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Abstract Confidence in a decision is the belief, prior to feedback, that one’s choice is correct. In the
brain, many decisions are implemented as a race between competing evidence-accumulation processes.
We ask whether the neurons that represent evidence accumulation also carry information about whether
the choice is correct (i.e., confidence). Monkeys performed a reaction time version of the random dot
motion task. Neuropixels probes were used to record from neurons in the lateral intraparietal (LIP)
area. LIP neurons with response fields that overlap the choice-target contralateral to the recording
site (Tin neurons) represent the accumulation of evidence in favor of contralateral target selection. We
demonstrate that shortly before a contralateral choice is reported, the population of Tin neurons contains
information about the accuracy of the choice (i.e., whether the choice is correct or incorrect). This
finding is unexpected because, on average, Tin neurons exhibit a level of activity before the report that is
independent of reaction time and evidence strength—both strong predictors of accuracy. This apparent
contradiction is resolved by examining the variability in neuronal responses across the population of Tin
neurons. While on average, Tin neurons exhibit a stereotyped level of activity before a contralateral choice,
many neurons depart from this average in a consistent manner. From these neurons, the accuracy of the
choice can be predicted using a simple logistic decoder. The accuracy of the choice predicted from neural
activity reproduces the hallmarks of confidence identified in human behavioral experiments. Therefore,
neurons that represent evidence accumulation can also inform the monkey’s confidence.

Introduction
Choice, reaction time, and confidence are often considered the three pillars of choice behavior; a
comprehensive model of decision-making should account for all three. However, the most prevalent
models of binary decision making, Signal Detection Theory (SDT) and the Drift-Diffusion Model (DDM),
can only account for two. In SDT, the choice depends on the sign of the difference between a sample of
evidence and a decision criterion; confidence is a monotonically increasing function of the magnitude of
that difference (Galvin et al., 2003; Kepecs and Mainen, 2012). Because SDT frames the decision as
a categorization of one sample of evidence, SDT cannot account for reaction times,other than to posit
that evidence closer to criterion might lead to slower choices, linked to uncertainty; (e.g., Carpenter and
Williams, 1995). In the DDM, the decision is made by accumulating many samples of evidence over time
(Ratcliff, 1978; Palmer et al., 2005; Shadlen et al., 2006; Ratcliff et al., 2016). The decision ends when
the accumulated evidence exceeds an upper or lower bound. The model naturally accounts for choice
and reaction time, but lacks a straightforward explanation of confidence. This is because at the moment
of choice, the state of accumulated evidence is uninformative about the accuracy of the choice.

In the brain, simple binary decisions are implemented as a race between two competing evidence-
accumulation processes (Gold and Shadlen, 2007; Hanks et al., 2015). The first process to reach
an upper bound terminates the decision and determines the choice and reaction time (RT). A case in
point is the random dot motion task, in which monkeys make binary decisions about the net direction
of random dot motion and communicate their decision with a saccadic eye movement. Neurons in
the lateral intraparietal area (LIP) and associated brain regions represent the accumulation of noisy
momentary motion evidence for and against each response alternative. The decision process is well
captured by race models of decision-making, which generalize drift-diffusion models by allowing the
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competing evidence-accumulation processes to be imperfectly anticorrelated (Wang, 2002; Usher and
McClelland, 2001).

In addition to being supported by neurobiology, race models offer the leading explanation of choice,
reaction time, and confidence in simple binary decisions, guided by the accumulation of evidence.
Confidence is often modeled under the balance of evidence hypothesis, which postulates that confidence
is a function of the difference, at the moment of choice, between the evidence accumulated by the winning
race and the losing race (Vickers, 1979). Since the evidence accumulated by the winning race at the
moment of choice is at its upper bound, confidence is determined by the state of the accumulation that
has not reached its upper bound (i.e., the losing race). The greater the distance is from its upper bound,
the weaker the accumulated evidence is for the losing alternative, and the stronger the confidence is for
the chosen alternative. Models that embrace the balance of evidence hypothesis are able to account for
several behavioral regularities of confidence, including the relationship between confidence and evidence
strength, reaction time, and accuracy (Vickers 1979; Kiani et al. 2014; van Den Berg et al. 2016; Brus
et al. 2021; Smith and Vickers 1988; Hellmann et al. 2023; Moreno-Bote 2010; Rolls et al. 2010; Wei
and Wang 2015; Vivar Lazo 2024; Vickers et al. 1985, but see Zylberberg et al. 2012; Comay et al.
2023).

We tested a key prediction of confidence models based on the balance of evidence hypothesis, namely,
that the state of the losing race contains more information about the accuracy of the choice than the state
of the winning race. We reanalyzed data from a recent study in which Steinemann, Stine et al. (2022)
used high-density Neuropixels probes to record the spiking activity of a broad population of neurons in the
lateral intraparietal area (LIP) of the macaque brain. The monkeys made simple decisions about the net
direction—left or right—in a stochastic random dot motion display. LIP neurons with response fields that
overlap the choice-target contralateral to the recording site (Tin neurons) represent the accumulation of
evidence in favor of contralateral target selection. On trials where the monkey chooses the contralateral
target (i.e., the one within the neurons’ response field), the Tin neurons represent the winning race,
whereas when the monkey chooses the ipsilateral target, the same neurons represent the losing race.
We use the single-trial population response of Tin neurons to predict the accuracy of the choice.

Contrary to the prediction of balance of evidence models of confidence, we found that the winning
race contains more information about the accuracy of the choice than the losing race. This finding is
unexpected because the average firing rate of Tin neurons is known to reach a stereotyped level just
before the monkey issues a saccadic eye movement to the contralateral choice target. The key insight
is that the average firing rate of of the Tin neurons belie considerable heterogeneity of Tin responses
across the population. We find that not all Tin neurons reach a common level of activity at the time
of choice. Instead, some Tin neurons maintain a trace of evidence strength, while others maintain a
representation of elapsed decision time. From the Tin neurons, it is possible to decode the probability that
the choice is correct, and this probability exhibits hallmarks of confidence identified in human behavioral
experiments.

Results
Task, behavior and neurophysiological recordings
We analyzed multineuron recordings previously published by Steinemann, Stine et al. (2022). In this
study, two rhesus monkeys (Macaca mulatta) reported their decisions about the net direction of motion
in a dynamic random dot display. The monkeys indicated their choices by redirecting their gaze from
a central fixation point to a left or right choice target. Monkeys were allowed to indicate their decision
when ready, thus giving rise to two behavioral measures, choice and reaction time1 (RT) (Fig. 1A). The
degree of difficulty was controlled by the motion coherence, defined as the probability that a dot displayed
at time 𝑡 will be redrawn in the direction of motion when replotted 40 ms later, as opposed to being
randomly repositioned. On each trial, motion coherence was selected pseudorandomly from the list
{±0%,±3.2%,±6.4%,±12.8%,±25.6%,±51.2%}. The sign of the motion coherence indicates the direction
(positive for leftward). For the 0% coherence motion, the sign indicates the random direction to be
rewarded on that trial. The proportion of leftward choices increases with motion coherence, and reaction

1we use reaction time and choice-response time synonymously, as both refer to the same latency: from onset of the random motion
to the onset of the saccadic eye movement used to report the choice. We prefer reaction time to disambiguate behavioral and neural
‘response’ by reserving response for the latter category.
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time shortens as a function of motion strength (the absolute value of motion coherence) (Fig. 1B). On
about half of the trials, a brief (100 ms) pulse of motion, equivalent to a small change in motion coherence,
was presented at a random time.

The relationship between choice, reaction time, and motion coherence is well captured by a race model
in which two drift-diffusion processes compete until one of them reaches a threshold or bound (Fig. 1C).
The first process that reaches its upper bound determines the choice and the decision time. The reaction
time is the sum of the decision time and a non-decision time, which is assumed to be Normally distributed
and independent of decision time. In our instantiation of the race model, the drift-diffusion processes
cannot fall below a lower reflective bound, which realizes the constraint that firing rates are non-negative
(Zylberberg and Shadlen, 2016).

In addition to the main task, the monkeys also made visually–guided and memory-guided saccade to
peripheral targets after variable delays (see Methods) (Gnadt and Andersen, 1988; Mazzoni et al., 1996;
Colby et al., 1996). In the memory-guided saccade task, a target is briefly presented in the periphery while
the monkey maintains its gaze on a fixation point. When the fixation point is extinguished, the monkey
makes an eye movement to the remembered location of the target. The task served to identify, post
hoc, neurons that display persistent activity as the monkey plans a saccadic eye movement towards the
choice target contralateral to the recording site. These neurons are referred to as Tin neurons. Monkeys
also performed a passive motion viewing task in which they were rewarded for maintaining fixation while
viewing random dot motion (higher motion strengths only; see Methods).

The neural data from Steinemann, Stine et al. (2022) and Stine et al. (2023) were recorded from area
LIP using high-density NHP-neuropixels probes. Between 54 and 203 single neurons were recorded
simultaneously over eight recording sessions (mean = 135.5 neurons/session) (Fig. 1E). Steinemann,
Stine et al. (2022) showed that Tin neurons represent the drift-diffusion signal associated with stochastic
choice and reaction time on single trials. On average, Tin neurons tend to ramp with positive slope on
trials where the monkey chooses the target in the neurons’ response field, and this slope is steeper
as a function of motion strength (Fig. 1F)(Roitman and Shadlen, 2002). Importantly, the population of
Tin neurons reach a common level of activity ∼100 ms before a saccadic eye movement towards the
contralateral choice target. These observations conform to the predictions of the race model illustrated
in Fig. 1C, under the assumption that the Tin neurons represent the accumulation of evidence for a
contralateral choice, and that another (unobserved) population of neurons represents the accumulation
of evidence for the ipsilateral (rightward) choice (e.g., Usher and McClelland, 2001; Wong and Wang,
2006).

Choice accuracy decoded from LIP population activity
We investigate whether Tin neurons, which represent the accumulation of noisy evidence, or drift-diffusion,
are also predictive of whether the choice would be the correct one and thus capable of informing the
monkey’s confidence (or reward prediction). Our approach is to ascertain whether the population activity
shortly before the choice is reported was predictive of whether the choice would be correct or incorrect.
We train a logistic decoder to predict the accuracy of each contraversive (i.e., left) choice from the activity
of the Tin neurons:

logit[𝑝correct] = 𝜷𝐜𝐨𝐧𝐟
⊤�̃�𝐓𝐢𝐧 + 𝛽0, (1)

where 𝜷𝐜𝐨𝐧𝐟 is a column vector of regression coefficients with as many elements as there are Tin neurons in
the session, and 𝛽0 is a bias term. �̃�𝐓𝐢𝐧 contains the standardized (i.e., z-scored) number of spikes emitted
by each Tin neuron in the time interval between 150 ms and 50 ms before the choice report; we refer to
this time interval as the presaccadic window throughout the manuscript. The model is fit separately for
each session and choice category, left or right. The logistic decoder outputs a probability that quantifies
the confidence the decision-maker should have in the choice. The model is fit separately for each session
using 10-fold cross-validation. Specifically, we divide the data into 10 groups of approximately equal
number of trials, using one group as a prediction set, and the remaining 9 for training; we repeat this
process 10 times so that confidence estimates for every trial are based on a prediction.

We use a receiver operating characteristic (ROC) analysis to assess how effectively the probability correct,
predicted with Eq. 1, distinguishes between correct and incorrect choices. The approach is illustrated in
Fig. 2A. The figure shows the predicted probability correct for trials with a contraversive (i.e., left) choice.
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Figure 1. Large-scale recordings from LIP in a decision-making task
(A) Sequence of events in the random dot motion task. After the monkey fixates on a central spot, two choice targets
are displayed, followed, after a random delay, by the random dot motion stimulus. The monkey is free to report its
decision when ready by making a saccadic eye movement to one of the choice targets. The monkey is rewarded for
choosing the left or right target for leftward or rightward motion, respectively. On noise-only (0% coherence motion)
trials a reward is given with probability 1

2 . (B) Psychometric functions for the two monkeys studied by Steinemann,
Stine et al. (2022). The average reaction time (top), and proportion of leftward choices (bottom) are plotted as a
function of motion coherence. Positive and negative coherence indicate leftward and rightward motion, respectively.
The solid lines are fits of the race model depicted in the next panel. (C) Sketch of the race model. The random dot
motion stimulus provides sequential samples of momentary evidence for right minus left and left minus right, which
are accumulated as a function of time to render two drift-diffusion processes. The samples are idealized as draws
from Normal distributions with means proportional to motion coherence. The samples are anticorrelated (𝜌 = −0.7).
The first process that reaches its positive bound terminates the decision and resolves the choice and decision time. A
lower non-absorbing bound constrains the values of the negative accumulation. The reaction time is the sum of the
decision time and a normally distributed non-decision time. (D) Schematic representation of the Neuropixels probe
used to record neural activity from LIP in the right hemisphere (both monkeys). (E) Raster plot showing the spiking
activity of 191 neurons simultaneously recorded during a representative trial. The red and blue vertical lines indicate
the onset of motion and the choice report, respectively. (F) Average response of Tin neurons aligned with motion
onset (left) and saccade initiation (right). Motion strength is indicated by color (legend). Solid lines indicate trials with
leftward motion and dashed lines indicate trials with rightward motion. Only correct trials are included. The gray
shading indicates the time between 150 ms and 50 ms before saccade initiation; most of our analyses focus on this
time period.
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Figure 2. Confidence inferred from the population of Tin neurons
(A) Confidence estimates obtained with Eq. 1, shown separately for factually correct (blue) and incorrect (red) choices.
These distributions are used to construct an ROC (inset) and to calculate the area under the ROC (AUCconf; gray).
Confidence estimates from the eight sessions are pooled. Only trials with contralateral (left) choices are included. (B)
Area under the confidence ROC calculated from trials in which the ipsilateral (abscissa) or contralateral (ordinate)
target was chosen. Each data point corresponds to a different session. Error bars indicate s.e. (bootstrap).

Correct and incorrect decisions are indicated in blue and red, respectively. The area under the ROC
curve (AUCconf) is a measure of how well the predicted probability correct for each trial discriminates
correct from incorrect choices (Fig. 2A, inset). More specifically, it is the probability that given two choices,
one correct and one incorrect, the predicted probability correct is greater for the correct choice. Using this
simple metric we can test the prediction of the balance of evidence hypothesis mentioned above.

We compared the AUCconf derived from the logistic model fit separately for contralateral and ipsilateral
choices. As mentioned, Tin neurons represent the winning race for contralateral choices and the losing
race for ipsilateral choices. Therefore, according to the balance of evidence hypothesis, the Tin neurons
should contain more information about choice accuracy when monkeys select the ipsilateral (right) target,
than when they select the contralateral (left) target. Fig. 2B shows the AUCconf for each of the 8 recording
sessions. Contrary to the balance of evidence hypothesis, Tin neurons contain more information about
choice accuracy when the monkey chooses the contralateral target (i.e., when the Tin neurons represent
the winning race) than when it chooses the ipislateral target (𝑝 = 0.008, one-tailed t-test).

As mentioned earlier, this finding is surprising because the Tin neurons appear to reach a stereotyped
level of activity before a contralateral choice, independent of motion strength and reaction time (Fig. 1F)
(Roitman and Shadlen, 2002). Since motion strength and reaction time are strong predictors of accuracy,
one would not expect Tin neurons to contain information about choice accuracy in the presaccadic
window. We will address this tension after bolstering the claim that the choice accuracy that we infer
from neural activity replicates the behavioral hallmarks of confidence identified in human psychophysical
experiments.

Choice accuracy inferred from neural activity reproduces behavioral features of confi-
dence
The monkeys did not report their confidence, so we cannot establish a correlation between the putative
confidence signal and behavior. Instead, we ask whether a monkey exploiting this signal would mimic the
regularities of confidence reports observed in humans performing a task similar to the one performed by
the monkeys. van Den Berg et al. (2016) asked human participants to perform a variant of the random dot
motion task in which they reported choice and confidence (high/low) simultaneously by moving a handle
to one of four targets (Fig. 3A). Data from a representative participant is shown in Fig. 3A. The data show
that: (𝑖) confidence is greater for correct than for incorrect decisions, even when controlling for motion
strength (Fig. 3A, left), (𝑖𝑖) for correct decisions, confidence increases as a function of motion strength
(Fig. 3A, left), (𝑖𝑖𝑖) for incorrect decisions, confidence also increases as a function of motion strength
(Fig. 3A, left), (𝑖𝑣) confidence decreases as a function of reaction time (for both correct and incorrect
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decisions) (Fig. 3A, center), (𝑣) for a given reaction time, confidence is lower for incorrect decisions than
for correct decisions (Fig. 3A, center), (𝑣𝑖) for a given reaction time, confidence increases as a function
of motion strength, even when controlling for accuracy (Fig. 3A, right).

The putative confidence signal reproduces these observations. To parallel the design of van Den Berg
et al. (2016), we thresholded the putative confidence signal (obtained with Eq. 1) using a criterion set
such that the proportion of high-confidence choices is equal to the proportion of high-confidence reports
in the human experiment (61% high-confidence choices). Without any free parameters, the confidence
signal qualitatively reproduces all the behavioral hallmarks of confidence observed by van Den Berg et al.
(2016) (Fig. 3B). The similarity is not a consequence of the thresholding step in the analysis. The same
qualitatve reproduction of the human regularities are also present without thresholding (Fig. S2).

In short, the population activity of Tin neurons measured just before a contralateral choice report contains
information bearing on whether the choice is correct or incorrect. The confidence signal varies with motion
strength, reaction time, and accuracy, in a similar manner to explicit confidence reports. Importantly, it is
not necessary to consider the state of the losing race or the decision time to reproduce the behavioral
features of confidence; the necessary information is contained in the population response of the Tin
neurons.

Because of the tight link between confidence and reaction time (e.g., Henmon, 1911), we reasoned
that the population activity of Tin neurons just before the response should contain information about
RT. We fit a regression model to the reaction times for trials with a contralateral choice, again using the
spike counts of the Tin neurons in the presaccadic window (Eq. 8). If all Tin neurons reach a stereotyped
level of activity before the response, then there would be no information about reaction time just before
the choice. Contrary to this prediction, we were able to distinguish longer from shorter reaction time
(relative to the median) reliably from the population activity of Tin neurons (AUC= 0.85 ± 0.02; mean ± s.e.
across sessions). Thus, shortly before the choice report Tin neurons contain information about the time
required to make the decision. This information likely contributes to the ability of the accuracy decoder to
reproduce the behavioral features of confidence that are thought to require an explicit representation of
decision time.

Heterogeneity of Tin responses underpins the representation of choice accuracy
That Tin neurons contain information about the accuracy of a contralateral choice seems incompatible
with the observation that these neurons achieve a stereotyped state at the end of the decision. However,
this characterization is adduced from firing rates averaged over many trials and many neurons (e.g.,
Roitman and Shadlen, 2002; Steinemann, Stine et al., 2022). We thus considered the possibility that
individual Tin neurons might contain information about choice accuracy that is not apparent in the firing
rate averages.

To test this idea, we used a combination of linear regression and k-means clustering. The linear
regression sets out to explain the spike counts in the presaccadic window for each Tin neuron on each
trial, using three variables: the motion coherence, choice, and reaction time, plus an offset (Eq. 9).
We fit the model independently for each neuron and applied k-means to assign the neurons to three
clusters. This classification was based on the regression coefficients associated with the three variables
(Fig. 4A).

The Tin neurons cluster into groups that exhibit distinct response characteristics. Figure 4B shows the
firing rates of neurons within each cluster, calculated within the presaccadic window, as a function of
reaction time and split by motion strength. The analysis includes only correct contralateral choices. Just
before the choice is reported, neurons in cluster 1 (Tk=1

in ) exhibit higher firing rates for strong motion and
faster choices. The traces corresponding to different motion strengths do not converge when conditioned
on reaction time, indicating that the activity of these neurons at the moment of choice is informative
about both reaction time and motion strength. In contrast, neurons in cluster 2 (Tk=2

in ) appear to be largely
unaffected by reaction time or motion strength, consistent with expectations for neurons that reach a
stereotyped level of activity prior to response. For the neurons in cluster 3 (Tk=3

in ) the activity increases
strongly with reaction time and is only slightly influenced by motion strength.

We repeated the clustering analysis using only the odd-numbered trials or only the even-numbered trials
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Figure 3. Choice accuracy inferred from neural activity reproduces behavioral signatures of confidence
(A) Random dot motion task with simultaneous choice and confidence reports (from van Den Berg et al., 2016). The
two left and right targets are used to indicate leftward and rightward motion. In alternating blocks, either the top two
targets or the bottom two targets were used to indicate high-confidence choices, and the remaining two targets were
used to indicate low-confidence choices. Data correspond to a representative participant from van Den Berg et al.
(2016) (N = 9,024 trials; proportion of high-confidence choices: 61%). Data from the other participants in van
Den Berg et al. (2016) are shown in Fig. S1. left. Proportion of high confidence choices as a function of motion
strength, shown separately for correct and incorrect choices. Conditions with fewer than 4 trials were excluded.
center. Proportion of high confidence choices as a function of reaction time, shown separately for correct and
incorrect choices. Trials were sorted by reaction time and smoothed with a boxcar filter (N = 300 trials). right.
Proportion of high confidence choices as a function of reaction time, for correct trials only, plotted separately for each
motion strength. Trials were sorted by reaction time and smoothed with a boxcar filter (N = 300 trials). (B) Same
analyses as in panel A, but for the Steinemann, Stine et al. (2022) data, using as confidence the probability of correct
inferred from the population of Tin neurons using logistic regression (Eq. 1). The continuous confidence estimate was
thresholded so that the proportion of trials with high confidence was the same as in the behavioral data (panel A). A
version with non-thresholded confidence estimates is included as Fig. S2.
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Figure 4. Distinct response characteristics of Tin neurons
The Tin neurons vary in their representation of motion coherence, reaction time and choice. We distinguished three clusters, based on a linear regression
model of these explanatory variables on each Tin neuron’s response. (A) Regression coefficients associated with choice, motion coherence, and reaction
time for each neuron. Each filled symbol shows the 3-tuple of one neuron. Color shows the cluster membership assigned by K-means procedure instructed
to identify three clusters. Open circles are the 2D projections of the regression coefficients. The number of Tin neurons in each cluster is shown in
parenthesis. (B) The average firing rate of the neurons within each cluster, calculated within the presaccadic window, is plotted as a function of reaction
time. Traces are calculated separately for each motion strength, including only correct contralateral choices. Traces are smoothed with a boxcar filter (N =
500 trials). (C) Average response of Tin neurons for each cluster. Same conventions as in Figure 1F. (D) Regression coefficients associated with motion
coherence, obtained from a linear regression using motion coherence (plus an offset) to explain the spike counts (z-scores) emitted by each neuron in the
presaccadic window. The colors indicate the cluster to which each neuron belongs. The histogram of regression weights (right) is well described by a
Normal distribution (thick black trace) with a mean and standard deviation of -0.17 and 1.2, respectively.
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from each session. The regression weights assigned to motion coherence, RT and choice were highly
consistent across both analyses (Fig. S3). Applying k-means to the coefficients derived from odd and
even trials, we observed that most neurons (89%) were assigned to the same cluster in both realizations,
indicating that the neuron clustering is robust.

Fig. 4C compares and contrasts the response properties of the three clusters. The figure shows the
firing rate of neurons within each cluster, aligned to motion onset and reaction time. Neurons from all
three clusters are choice selective, as can be seen by comparing the dashed and solid lines. Neither
Tk=1

in nor Tk=3
in neurons reach a common level of activity prior to the response. Tk=1

in neurons do not show
the ramping activity usually associated with Tin neurons. Instead, the traces for the different motion
coherences are largely parallel to each other, similar to the representation of momentary evidence in
upstream visual areas (e.g., Britten et al., 1992). For contralateral choices, Tk=3

in neurons appear to
increase their firing rate more rapidly than Tk=2

in or Tk=1
in neurons. The firing rate of Tk=3

in is higher just
before choice in difficult (i.e., low motion strength) decisions compared to easier ones.

The latency to choice selectivity was similar across clusters. We calculated this latency independently for
each neuron using the CUSUM method (Ellaway, 1978; Lorteije, Zylberberg et al., 2015). The average
latency to direction selectivity was 0.22±0.03, 0.22±0.02 and 0.23±0.03 s from motion onset for neurons
in clusters 1, 2, & 3, respectively. No significant differences in latency were observed between clusters
(Fig. S4) (𝑝>0.3 for all three pairwise comparisons, t-test).

The heterogeneity of neuronal responses across the population of Tin neurons can also be observed by
analyzing individual neurons, without clustering. We used a linear regression model to characterize the
relationship between motion coherence and the neuronal activity during the presaccadic window. In the
regression model, motion coherence for each trial (plus an offset) was used to explain the standardized (z-
scored) spike counts in the presaccadic window. Only trials with a contralateral choice were included. The
regression coefficient associated with motion coherence varies substantially between neurons (Fig. 4D).
For some neurons, activity increases with motion coherence (𝛽coh>0), while for others, it decreases
(𝛽coh<0). The values of 𝛽coh are approximately normally distributed (Fig. 4D). Because the mean is close
to zero, the activity of Tin neurons just before the response appears to be unaffected by motion coherence
when averaged over many neurons (Fig. 1F; Roitman and Shadlen 2002).

The heterogeneity of neuronal responses is not evident in control tasks
The memory-guided saccade task was used to identify the Tin neurons and historically to elucidate the
their hallmark visual, memory and perisaccadic responses (Gnadt and Andersen, 1988; Mazzoni et al.,
1996; Colby et al., 1996). We wondered whether the signs of the heterogeneity we identified in the
random dot motion task would be evident in the memory-guided saccade task. Fig. S5A shows the
response of neurons from the three clusters for memory saccades to the contralateral and ipsilateral
targets. The three clusters show similar persistent activity during the delay period. We calculated the
spike counts in the last 200 ms before the fixation point is extinguished, and computed the average
difference in standardized counts between trials with memory-saccades to the left and right target. This
measure fails to differentiate the three clusters (𝑝max>0.2, Wilcoxon rank–sum test).

The monkeys also performed a passive motion viewing task in which they were presented with strong
(𝑐 = ± 51.2%) left and right motion and were rewarded for maintaining fixation. We expected neurons in
cluster 1 that retain information about motion strength to have response fields that overlap the random dot
motion stimulus, but there is no sign of this. Neurons in all three clusters maintained low activity during
the passive viewing task (Fig. S5B). While firing rates were significantly greater for leftward than for
rightward motion (p = 0.047, 0.0026, and 0.0145 for clusters 1, 2, and 3, respectively; one-sided Wilcoxon
signed-rank test), decoding accuracy was poor and similar so for all clusters. We calculated the spike rate
during motion viewing (excluding the initial 200 ms), and computed the average difference in standardized
rates between trials with leftward and rightward motion. This measure does not distinguish between
the three clusters (𝑝max>0.25, Wilcoxon rank–sum test). The capacity of this measure to distinguish
between leftward and rightward motion was low (AUC =0.55 ± 0.01, mean ± s.e. across neurons). As an
additional control, we repeated the decoding and clustering analyses after excluding the Tin neurons
that significantly discriminated between leftward and rightward motion in the passive motion–viewing
task. Excluding these neurons (N = 45) yielded qualitatively similar results Fig. S6. We conclude that
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the response features that distinguish the three clusters of Tin neurons are not elucidated by memory
saccades or passive motion viewing. Instead, the discriminating feature is more likely associated with
the decision mechanism.

Clusters 1 and 3 are the most informative about the accuracy of the choice
Because confidence is informed by evidence strength and decision time, and because these variables
are represented by the population of cluster-1 and cluster-3 neurons, we reasoned that neurons from
these clusters should be the most informative about choice accuracy. We repeated the logistic regression
analysis used to decode accuracy from population activity (Eq. 1), using signals from one cluster at a
time. Cluster-1 neurons and cluster-3 neurons are more predictive of choice accuracy than cluster-2
neurons (Fig. 5A) (𝑝max<10−8, bootstrap).

The average spike counts across the population of cluster-1 neurons, combined with the average across
the population of cluster-3 neurons, predict choice accuracy with fidelity. We trained the accuracy decoder
(Eq. 1) using two independent variables: the average of the spike counts from cluster–1 neurons and
cluster–3 neurons within the presaccadic window (plus an offset). The AUCconf from this regression
model is statistically indistinguishable from the model using all Tin neurons (p = 0.16, bootstrap; Fig. 5B).
We also trained the accuracy decoder using the within-trial average of the spike counts across all Tin
neurons. This model yields a much lower AUCconf than that obtained from the mean activity of neurons
from clusters 1 and 3 (p < 10−8, bootstrap. We conclude that the activity of cluster–1 and cluster–3
neurons (i.e., two numbers per trial) accounts for most of the information about choice accuracy contained
in all recorded Tin neurons.

We chose to use three clusters for analytical convenience. The number is not guided by a biological
or computational principle. Indeed, the regression coefficients used for clustering exhibit continuous
variation (Fig. 4A). Nonetheless, three seems to be the right number. We repeated the analysis using
between two and six clusters. For each number, we calculated the AUCconf. We averaged the number
of spikes in the presaccadic window across neurons belonging to the same cluster and used these
averaged spike counts to predict choice accuracy (Eq. 6). We found a significant difference in AUCconf
only between two clusters and more than two clusters, but not between three and four clusters or three
and six clusters (Fig. S7). Three clusters may be adequate for our purposes as they are the minimum
number required to capture the central tendency and both signs of diversity.

Separable contributions of Tin neurons to the decoding of choice and accuracy
We assessed whether the decoding of choice accuracy and the decoding of the choice itself relies on a
common weighting of the activity of the Tin neurons. To this end, we fit a regression model similar to the
one we used to predict decision accuracy (Eq. 1), but here the variable to predict is choice (left/right)
(Eq. 7). We used the spike counts of the Tin neurons in the presaccadic window to derive the best-
fitting regression weights, 𝜷𝐜𝐡𝐨𝐢𝐜𝐞. The regression weights define a coding direction (CD) in the state
space, where each Tin neuron represents a different dimension. Unsurprisingly, choice can be decoded
with high precision from the population of Tin neurons (AUCchoice = 0.96 ± 0.014; mean ± s.e. across
sessions). More interestingly, the cosine similarity between the directions defined by the regression
weights on choice, 𝜷𝐜𝐡𝐨𝐢𝐜𝐞, and the regression weights on accuracy, 𝜷𝐜𝐨𝐧𝐟 , is low: the average (across
sessions) absolute value of the cosine similarity is 0.25 ± 0.05, indicating that the two directions in state
space are closer to orthogonal than similar (Fig. 5C). Indeed, the projection of the population activity
on the choice-CD is barely informative about accuracy (AUCconf = 0.57 ± 0.024; mean ± s.e. across
sessions) and significantly less informative than the projection on the confidence CD (p = 0.0009, t-test;
Fig. 5D).

We reasoned that the separable contribution of Tin neurons to decoding choice and accuracy may be
evident at the level of clusters. We repeated the logistic regression analysis, again using signals from one
cluster at a time (as in Fig. 5A) but now training the decoder to predict choice. As shown in Fig. 5E, the
neurons from cluster 2 are more predictive of the choice than neurons from clusters 1 and 3 (𝑝max<10−8,
bootstrap).
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Figure 5. Information about choice accuracy differs across clusters
(A) Neurons from cluster 3 are the most informative about choice accuracy. Symbols show the area under the receiver-operator curve (AUCconf) which
quantifies the separation between the distribution of spike counts in the presaccadic window on correct vs. incorrect left choices. The accuracy predictions
used to calculate the AUCconf are based on the activity of the Tin neurons assigned to each of the three clusters (abscissa). Error bars indicate s.e.
(bootstrap). Bootstrapping was used to assess statistical significance (n.s.: 𝑝>0.05; ∗∗∗: 𝑝<10−8). (B) AUCconf values obtained from the accuracy
decoders trained on either (i) the average activity of neurons from cluster 1 and cluster 3, (ii) the individual Tin neurons, or (iii) the average (across
neurons) of the activity of the Tin neurons. Error bars indicate s.e. (bootstrap). (C) Cosine similarities between the weights assigned by the regression to
choice, 𝜷𝐜𝐡𝐨𝐢𝐜𝐞, and the regression to accuracy, 𝜷𝐜𝐨𝐧𝐟 , across sessions. The set of weights define coding directions in the neuronal state space. (D) We
project the neural activity onto the coding directions defined by 𝜷𝐜𝐡𝐨𝐢𝐜𝐞 and by 𝜷𝐜𝐨𝐧𝐟 , and compute the information about choice accuracy, measured by the
AUCconf, contained in these two projections. Information about choice accuracy is larger for the projection onto the direction defined by 𝜷𝐜𝐨𝐧𝐟 (abscissa)
than onto the one defined by 𝜷𝐜𝐡𝐨𝐢𝐜𝐞 (ordinate). Each data point corresponds to a different session. Error bars indicate s.e. (bootstrap). (E) AUCchoice
derived from three separate regression analyses, each including neurons from a single cluster. Error bars indicate s.e. (bootstrap). Neurons from cluster 2
are the most informative about choice.
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Multiple time-scales of evidence accumulation represented by Tin neurons
We considered the possibility that the different response characteristics of Tin neurons might be explained
by differences in how long (or persistently) the momentary motion evidence affects neuronal activity. We
evaluate this idea by analyzing the influence of the short (100 ms) motion pulses introduced into the
random dot motion stimulus. For each Tin neuron 𝑖 and trial 𝑗, we count the spikes emitted between
𝑡 and (𝑡+100) ms, where 𝑡 is the time from the onset of the motion pulse, and standardize the counts
separately for each motion coherence and 100 ms time window. We refer to the standardized counts as
�̃�𝑖(𝑡, 𝑗). We then calculate the average difference, Δ�̃�𝑖(𝑡), between trials with a leftward pulse and trials
with a rightward pulse.

The difference Δ�̃�𝑖(𝑡) is a measure of the influence of the motion pulse on neuronal activity. We averaged
this difference across neurons belonging to the same cluster and fit a function (Eq. 13) to these averages
(Fig. 6A). The function implements two assumptions: (i) the pulse affects the neural response with a
variable latency, and (ii) its effect dissipates exponentially with time constant 𝛼−1 (Lorteije, Zylberberg
et al., 2015). The best-fitting 𝛼 values are 100, 3.1, & -0.17 for neurons of clusters 1, 2, and 3 respectively,
consistent with a more persistent effect on cluster–2 neurons than on cluster–1 neurons, and a more
persistent effect on cluster–3 neurons than on cluster–2 neurons (Fig. 6A). The negative 𝛼 (cluster 3)
reflects the monotonic increase in the impact of the pulse as a function of time (Fig. 6A, bottom). We used
a bootstrap analysis to create a distribution of 𝛼 values for neurons of the three clusters. The probability
of observing in the bootstrap distributions an 𝛼 value greater in cluster 1 than in cluster 2 was 86.8 %,
and a value greater in cluster 3 than in cluster 2 was 96.6 %. While the probability of observing this rank
ordering by chance is not negligible, the analysis is consistent with the hypothesis that the time constant
of evidence accumulation is different for neurons from the three clusters.

We further substantiate this interpretation with an analysis of the pairwise correlations between neurons
belonging to different clusters. We counted the spikes of neurons from cluster 𝑘, 𝑆k

Tin(𝑡), in 25ms
windows. We formed pairs {𝑥, 𝑦}, where 𝑥 = �̃�k

Tin(𝑡𝑥) and 𝑦 = �̃� j
Tin(𝑡𝑦), with 𝑘 and 𝑗 representing different

clusters. The tilde in these expressions indicates the use of standardized residual values, for each
motion coherence. The heat maps in Fig. 6B-D illustrate the correlation of these residuals across trials,
for different pairs of clusters. Fluctuations in the activity of cluster–1 neurons predict—at later times—
fluctuations in the activity of cluster–2 neurons, and the activity of cluster–3 neurons (both 𝑝 < 10−8,
permutation test; Fig. 6B & C). Similarly, a noise correlation analysis between the activity residuals
of cluster–2 and cluster–3 neurons reveals that the fluctuations in both clusters are largely positively
correlated, and that the fluctuations in activity of cluster–2 neurons at time 𝑡 predict the fluctuations in
activity of cluster–3 neurons for times 𝑡′ > 𝑡 (𝑝 < 10−8, permutation test; Fig. 6D). The observations
suggest that the time constant of integration increases with ascending cluster number (or that the degree
of integration leak decreases with ascending cluster number).

Representation of momentary motion evidence by Tin neurons
The transient effect of the motion pulses on the activity of cluster-1 neurons made us wonder whether
these neurons resemble other neurons in LIP that mimic responses of direction selective neurons in
area MT (Freedman and Assad, 2006). The Steinemann, Stine et al. (2022) dataset also contains such
neurons, termed Min—for motion in response field—neurons. Fig. 7A shows firing rate averages from
leftward and rightward preferring Min neurons in the random dot motion task. For the Min neurons, the
firing rate traces associated with different motion coherences are predominantly parallel. They do not
resemble the ramp-like dynamics associated with evidence accumulation. Some Min neurons show
selectivity for contraversive motion (Mleft

in ) and others for ipsiversive motion (Mright
in ) (Fig. 7A–C, top and

bottom panels respectively).

In contrast to Tin neurons, Min neurons do not show persistent activity in the memory-guided saccade
task (Fig. 7B) but show direction selectivity in the passive motion viewing task (Fig. 7C). However, during
the random dot motion task, Min and Tk=1

in neurons display similar responses in that they are direction
selective but represent neither evidence accumulation nor decision termination. Note the similarity of the
traces between the Min neurons (Fig. 7A) and the Tk=1

in neurons (Fig. 4D, top).

We wondered if the Tk=1
in neurons would share signals with the Min neurons, despite the different locations

of their response fields. We tested this idea using a noise correlation analysis similar to that shown in
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Figure 6. Different time constants of evidence integration by Tin neurons
(A) Influence of a brief motion pulse on the activity of cluster–1 (top), cluster–2 (middle) and cluster–3 (bottom)
neurons (Eqs. 10 and 11). Error bars indicate s.e. (bootstrap). Solid lines are fits of a function (see Methods). The
pulses affect the neural response with latency ≈ 200 ms. (B–D) Noise correlations between neurons from clusters 1
and 2 (panel B), clusters 1 and 3 (panel C), and clusters 2 and 3 (panel D). Time is relative to pulse onset. The
correlation coefficients were calculated in non-overlapping 25 ms windows, using only trials with contralateral choices.
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Figure 7. Momentary motion evidence in LIP
(A–C) Firing rate of the Min neurons in the random dot motion task (A), the memory-guided saccade task (B), the passive motion viewing task (C). The
upper (lower) row represents Min neurons that prefer leftward (rightward, respectively) motion. (D) Noise correlations between the motion-selective
neurons with the motion stimulus on their response field (ordinate), and the Tk=1

in neurons (abscissa). Same conventions as in Fig. 6B–D.

Fig. 6B-D, but where the correlations are calculated between Tk=1
in and Min neurons. That is, 𝑥 = �̃�k=1

Tin (𝑡𝑥)

and 𝑦 = �̃� left
Min(𝑡𝑦) − �̃�right

Min (𝑡𝑦). As before, the tilde in these expressions indicates the use of standardized
residual values, for each motion coherence. The heat map (Fig. 7D) illustrates the correlation of these
residuals across trials. Correlations are stronger for off-diagonal elements where the activity of the cluster-
1 neurons lags the activity of the Min neurons by approximately 100 ms. Correlations are significantly
higher for 𝑡𝑥 > 𝑡𝑦 than for 𝑡𝑦 > 𝑡𝑥 (𝑝 < 10−8; permutation test). That is, fluctuations in the activity of Min
neurons predict changes in Tk=1

in neurons at later times. This result is consistent with the idea that the
signals that drive the Min neurons are reflected later in the activity of the Tk=1

in neurons.

Information about choice and accuracy evolves over time
So far we have mainly focused our analyses on a time window just before the choice report. Here we
look for choice and accuracy signals outside the presaccadic window to characterize the time course of
information about choice and accuracy. We construct two population signals by projecting the neural
activity in the coding directions defined by 𝜷𝐜𝐡𝐨𝐢𝐜𝐞 and 𝜷𝐜𝐨𝐧𝐟 . Neural activity is obtained by binning the spike
counts of Tin neurons in sliding windows of 100 ms. At each time 𝑡, we compute the area under the ROC
curve (AUC) obtained from the projections onto the choice and accuracy coding directions. The AUC
values indicate how well the projections discriminate between left and right choices and between correct
and incorrect choices, respectively.

Both AUC values peak near the time of reporting (Fig. 8). Unsurprisingly, the decoding of choice is
more veridical than the decoding of choice accuracy (i.e., the choice predictions better distinguishes left
from right choices than the accuracy predictor distinguishes correct from errors). We assessed whether
accuracy information lags behind choice, using a latency analysis based on fitting a bilinear “dogleg”
function (Lorteije, Zylberberg et al., 2015) to the time course of AUC values. Information about choice
diverges from baseline at 0.165 ± 0.02𝑠 from motion onset; for choice the divergence occurs 0.187 ± 0.04𝑠
from motion onset (Fig. 8). This difference is not significantly different from zero (in a bootstrap analysis,
choice lags confidence in 24.8% of samples). This suggests that information about choice and accuracy
are practically contemporaneous.
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Figure 8. Contemporaneous decoding of choice and accuracy
Time-course of the AUC values obtained from the projection of the neuronal activity along the directions defined by
𝜷𝐜𝐡𝐨𝐢𝐜𝐞 (purple) and 𝜷𝐜𝐨𝐧𝐟 (orange). Shading indicates s.e. across sessions. Projections were calculated in 100 ms
windows in steps of 10 ms. The arrows indicate the time when the traces first deviate from baseline (see Methods),
and the associated horizontal bars are the s.e. of these estimates.

The presaccadic confidence signal accommodates an informative prior
In the random dot motion task, confidence is influenced not only by reaction time and motion strength,
but also by the prior probability (base rate) of the different response alternatives (Zylberberg et al.,
2018). We ask whether the neural representation of choice accuracy that we identified is also sensitive
to manipulations of prior probability. We reanalyzed data from Hanks et al. (2011) in which the prior
probability that the motion is rightward or leftward was varied in blocks of ∼400 trials.

We decoded choice accuracy using the same approach that we used for the Neuropixels data. We select
trials with a contralateral choice and predict whether the choice is correct or incorrect using the neuronal
data recorded on that session, again focusing on the presaccadic window. In the experiment of Hanks
et al. (2011), only one Tin neuron was recorded per session, hence the predictions are less veridical.
Nevertheless, the predicted choice accuracy is greater for trials in which the monkey chose the target
with the greater base rate (Fig. 9). This holds for each level of motion strength and for both correct and
incorrect decisions (Fig. 9 A & B, respectively), consistent with behavioral observations (Zylberberg et al.,
2018). Therefore, the neural representation of choice accuracy that we identified is not only informed by
motion strength and reaction time (Fig. 3), but also by the prior probability of the chosen option (Fig. 9),
thus furthering the idea that the Tin neurons support the computation of confidence.

Discussion
We show that neurons in parietal Area LIP that represent an evolving decision variable (Roitman and
Shadlen, 2002; Steinemann, Stine et al., 2022) also carry information about the probability that the
decision is correct—or the probability that it will be rewarded. Information about choice accuracy is
present in LIP even though the monkeys were not required to report confidence or use it to inform a
subsequent decision. Consistent with human imaging studies (Lebreton et al., 2015), the present finding
supports the view that the calculation of confidence is automatic: an obligate component of decisions,
whether or not it is put to use.

The putative confidence signal reproduces features of confidence reports from humans in tasks similar
to the one performed by the monkeys. These features include the relationship between confidence and
decision difficulty (as determined by motion strength), prior probability, accuracy, and reaction times
(Kiani et al., 2014; Zylberberg et al., 2018). Accounting for these features is thought to require knowledge
of the decision time and/or the accumulated evidence for the unchosen alternative (Vickers, 1979; Kiani
et al., 2014; van Den Berg et al., 2016; Brus et al., 2021; Smith and Vickers, 1988; Zylberberg et al., 2018,
2012; Hellmann et al., 2023; Moreno-Bote, 2010; Rolls et al., 2010; Wei and Wang, 2015). However,
all the information needed to account for these behavioral features is contained in the activity of the
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Figure 9. The confidence signal accommodates an informative prior
(A) Probability correct inferred from individual LIP neurons from the experiment of Hanks et al. (2011). Monkeys
performed blocks of trials in which the prior probability that the target in the neuron’s response field is the one to be
rewarded (𝑝contra) was either 0.5, 0.2 or 0.8. The predicted probability is shown separately for trials of the different
blocks (colors). The predicted probability correct increases with motion strength and with the strength of the prior
supporting the choice. (B) Same as A, but for incorrect choices. In both A and B, the analysis includes only trials in
which the monkey chose the target contralateral to the recording site (i.e., the target in the neurons’ response field).
Error bars indicate s.e.m. across trials.

population of LIP neurons with response fields that overlap the chosen target.

The finding is surprising because such LIP neurons have been shown to reach a stereotyped level
of activity at the end of the decision that is independent of the strength of evidence and of reaction
time—two strong predictors of accuracy. We replicate this property in our data when we examine the
firing rates averaged over neurons, as in previous studies. However these averages belie heterogeneity
across the population. Not all of these neurons reach a stereotyped level of activity. Importantly, the way
each neuron departs from the average is consistent across multiple decisions. The heterogeneity thus
reflects systematic differences between functional subtypes of Tin neurons, and we show that one of the
functional distinctions manifests as different degrees of leaky integration (Fig. 6). Such variation might be
supported by different levels of recurrence in the neural circuit (Usher and McClelland, 2001; Wong and
Wang, 2006; Lange et al., 2021; Zylberberg et al., 2009). This heterogeneity endows the Tin neurons
with signals that could be used to support a confidence judgment or reward prediction. An alternative
interpretation of heterogeneity, in general, is that it confers robustness to a unidimensional signal. It would
be of great interest to determine whether the projections of LIP to the SC and the orbitofrontal cortex
comprise groupings that support decoding of choice and reward prediction, respectively. Alternatively,
the downstream areas might receive the same signals but weight them differently to extract the choice
or confidence signal. Simultaneous recordings from functionally related populations could provide an
answer to this question in the near future. It bears on a broader question what heterogeneity achieves
along the spectrum from a specific feature to robustness of the broader population of Tin neurons to
variation in a property.2

Neurophysiological studies in non-human animals have identified neural correlates of confidence in
several brain areas, including the superior colliculus (Odegaard et al., 2018), the pulvinar (Komura et al.,
2013), the orbitofrontal cortex (Kepecs et al., 2008; Lak et al., 2014; Masset et al., 2020), the lateral
intraparietal area (Kiani and Shadlen, 2009; Vivar Lazo, 2024), the supplementary eye fields (So and
Stuphorn, 2016; Middlebrooks and Sommer, 2012), the visual cortex (Fetsch et al., 2014; Zylberberg
et al., 2016; Boundy-Singer et al., 2024), and the midbrain (Lak et al., 2017). Kiani and Shadlen (2009)
examined a version of the random dot motion task where the experimenter controlled the stimulus duration.
Monkeys had the option to opt out of making decisions to receive a small but guaranteed reward. Kiani

2For example, heterogeneity of speed tuning in visual cortex could confer coding of speed or robustness of the direction-selective
signal to variation in velocity.
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& Shadlen suggested that the monkey’s decision to choose or waive the sure bet depends on (𝑖) the
average activity of the Tin neurons at the end of the evidence stream, approximately 200 ms after random
dot motion offset, and (𝑖𝑖) the random dot motion duration from onset to offset. They did not suggest a
mechanism to combine these factors but summarized the process as a time-dependent criterion applied
to the magnitude of the average. It is conceivable that the diversity of Tin neurons could be involved in
implementing this computation.

We used logistic decoders to identify coding-directions (CDs) in state space that are most informative
about choice and accuracy. The cosine similarities between the two coding directions are low (Fig. 8),
indicating that the two signals are potentially distinguishable by downstream structures. The existence
of distinct signals might explain why confidence and choice can be dissociated by certain lesions,
inactivations, or behavioral manipulations (Komura et al., 2013; Del Cul et al., 2009; Rounis et al., 2010;
Miyamoto et al., 2018; Peters et al., 2017; Maniscalco et al., 2016; Koizumi et al., 2015; Samaha and
Denison, 2020; Aitchison et al., 2015; Zylberberg et al., 2012, 2014; Rahnev and Denison, 2018; Dou
et al., 2024).

The presaccadic confidence signal we identified may offer insights into key features of confidence, such
as positive evidence bias (PEB), that were not explored in this study. The PEB refers to the observation
that confidence is more strongly influenced by the evidence supporting the chosen option than by the
evidence supporting the non-chosen option (Zylberberg et al., 2012; Aitchison et al., 2015; Peters et al.,
2017; Maniscalco et al., 2016; Mazor et al., 2023; Samaha and Denison, 2020; Sepulveda et al., 2020;
Vivar Lazo, 2024; Mazor et al., 2023). Our results provide a tentative explanation for the PEB. Our data
suggest that confidence is represented by neurons that constitute the “winning” race. Thus, the evidence
that drove the winning race is expected to contribute more to confidence than the evidence that drove the
losing race, leading to a PEB. This prediction has to be tested in a task in which the evidence for one
alternative is not necessarily interpreted by the decision maker as evidence against the other one (e.g.
Zylberberg et al., 2012). Other features of confidence that need to be explored in suitable tasks include
the increase in confidence with response time when stimulus duration is controlled by the experimenter
(Irwin et al., 1956; Vickers et al., 1985; Kiani and Shadlen, 2009; Zylberberg et al., 2016) and when
decisions are made under time pressure (Vickers and Packer, 1982).

A key contribution of our study is the realization that confidence in a decision can be estimated at decision
termination simply as a weighted average of the activity of LIP neurons whose response fields overlap
with the chosen target. That said, the surprising fact that this information is present does not imply that
the monkey exploits it. Additional experiments would be needed to evaluate such an assertion (Ritchie
et al., 2019). In our case, this concern is somewhat mitigated by the fact that we: (𝑖) used simple, linear
decoders, which implies that it is easy for downstream areas to read confidence from the activity of Tin
neurons, (𝑖𝑖) validated the prediction against many behavioral features of confidence, and (𝑖𝑖𝑖) focused
on a very specific moment in the trial when these neurons are presumably communicating important
information (e.g., where to move the eyes) to downstream areas. While our results need to be validated
in tasks with confidence reporting, it is enticing to think that a group of neurons that share a functional
characterization, contain enough information in the final 100 ms of decision formation to resolve choice,
reaction time and confidence.
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Methods
Behavioral tasks
Random dot motion task
In the main task, the monkeys had to decide the net direction (leftward or rightward) of a circular patch
of limited-lifetime, dynamic random dots and report their choice when ready by making a saccadic eye
movement from the central fixation to the left or right choice target. The monkey initiates at trial by
directing the gaze to a central fixation point. After 0.25–0.7 s (truncated exponential with time constant
𝜆=0.15 s), two red choice targets (diameter 1 dva; degrees of visual angle) are presented in the left and
right visual fields. After a random delay (0.25-0.7 s, 𝜆=0.4 s), the random dot motion stimulus is displayed
until the monkey initiates a saccadic eye movement to report its choice.

The random dot motion comprises limited lifetime dots displayed within a circular area (diameter
5 dva) centered on the fixation point. The dot density is 16.7 dots ⋅ dva−2⋅ s−1. The direction and
strength of the motion are chosen pseudorandomly on each trial, such that the coherence, 𝐶 ∈
{±0%,±3.2%,±6.4%,±12.6%,±25.6%,±51.2%}. The sign of 𝐶 determines the direction of motion; positive
values indicate leftward motion. For 𝐶 = 0%, the sign indicates the random direction that is rewarded on
that trial. The absolute value |𝐶| establishes the motion strength: the probability that a dot displayed in
video frame 𝑛 is displaced by Δ𝑥 in frame 𝑛+ 3 (i.e., 40 ms later). Otherwise the dot is replaced by a new
dot at a random position. The displacement, Δ𝑥 = ±0.2 dva, is consistent with apparent motion speed of
5 dva per s (see Roitman and Shadlen, 2002, for further details). Monkeys are rewarded for making a
saccadic eye movement to the correct choice target. On trials with 0% motion coherence, either saccadic
choice is rewarded with a probability of 0.5. Incorrect responses are penalized by increasing the inter-trial
interval by up to 3 seconds (see Stine et al., 2023, for further details). On approximately half of the trials,
the motion coherence is incremented or decremented for 100 ms by 4% coherence for monkey M and
3.2% for monkey J (Stine et al., 2023). The onset time of the pulse is chosen randomly from a truncated
exponential distribution: 𝑡𝑚𝑖𝑛 =0.1 s to 𝑡𝑚𝑎𝑥 =0.8 s from motion onset (𝜆 = 0.4 s). Monkey M completed
9,684 trials across five sessions, while Monkey J completed 8,142 trials in three sessions.

Control tasks
Monkeys also completed two additional tasks in each session: a passive motion viewing task and a
memory-guided saccade task. In the passive motion viewing task, the monkey views ±51.2% coherent
motion for 0.5 s (and for 1 s on a small number of trials in one session). The task matches the main
task but without choice targets. The monkey is rewarded for maintaining fixation during the motion
presentation.

In the memory-guided saccade task (Hikosaka and Wurtz, 1983; Gnadt and Andersen, 1988), a target
was briefly flashed (200 ms) at a pseudo-random location in the visual field. After a variable delay (0.2-0.9
seconds for monkey M, 𝜆 = 0.3 seconds; 0.3-1.3 seconds for monkey J, 𝜆 = 0.2 seconds), the fixation
point was extinguished and the monkey had to make a saccadic eye movement to the remembered
location of the target. The monkey was rewarded if the gaze was within ±2.5 degrees of visual angle of
the target location.

Biased prior probability task
The analysis of prior probabilities makes use of previously published single neuron recordings from two
other monkeys that performed the same task as Steinemann, Stine et al. (2022). However, Hanks et al.
(2011) varied the prior probability that the rewarded choice was left or right. In blocks of trials, the sign
of the motion coherence was biased in favor of positive or negative. They also included blocks with a
neutral (i.e., uninformative) prior. In blocks with neutral priors, both targets had an equal 50% chance of
being correct. In biased conditions, one direction had an 80% probability of being correct and the other
had a 20% probability of being correct, except for a small number of sessions in one monkey where a
67-33% prior was used (these data were not included in our study nor in Hanks et al. 2011).

Sessions typically began with a block of 200-400 trials under a neutral prior. The monkeys then completed
300-600 trials in which the prior favored one of the targets, with the most-likely target being the one
chosen least often during the neutral prior block. To signal to the monkeys which target was more likely,
each biased block was preceded by 20 trials of 100% coherent motion toward the more likely target.
These trials were not included in our analysis. In some sessions, monkeys completed an additional block
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with a prior favoring the opposite target. See Hanks et al. (2011) for details.

Combined choice-confidence task in humans
van Den Berg et al. (2016) asked participants to discriminate the direction of motion of a random dot
motion display similar to that of Steinemann, Stine et al. (2022) and Hanks et al. (2011). Subjects held
the handle of a vBOT manipulandum used to record the position of the handle at 1,000 Hz (Howard et al.,
2009). A horizontal mirror projecting a downward facing CRT monitor prevented subjects from seeing
their arm. A chin rest ensured that the viewing distance was approximately 40 cm.

Participants reported choice and confidence simultaneously by moving the handle to one of four circular
targets displayed at the corners of a 17 cm x 17 cm square. The two targets on the left corresponded
to a leftward motion choice, and the two on the right corresponded to a rightward motion choice. In
half of the blocks, the two top targets corresponded to a high-confidence choice and the bottom targets
to a low-confidence choice; in the other half, the mapping was reversed such that the bottom targets
corresponded to high-confidence and the top targets to high-confidence. To motivate participants to
make calibrated confidence reports, the high- and low-confidence targets had different payoffs for correct
and incorrect choices. The low confidence targets gave a 1 point reward for a correct choice and a 1
point loss for an incorrect choice. The high-confidence target gave 2 points for a correct choice and a
loss of 3 points for an incorrect choice.

Fig. 3A reproduces data from a representative participant (Subject 2 in Figure 2 of van Den Berg et al.
2016), who completed 9,023 trials over 12 experimental sessions. Data from the other participants is
shown in Fig. S1. Details of the experimental procedure should be sought in the original publication (van
Den Berg et al., 2016).

Race model of decision making
In the race model, two drift-diffusion processes, 𝑥𝐿(𝑡) and 𝑥𝑅(𝑡), compete until one of them reaches an
upper bound. The first to reach the upper bound determines choice and RT. 𝑥𝑅 accumulates evidence for
right minus left, and 𝑥𝐿 accumulates evidence for left minus right. The dynamics of the decision variables
is described by the following difference equations:

𝑥(𝑡+1)
𝐿 = 𝑥(𝑡)

𝐿 + 𝜅Δ𝑡(C+C0) + 𝑢(𝑡+1) + 𝜂(𝑡+1)𝐿

√

Δ𝑡, (2)

𝑥(𝑡+1)
𝑅 = 𝑥(𝑡)

𝑅 − 𝜅Δ𝑡(C+C0) + 𝑢(𝑡+1) + 𝜂(𝑡+1)𝑅

√

Δ𝑡 (3)

where 𝜅 is a measure of the signal-to-noise, Δ𝑡 = 0.005s is the time step, C is the motion coherence
(positive for leftward motion), C0 is a bias term and 𝜂 is zero-mean normally distributed noise with unit
variance. 𝜂𝐿(𝑡) and 𝜂𝑅(𝑡) are sampled from a bivariate Normal distribution such that the correlation
between them is 𝜌 = −0.7. At time 𝑡 = 0, 𝑥𝐿 = 𝑥𝑅 = 0.

The urgency signal 𝑢(𝑡+1) decreases the amount of evidence needed to trigger a response as time
progresses (Hanks et al., 2011). For times 𝑡<𝑑, the value of 𝑢(𝑡+1) is zero, indicating no urgency. For
times greater than 𝑑, 𝑢(𝑡+1) assumes a constant value equal to 𝑎Δ𝑡, where 𝑎 is a parameter that represents
the linear rate of rise of the urgency signal.

The decision variables in the model cannot drop below a lower reflective bound. If an update to a decision
variable would result in a value lower than 𝐵ref lect , the variable’s value is set to 𝐵ref lect for that time step.
That is:

𝑥(𝑡+1)
𝐿 ← max(𝑥(𝑡+1)

𝐿 , 𝐵ref lect), (4)
𝑥(𝑡+1)
𝑅 ← max(𝑥(𝑡+1)

𝑅 , 𝐵ref lect). (5)

The lower, non-absorbing bound simply instantiates the fact that firing rates must be ≥ 0.

The decision terminates when one of the races reach an upper bound at 𝐵. The choice is leftward
(rightward) if 𝑥𝐿 (𝑥𝑅) reaches the bound first. The decision time is the time taken to reach the bound.
The reaction time is the sum of the decision time and a non-decision time, which is normally distributed
with a mean of 𝜇𝑛𝑑 and standard deviation 𝜎𝑛𝑑 .

The free parameters of the model are Θ = {𝜅, 𝐵, 𝑎, 𝑑,C0, 𝜇𝑛𝑑 , 𝜎𝑛𝑑}. We use simulations to fit them to data.
Data from each monkey were fit separately. For a given set of parameters, we simulated 10 times as
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many trials as were completed by the monkey. For each combination of choice and motion coherence,
we fit the distribution of decision times obtained from the model with an Epanechnikov (parabolic) kernel
to obtain a smooth probability density function of decision times. The distribution of decision times is
convolved with the distribution of non-decision times to obtain a probability density function of reaction
times. We compute a separate p.d.f. of RTs for each combination of choice and motion coherence, and
use them to calculate the likelihood of the parameters given the single-trial choice and reaction time
data. We use BADS (Acerbi and Ma, 2017) to find the maximum-likelihood parameters. The best-fitting
parameters are shown in Table 1.

𝜅 𝐵 𝑎[𝑠−1] 𝑑[𝑠] 𝜌 𝜇𝑛𝑑[𝑠] 𝜎𝑛𝑑[𝑠] C0 𝐵rectif

Monkey M 14.86 1.73 1.63 0.13 -0.7 0.28 0.07 0.01 -1
Monkey J 12.97 0.88 0.57 0.62 -0.7 0.3 0.03 0 -1

Table 1. Best-fitting parameters of the race model. 𝜌 and 𝐵rectif were not fit but fixed to predefined values.

Neurophysiological recordings (LIP)
Main task
Steinemann, Stine et al. (2022) used a prototype “alpha” version of Neuropixels1.0-NHP45 probes
(developed by IMEC and HHMI-Janelia) to record multiple single-unit activities in the ventral part of area
LIP (LIPv). Steinemann, Stine et al. (2022) used anatomical MRI to localize LIPv and used single-neuron
recordings (Thomas Recording GmbH) to verify that the activity conformed to known physiological
properties of LIPv before proceeding with multi-neuron recordings. The Neuropixels probes are equipped
to record from 384 of the 4,416 available electrical contacts distributed along their 45 mm long shaft.
Data was only recorded from the 384 contacts closest to the probe tip (Bank 0), covering 3.84 mm. The
reference and ground signals were directly connected to each other and to the monkey’s headpost. A
total of 1,084 neurons were recorded over eight sessions, with each session yielding between 54 and
203 neurons (see Table 2 of Steinemann, Stine et al. 2022 for details).

Biased prior probability task
Hanks et al. (2011) recorded fifty-two neurons from the LIP area of two rhesus monkeys. Recordings
were made using standard methods for extracellular recording of action potentials from single neurons
(Roitman and Shadlen, 2002). See Hanks et al. (2011) for details.

Data analysis
Preprocessing of neuronal data
Our study focuses on Tin neurons, i.e., those that show persistent activity during saccade planning to the
target contralateral to the recording site. For the Neuropixels data, Tin neurons were identified post hoc
using a memory-guided saccade task (Steinemann, Stine et al., 2022; Stine et al., 2023). Hanks et al.
(2011) used the same task to identify neurons with spatially selective persistent activity and to place
targets within the response field of these neurons.

Unless otherwise stated, neurophysiological analyses are based on the number of spikes emitted by
each Tin neuron in the 100 ms epoch that ends 50 ms before the initiation of the saccadic eye movement
used to report the choice. We refer to this time interval as the presaccadic window.

Accuracy decoder
In each of the 8 sessions, we trained two decoders to predict the accuracy of the monkey’s choice, using
only contralateral (left) or ipsilateral (right) choices, respectively. We trained the decoder using simple
logistic regression:

logit[𝑝correct] = 𝜷𝐜𝐨𝐧𝐟
⊤𝑺𝒙 + 𝛽0 , (6)

where 𝑺𝒙 = �̃�𝐓𝐢𝐧 is the standardized spike count of each Tin neuron in the interval from 150 ms to 50 ms
before saccade onset. Standardization (i.e., z-score) is applied to each neuron independently. The
fitted coefficients, 𝜷𝐜𝐨𝐧𝐟 , establish a vector the same size as the number of simultaneously recorded
Tin neurons. We refer to this vector as a coding direction in neuronal state space. 𝛽0 is a constant
that captures the accuracy rate over all stimulus conditions, which is typically much better than chance
(typically, 𝑝correct > 0.7).
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We apply the same strategy to decode from subpopulations of neurons by redefining 𝑺𝒙. For example,
Fig. 5A shows the result of applying the regression model (Eq. 6) to the subset of Tin neurons belonging
to each cluster. For the analysis of the data from Hanks et al. (2011), 𝑆𝑥 contains the standardized
spike counts of the single Tin neurons recorded in separate experiments. We use the same presaccadic
window as in the analysis of the Neuropixels data.

To derive the confidence estimates, the decoders are trained using 10-fold cross-validation. The data are
divided into 10 groups, each containing an approximately equal number of trials selected randomly. One
group is used as the prediction set, while the remaining nine groups are used for training. This process
is repeated 10 times, ensuring that the confidence estimates for each trial are based on a prediction. For
the analyses shown in Fig. 8, we derive 𝜷𝐜𝐡𝐨𝐢𝐜𝐞 and 𝜷𝐜𝐨𝐧𝐟 using all trials instead of using cross-validation.
This approach allows us to obtain a single set of regression weights per session, rather than 10 sets as
produced by the cross-validation method.

The confidence estimates are used to calculate the area under the ROC curve (AUC). Fig. 2A exemplifies
the distributions that are used for the ROC analysis. For the analyses shown in Fig. 2B and Fig. 5D, AUC
values were calculated separately for each session. The statistical comparisons use a one-tailed paired
t-test applied to the logit-transformed AUC values from each session. Elsewhere, AUCs are not computed
per session, but rather the confidence estimates from all sessions are pooled before calculating a single
AUC. Standard errors were computed using bootstrapping (𝑁 = 5, 000 samples).

We also use bootstrap samples to determine if there is a significant difference between two AUC values.
For instance, to determine if the AUCconf obtained using only the cluster–1 neurons is larger than that
obtained using only the cluster–2 neurons (Fig. 5A), we bootstrap to obtain 𝑁 = 5, 000 AUCconf values for
each cluster. We then compare the AUC values for all 𝑁 = 25 × 106 pairwise comparisons and determine
significance as the proportion of comparisons for which the AUC value from cluster–1 neurons is larger
than that from cluster–2 neurons.

Choice decoder
We use the same spike-count standardization (z-scoring), analysis time window, and cross-validation
method to predict the monkey’s choice on each trial:

logit[𝑝lef t] = 𝜷𝐜𝐡𝐨𝐢𝐜𝐞
⊤�̃�𝐓𝐢𝐧 + 𝛽0. (7)

Here, 𝛽0 reflects the monkeys bias for or against a left choice, not the monkey’s accuracy. Unlike
the accuracy decoder, the choice decoder is trained on trials with both contralateral and ipsilateral
choices.

Reaction time decoder
We also use a logistic decoder to assess whether Tin neurons contain, just before the response, informa-
tion about reaction time. The model is:

logit[𝑝fast] = 𝜷𝐑𝐓
⊤�̃�𝐓𝐢𝐧 + 𝛽0. (8)

It was fit independently for each session using only trials with contraversive (left) choices. Fast and slow
responses were defined relative to the median RT. We use the same cross-validation method that we
used for the accuracy and choice decoders.

Latency analysis
We used the cumulative sum (CUSUM) method to determine the latency of direction-selective responses
in Tin neurons (Ellaway, 1978).

Receiver operating characteristic (ROC) analysis was used to assess the directional selectivity of each
Tin neuron. The area under the curve (AUC) in this analysis represents the degree separation—from 0.5
(complete overlap) to 1 (complete separation)—between the spike count distributions for leftward and
rightward motion in single trials. The AUC was calculated from spike counts in the interval 100–400 ms
after motion onset. We restricted the analysis to correct trials with reaction times greater than 450 ms
and motion coherence greater than 10%.

For neurons with an AUC greater than 0.55, we calculated the difference in spike counts (in 25 ms bins)
between leftward and rightward choice trials. These differences were then added cumulatively over time,
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as required by the CUSUM method. Typically, the cumulative difference remains around zero prior to
the onset of direction selectivity, and then gradually increases or decreases depending on the neuron’s
preferred choice.

To determine the onset of direction selectivity, we fit a “dogleg” function to the cumulative spike sum.
This function starts with a flat line from 𝑡0 = 0 and transitions to a linear increase or decrease starting
at 𝑡1 > 𝑡0. The end of the flat portion of the fit, which occurs between 0 and 500 ms after the onset of
motion, was considered the latency.

Using cumulative sums of spikes to estimate latencies helps reduce the effect of neural noise. The fitting
step further reduces the influence of the number of trials on latency estimates, providing an advantage
over traditional methods such as t-tests in moving windows (e.g., Lorteije, Zylberberg et al., 2015).

The significance of the difference in latency between neurons from different clusters was assessed with
a two-tailed t-test.

We conducted a similar analysis to estimate the latencies depicted in Fig. 8. We construct bootstrap
samples combining the time course of AUC values from individual sessions (N = 5,000 bootstrap samples).
A dogleg function was fit to each bootstrap sample, resulting in 5,000 latency estimates. The arrows in
Fig. 8 identify the mean latency across the bootstrap samples. The p-value we report is the proportion
of bootstrap samples for which the choice signal deviates from baseline later than the confidence
signal.

Clustering
We use linear regression to explain the spike counts of each Tin neuron in the presaccadic window. As
independent variables, we used the motion coherence (𝐶), the choice and reaction time (RT), and an
offset:

�̃� (𝑖)
Tin = 𝛽(𝑖)

0 + 𝛽(𝑖)
1 𝐶 + 𝛽(𝑖)

2 RT + 𝛽(𝑖)
3 choice. (9)

�̃� (𝑖)
Tin is the standardized spike count of neuron 𝑖 in the aforementioned time interval. The regression

analysis was performed separately for each Tin neuron, including correct trials only.

We then apply k-means clustering, using 3 clusters, to the regression coefficients associated with motion
coherence, RT and choice. The cluster labels (1–3) were chosen so that the average of 𝛽1 is smallest for
cluster–1 neurons, intermediate for cluster 2 and largest for cluster 3. We confirmed the robustness of the
neuron cluster assignments by independently deriving them using either the odd or even trials (Fig. S3).
We also fit a regression model similar to Eq. 9, but without the choice and RT terms and considering only
correct contralateral choices. The regression coefficients associated with motion coherence are shown
in Fig. 4D.

Motion pulses
We estimate the time course of the effect of the brief motion pulses on neuronal activity by aligning the
spike times of each Tin neuron to the onset of the motion pulse. For each time −60<𝑡<800 ms relative
to the onset of the motion pulse, we calculate the number of spikes emitted in the time epoch between
𝑡 and (𝑡+100) ms. Time 𝑡 is advanced in steps of 20 ms. 𝑅𝑖(𝑡, 𝑗) contains the spike counts for neuron 𝑖
emitted at time 𝑡 from pulse onset, in trial 𝑗. Only trials where the reaction time is at least 150 ms greater
than 𝑡, and those with a motion pulse (≈ 1

2
) are included in the analysis. We then standardize the spike

counts independently for each motion coherence, to obtain �̃�𝑖(𝑡, 𝑗). We average �̃�𝑖(𝑡, 𝑗) across trials
with a leftward (contraversive) pulse, and trials with a rightward (ipsiversive) pulse, and calculate the
difference, left minus right, between these averages, to obtain Δ�̃�𝑖(𝑡).

Δ�̃�𝑖(𝑡) approximates for each Tin neuron 𝑖 and time 𝑡, the influence of the motion pulse on neuronal
activity. We average Δ�̃�𝑖(𝑡) across the 𝑁𝐾 neurons belonging to the same cluster 𝐾,

Δ�̃�𝐾 (𝑡) =
1
𝑁𝐾

∑

𝑖∈𝐾
Δ�̃�𝑖(𝑡) , (10)

and normalize the average subtracting a baseline,

𝐷𝐾 (𝑡) = Δ�̃�𝐾 (𝑡) − baseline , (11)
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where baseline is the average of Δ�̃�𝐾 (𝑡) for times 𝑡 between 0 and 0.2𝑠. Fig. 6A shows 𝐷𝐾 (𝑡) for the three
clusters.

We use a curve-fitting approach to estimate the rate at which the effect of the motion pulse dissipates
over time. We fit 𝐷𝐾 (𝑡) using a function 𝑓 (𝑥) constructed on the following two assumptions: (𝑖) the onset
latency of the effect of the motion pulse on neuronal activity follows a Normal distribution, (𝑖𝑖) the effect
dissipates exponentially. Given these assumption, the differential equation describing the time course of
𝑓 (𝑡) is

𝜕𝑓 (𝑡)
𝜕𝑡

= −𝛼𝑓 (𝑡) + (𝑡|𝜇, 𝜎) , (12)

where 𝜇 and 𝜎 are the mean and standard deviation of the Normal distribution ( ), and 𝛼 is the reciprocal
of the time constant of the dissipation. The solution to this equation is:

𝑓 (𝑡) = 𝑑 ⋅ exp(𝜇𝛼 + 1
2
𝜎2𝛼2 − 𝛼𝑡) ⋅Φ(𝑡|𝑚, 𝜎) , (13)

where 𝑑 is a scaling parameter, and Φ(⋅|𝑚, 𝜎) is the cumulative Gaussian distribution with mean 𝑚 = 𝜇+𝜎2𝛼
and standard deviation 𝜎. The fit function has four parameters: {𝑑, 𝜇, 𝜎, 𝛼}. We fit the parameters to
minimize the sum over time points of the squared differences between 𝑓 (𝑡) and 𝐷𝐾 (𝑡).

We compared the best-fitting dissipation parameter (𝛼) across clusters. We generated bootstrap samples
(N=5,000) by selecting with replacement from the pool of neurons that belong to a given cluster. For
each of these samples, we compute the parameter 𝛼. We evaluate the significance of the difference
in 𝛼 values in the data by the proportion of bootstrap samples that result in a difference in 𝛼 values as
extreme as the one we observed in the data.

Cross-correlation analysis
The analysis depicted in Fig. 6B–D is based on the spike counts of neurons from clusters 1–3. Spike
counts were calculated in 25 ms windows, aligned to motion onset, up to 50 ms before the reaction
time. We compute standardized residuals separately for each time bin, motion coherence and session.
Standardized residuals were combined across sessions. The processed signals are referred to as �̃�k=1

Tin ,
�̃�k=2

Tin and �̃�k=3
Tin . We then calculated the Pearson correlation coefficient between every pair of signals

(Fig. 6B–D), for every pair of time steps between 0.2 and 0.8s.

We used permutation tests to asses statistical significance. We define two regions of interest based on
the time from stimulus onset in the 𝑥 and 𝑦 dimensions (Fig. 6B). ROI1 is defined by 𝑡𝑥 > 𝑡𝑦, and ROI2 is
defined by 𝑡𝑦 > 𝑡𝑥, for time time points shown in Fig. 6B. If 𝑦 causally affects 𝑥, or if 𝑦 and 𝑥 receive a
common input but the integration time constant is greater for 𝑦 than for 𝑥, then the pairwise correlations
between 𝑥 and 𝑦 should be greater in ROI1 than in ROI2. We calculated the difference in correlations
between two groups, ⟨𝜌ROI1⟩ − ⟨𝜌ROI2⟩ , where the expectation is calculated over the time bins within
each region of interest (ROI). This difference was then contrasted with those obtained after randomly
shuffling the order of trials for one of the dimensions (𝑁shuffles = 200). Significance was determined by
the probability of achieving a difference as extreme as the one observed in the experimental data.

The same procedure was applied to the cross-correlation analysis shown in Fig. 7D, but with 𝑥 = �̃�k=1
Tin (𝑡𝑥)

and 𝑦 = �̃� left
Min(𝑡𝑦) − �̃�right

Min (𝑡𝑦), where �̃� left
Min(𝑡) and �̃�right

Min (𝑡) are the standardized residuals obtained from the
activity of the Min neurons preferring contraversive and ipsiversive motion, respectively.
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Figure S1. Signatures of confidence in the data of van Den Berg et al. (2016)
Same as Fig. 3A for the other three participants in van Den Berg et al. (2016).
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Figure S2. Choice accuracy inferred from neural activity
Same as Fig. 3B, except that the confidence estimates obtained from the accuracy decoder are not thresholded into
high and low confidence categories. Results are qualitatively similar to those obtained from the behavioral data
(Fig. 3A).
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Figure S3. Consistency of the neural representation of motion coherence, reaction time and choice
We use only the odd or even trials to explain the standardized (z-scored) spike counts of each neuron in the
presaccadic window as a function of motion coherence, RT, and choice. The figure shows the best-fitting regression
coefficients plotted against each other. Each data point corresponds to a different Tin neuron. Panels 1-3 correspond
to the best-fitting regression coefficients for motion coherence, RT, and choice, respectively. The regression
coefficients are highly consistent across independent regression analyses.
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Figure S4. Latency to motion selectivity of individual Tin neurons
For each Tin neurons separately, we calculate the latency to motion direction selectivity using the CUSUM method
(Ellaway, 1978). The cumulative distribution of onset times is shown separately for neurons belonging to the three
clusters. The vertical arrows indicate the mean onset time for each cluster, and the horizontal line indicates the
standard error of the mean.
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Figure S5. Mean response of neurons from each cluster in the memory-guided saccade and passive
motion–viewing tasks
(A) memory-guided saccade task. Blue and red traces correspond to saccades to the target located contralaterally
and ipsilaterally, respectively. The horizontal gray bar indicates the time of target presentation. In the panels on the
right, neural activity is aligned to the go signal (i.e., the offset of the fixation point). The average time from target onset
to the go signal is 0.82 seconds. (B) Passive motion–viewing task. Blue and red traces correspond to contraverise
(leftward) and ipsiversive (rightward) motion, respectively. Traces are aligned to the onset (left) and offset (right) of the
random dot motion stimulus.
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Figure S6. Decoding and clustering without the Tin neurons with significant modulation in the passive
motion-viewing task.
We repeated the decoding and clustering analyses without the Tin neurons that significantly discriminated between
leftward and rightward motion in the passive motion viewing task. Significance was assessed using a Wilcoxon
rank–sum test comparing spike rates on leftward and rightward motion trials. Spike rates were calculated for each trial
in the epoch between 0.2s after motion onset and motion offset. Neurons with p-values lower than 0.05 were deemed
significant. The results of the decoding and clustering analyses are qualitatively similar to those obtained without
excluding these neurons. (A) Analysis equivalent to that shown in Fig. 3B. (B) Analysis equivalent to that shown in
Fig. 4B. (C) Analysis equivalent to that shown in Fig. 4C.
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Figure S7. AUCconf versus the number of clusters used in k-means
We repeat the clustering analysis applied to the regression coefficients obtained from Eq. 9, using different numbers
of clusters (abccissa). We average the spike counts in the presaccadic window of neurons belonging to the same
cluster. From these averaged spike counts, we calculate the AUCconf (ordinate) using Eq. 6, just as we do elsewhere.
We only find a significant difference in the AUCconf values between 𝑁=2 clusters and 𝑁>2 clusters (bootstrap).
P-values were higher than 0.15 for all non-significant comparisons (n.s.).
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