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ABSTRACT Synechococcus spp. are unicellular cyanobacteria that are globally dis-
tributed and are important primary producers in marine coastal environments. Here,
we report the complete genome sequence of Synechococcus sp. strain WH 8101 and
identify genomic islands that may play a role in virus-host interactions.

Synechococcus spp. are responsible for up to 16% of net primary production in the
oceans (1). Significant proportions of marine Synechococcus communities can be

lysed daily by viruses (2, 3); nevertheless, studies suggest that Synechococcus strains can
rapidly become resistant to co-occurring viruses (4, 5). In an effort to identify the
genetic determinants that lead to viral resistance, the complete genome of Synechoc-
occus sp. strain WH 8101 was sequenced.

Synechococcus sp. strain WH 8101 was obtained from F. W. Valois, who isolated it in
1981 from surface seawater collected at Woods Hole, Massachusetts (41°31=34�N,
70°40=13�W), as described previously (6). The strain has been maintained in SN medium
since isolation (6). Based on multiple DNA markers and physiological characteristics, WH
8101 has been assigned to Synechococcus clade VIII (7, 8). Only one other member of
this clade (Synechococcus sp. strain RS9917) has been sequenced.

A single colony of WH 8101 was isolated on an SN soft-agar plate and then regrown
in SN medium prior to DNA isolation (6). Genomic DNA was sequenced using both
Illumina MiSeq and PacBio RS II platforms. For Illumina sequencing, DNA was isolated
using the PowerWater DNA isolation kit (MoBio Laboratories), and a DNA library was
prepared using the WaferGen Apolla 324 next-generation sequencing library prepara-
tion system with an IntegenX PrepX DNA library kit. The library was sequenced on the
Illumina MiSeq system using the 500-cycle reagent kit v.2. For PacBio sequencing, DNA
was isolated using the Genomic-tip 100/G kit (Qiagen), libraries were prepared using
the standard PacBio 20-kb protocol, and fragments were size selected (�10 kb) with
BluePippin (Sage Science) and sequenced on a PacBio RS II system in one single-
molecule real-time (SMRT) cell, using P6-C4 chemistry (6-h movie). Reads (50,981 reads;
N50, 20,257 bp) were filtered (�750 bp) and assembled using HGAP.3 (seed cutoff, 6 kb).
The consensus sequence was polished by additional rounds of PacBio read mapping
and was circularized using information from the bridge mapper tool, all within the
SMRT Analysis software (v.2.3.0.140936), using default settings. MiSeq reads were
mapped to the initial PacBio assembly using Geneious v.10 with default settings and
used for additional quality control and manual correction of indel errors. Coverages
were 45� and 175� for the MiSeq and PacBio reads, respectively. A single circular
2,630,292-bp assembly with a G�C content of 63.3% was obtained. The genome was
initially annotated using RASTtk (9) and subsequently updated with the NCBI Prokary-
otic Genome Annotation Pipeline (NCBI RefSeq database). The genome includes 2,693
protein-coding genes, 41 pseudogenes, 6 rRNAs, and 43 tRNAs.

Genes for viral resistance are often localized to genomic islands (hypervariable
regions) in Synechococcus and Prochlorococcus spp. (4, 10). Using previously established
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criteria (10, 11), 13 genomic islands were identified in WH 8101 (Table 1). These regions
were �8 kb and/or contained at least 10 genes that were not in synteny with the
genome of the other clade VIII strain, Synechococcus sp. strain RS9917. Genomic islands
that were identified in RS9917 (11) and present in WH 8101 were also included. This
genomic sequence will be used to identify genetic determinants of cyanophage
resistance.

Data availability. The complete genome sequence of Synechococcus sp. strain WH
8101 has been deposited in GenBank (accession number NZ_CP035914), along with
raw sequence and methylation data (accession number PRJNA518918).
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TABLE 1 Genomic islands in Synechococcus sp. WH 8101

Island
Genomic location
(nucleotides, start to stop)

Length
(nucleotides)

No. of
genes Comparison to strain RS9917a

ISL1 45853 to 54972 9,120 9 Insertion in WH 8101
ISL2 214977 to 295023 80,047 55 ISL7 in RS9917; 29 common genes
ISL3 624692 to 634958 10,267 9 Insertion in WH 8101
ISL4 655863 to 667839 11,977 14 Same genes as ISL5 in RS9917
ISL5 764807 to 811294 46,488 40 ISL4 in RS9917; 13 common genes
ISL6 959925 to 1050615 90,691 100 ISL2 in RS9917; 6 common genes
ISL7 1142010 to 1223399 81,390 125 ISL13 in RS9711; 6 common genes
ISL8 1256253 to 1278602 22,350 28 ISL12 in RS9917; 20 common genes
ISL9 1289127 to 1322908 33,782 23 Insertion in WH 8101
ISL10 1588101 to 1721246 133,146 153 ISL10 in RS9917; 71 common genes
ISL11 1886863 to 1966465 79,603 65 ISL9 in RS9117; 39 common genes
ISL12 2264944 to 2273061 8,118 7 ISL8 in RS9917; 4 common genes
ISL13 2572188 to 2582000 9,813 11 Insertion in WH 8101
a Islands in Synechococcus sp. strain RS9917 were identified by Dufresne et al. (11).
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