survival Forest 0.142 (0.147) 0.365 (0.372) 0.048 (0.029) 0.173 (0.178) 0.345 (0.346)

XGBoost 0.027 (0.007) 0.393 (0.381) 0.176 (0.163) 0.265 (0.264) 0.306 (0.265)

Gradient Boosting 0.050 (0.047) 0.438 (0.449) 0.159 (0.129) 0.254 (0.256) 0.309 (0.275)

Component-wise Gradient Boosting 0.061 (0.068) 0.397 (0.395) 0.171 (0.145) 0.261 (0.264) 0.324 (0.318)

Dynamic DeepHit 0.054 (0.059) 0.405 (0.409) 0.152 (0.153) 0.106 (0.108) 0.319 (0.320)

Stacked Ensemble Model 0.023 (0.017) 0.210 (0.194) 0.044 (0.018) 0.017 (0.018) 0.258 (0.226)

EC50, the median of the absolute difference between the predicted survival probabilities and smoothed survival frequencies.

2622 IWASAKI et al 26 APRIL 2022 • VOLUME 6, NUMBER 8



cord blood transplantation risk score that could predict OS and
RFS at 2 years in patients with acute leukemia who received cord
blood transplantation. In addition, our model can analyze data with
multiple competing risks and can be modified to include time-
varying variables. Finally, by combining the outputs of various
machine-learning methods, our ensemble model outperforms not
only classical algorithms but also the most cutting-edge machine-
learning models for survival analysis.

Stacking is an ensemble method that combines multiple heterogenous
algorithms into single better predictive model. Sachs et al developed a

stacking method with a pseudo-observation approach for ensemble of
various machine-learning algorithms handling right-censored data.38 A
diverse set of initial classifiers is the fundamental aspect for establish-
ing an accurate ensemble model, so our ensemble model used
8 algorithms, including statistical analysis and tree-based and neural-
network–based learning for meta-model construction.

One of the fundamental advantages of the machine-learning–based
data mining approach is unbiased feature selection and prediction;
on the other hand, its hidden nature of model construction and
prediction makes it difficult for us to interpret the contribution of
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variables toward end points.9 Although this novel ensemble method
provides superior prediction to conventional statistical analysis and
each machine-learning algorithm, stacked-ensemble lost the inter-
pretable tree-like structure of decision tree–based learning. There-
fore, we introduced SHAP value for explanation of model prediction.
In addition to the influence of each variable on model construction,
SHAP value could extract and clearly visualize the contribution of
each variable for personalized prediction of individual patients.

In addition to the hidden nature of model construction, the criteria
for selection of machine-learning algorithms were often unclarified.
A previous report using Japanese Transplant Unified Management
Program created a prediction model derived from alternating deci-
sion tree based on its highest value of area under the curve.11 Our
ensemble model showed higher C-index value than Cox-PH or
state-of-the-art machine-learning algorithms for GRFS and OS. Vali-
dated by these findings, we used the stacked ensemble meta-
model for further analysis.

GRFS was initially developed by Holtan et al to incorporate 2 major
posttransplantation complications, relapse and GVHD, into a single
end point.15 GRFS is useful for understanding ongoing morbidity due
to GVHD that could not be interpreted by OS or RFS. For example,
previous studies found that BM donors showed higher GRFS than
peripheral blood stem cell donors in matched-sibling donors although
BM and peripheral blood stem cell did not show difference in terms of

OS or RFS. However, composite end points using right-censored data
only measure the time to the first event, and GRFS cannot replace OS,
RFS, or GVHD. Magenau et al reported that chronic GVHD had less
modulating effect on OS than grade III-IV acute GVHD or relapse.39

This is partly explained by the association of graft-versus-leukemia
effect with chronic GVHD.40 On the other hand, chronic GVHD has
tremendous negative impact on quality of daily life after transplantation
even under mild to moderate symptoms.41 To understand the efficacy
of the stacked ensemble model on different end points after transplan-
tation, we also analyzed OS, relapse, NRM, grade II-IV GVHD, and
chronic GVHD, respectively. For all end points, the stacked ensemble
model showed better predictive accuracy than other models, which val-
idated the versatility and robustness of this model.

Several study limitations should be noted. One of the limitations is that
this model is not completely free from hypothesis in terms of feature
selection. We used 26 variables accessible in the registry for estab-
lishment of prediction models but might still ignore unknown or unavail-
able risk factors. For example, center effect was reported to be
associated with HSCT outcome, but existence of unknown factors
was suggested.42 Okamura et al14 developed a web application tool
for OS, progression-free survival, relapse, and NRM after HSCT in a
single center and provided their source code for in-house prognosis
prediction using random survival forest. A center-specific prediction
model might be able to overcome institution-associated bias, but
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standardization of prediction algorithms is still required. In addition to
limited number of variables, some of the variables were categorized
into subgroups based on clinically established criteria. For example,
although HLA mismatch is categorized based on the number of mis-
matched antigens or alleles, each mismatch causes different immuno-
logical interaction between donor cells and recipient cells.21,43-46

Because we categorized patients into 6 groups according to the num-
ber of mismatched antigens or alleles, we could not consider their mis-
matched locus. Another example is DRI. We stratified pretransplant
disease condition using DRI or disease status, which does not reflect
recent progress in clinical implementation of genome sequencing
technology.47,48 Nazha et al established prediction model that could
integrate clinical and mutational variables into a single model using
Random Survival Forest.49 Gandelman et al successfully stratified
chronic GVHD severity using computational workflow made of visuali-
zation of high-dimensional single-cell data based on the t-Distributed
Stochastic Neighbor Embedding algorithm, self-organizing maps, and
marker enrichment modeling.50 Wider range of data collection and cat-
egorization of variables using machine learning–based clustering meth-
ods might contribute to unbiased variable selection and calculation.

Sample size also limited risk stratification of our model. In this study,
we used C-index for evaluation and comparison of the predictive
accuracy of prediction models, and the novel meta-model showed
highest value for C-index. However, due to the small size of the vali-
dation set, we only classified the final risk scores into 2 groups.
Moreover, these findings should be interpreted carefully from the
viewpoint of bias in this registry data derived from known and
unknown factors. Our dataset did not include the information about
posttransplant cyclophosphamide usage, especially in haploidentical
HSCT, maintenance therapy, and prophylaxis for fungal or viral infec-
tion. Other unknown factors, including center effect and different
distribution of HLA alleles and haplotypes, might be influential in
transplant outcomes. Further validation of the stacked ensemble
model using different registry data is warranted.

In conclusion, we improved machine-learning predictive accuracy of
GRFS using a stacked ensemble meta-model feasible for right-
censored medical record data. This model provides direct and
versatile application of machine-learning algorithms for time-to-event
analysis. A user-friendly Web tool for personalized pretransplant pre-
diction of HSCT outcome is now being constructed. Although exter-
nal validation using larger data with more detailed patient information
is required for individualized prediction and treatment, this ensemble-
learning model will be useful for risk stratification of morbidity and
mortality after HSCT from pretransplant characteristics.
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