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Intrinsically disordered proteins lack a stable tertiary structure and form dynamic
conformational ensembles due to their characteristic physicochemical properties and
amino acid composition. They are abundant in nature and responsible for a large variety of
cellular functions. While numerous bioinformatics tools have been developed for in silico
disorder prediction in the last decades, there is a need for experimental methods to verify
the disordered state. CD spectroscopy is widely used for protein secondary structure
analysis. It is usable in a wide concentration range under various buffer conditions. Even
without providing high-resolution information, it is especially useful when NMR, X-ray, or
other techniques are problematic or one simply needs a fast technique to verify the
structure of proteins. Here, we propose an automatized binary disorder–order
classification method by analyzing far-UV CD spectroscopy data. The method needs
CD data at only three wavelength points, making high-throughput data collection possible.
The mathematical analysis applies the k-nearest neighbor algorithm with cosine distance
function, which is independent of the spectral amplitude and thus free of concentration
determination errors. Moreover, the method can be used even for strong absorbing
samples, such as the case of crowded environmental conditions, if the spectrum can be
recorded down to the wavelength of 212 nm. We believe the classification method will be
useful in identifying disorder and will also facilitate the growth of experimental data in IDP
databases. The method is implemented on a webserver and freely available for academic
users.
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disorder–order classification, machine learning

INTRODUCTION

Intrinsically disordered proteins (IDPs) or protein regions (IDRs) lack a stable tertiary structure and
form dynamic conformational ensembles (Dunker et al., 2002; Habchi et al., 2014). They are
abundant in nature, especially in eukaryotes, and responsible for a plethora of cellular functions
(Peng et al., 2015). Overall, 3–17% of eukaryotic proteins are estimated to be fully disordered
(Dunker et al., 2000), and 30–50% of proteins contain IDRs (Dunker et al., 2000; Ward et al., 2004).
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The recently published state-of-the-art structure prediction
method, AlphaFold2, provides confident prediction for only
58% of the residues on nearly the entire human proteome
(Tunyasuvunakool et al., 2021), indicating that more than 40%
of the residues fall into regions with significant structural
flexibility. The biological importance of disordered proteins is
underlined by the fact that malfunction of IDPs can lead to a
variety of diseases (Uversky et al., 2008; Ruan et al., 2019). Given
that IDPs have fundamentally different physicochemical
properties than globular proteins, identifying disordered
proteins and regions based on the amino acid sequence is
highly desirable. In the last decade, dozens of bioinformatics
tools have been developed to predict intrinsic disorder and its
molecular function (Varadi et al., 2015; Katuwawala et al., 2020).
Although these tools provide fast and high-throughput analysis,
they have a substantial error rate and the actual predictions need
experimental verification. The main experimental techniques
applied to investigate intrinsic disorder include NMR, X-ray,
circular dichroism (CD) spectroscopy, cryo-EM, and other
spectroscopic techniques and techniques that study the
hydrodynamic radius or surface exposure. Despite significant
efforts to characterize structural disorder in detail, our knowledge
remains limited. Even DisProt, the largest database of manually
curated, experimentally verified disordered proteins and regions
(Quaglia et al., 2021), only contains annotations of around 2000
proteins covering a small fraction of the predicted amount. Most
of the structure characterization methods have high time and
sample requirements; hence, there is a high need for fast, high-
throughput, and inexpensive experimental methods to verify
disorder.

CD spectroscopy has been widely used to study the structure
of proteins. Near-UV CD spectra in the 250–300 nm wavelength
range are determined by the aromatic side chains and their
environment. In disordered conformation, these side chains
are accessible for the polar solvent, and their environment is
averaged out resulting in a nearly zero CD signal. Therefore, such
a low signal could be the sign of disorder; however, IDPs usually
contain a low number of aromatic residues, which restricts the
practical use of this method. Moreover, near-UV CD needs a
relatively large amount of sample because of the long path length
and high required protein concentration (Woody and Berova,
2000). Far-UV CD spectra are characteristic of the secondary
structure of proteins and need two orders of magnitude less
amount of protein for the measurements than near-UV
measurements. Disordered proteins exhibit characteristic CD
spectra with an intensive minimum in the vicinity of 200 nm
and a low amplitude around 222 nm (Adler et al., 1973;
Provencher and Gloeckner, 1981; Johnson, 1988; Kelly and
Price, 1997; Uversky, 1999). Uversky and co-workers reported
that by using these two wavelengths for a double plot, it is possible
to distinguish intrinsically disordered proteins from the ones with
high secondary structure contents, such as molten globules and
native globular proteins (Uversky, 2002; Uversky, 2003; Uversky
and Fink, 2004). Our aim in the present work was to revise this
observation and work out an automatized method for improved
identification of IDPs by CD spectroscopy. We collected a larger
reference set of CD spectra of ordered globular proteins and

disordered polypeptide chains based on our own measurements,
data downloaded from the protein CD database (PCDDB)
(Whitmore et al., 2017), and collected from the literature.
Starting with the double-wavelength plot, we applied various
algorithms searching for an optimal method to identify
disordered proteins from the spectral information gathered by
CD spectroscopy. We examined the number and values of
wavelengths needed for accurate disorder detection. To find
the optimal method, the robustness regarding the sensitivity
for incorrect concentration determination and experimental
noise were also taken into account. Based on our findings, we
provide a thorough comparison of the various analysis methods
and propose an optimal protocol for IDP detection.

MATERIALS AND METHODS

CD Spectroscopy
Synchrotron radiation CD (SRCD) spectra were recorded at the
DISCO beamline of SOLEIL French synchrotron facility
(proposal Nos. 20181890, 20191810, and 20200751). Samples
at 5–7 mg/ml were measured in CaF2 cells with path lengths of
6–20 μm. In total, 6–12 scans were accumulated in the
175–270 nm or 180–270 nm wavelength range depending on
the sample absorption; 1 nm data steps with a lock-in time
constant of 300 ms and integration time of 1,200 ms were
used. After baseline subtraction, the spectrum was corrected
with the CSA calibration (Chen and Yang, 1977). Protein
concentration was determined by directly measuring the
absorbance of the CD sample and buffer reference at 205 and
214 nm (Kuipers and Gruppen, 2007; Anthis and Clore, 2013).
For the case studies, CD experiments were carried out on a Jasco
J-810 spectropolarimeter (Japan Spectroscopic Co., Tokyo,
Japan). Protein concentrations 10, 1, and 0.1 mg/ml were used
with quartz cells of 13 μm, 103 μm, and 1 mm path lengths,
respectively.

Mathematical Models Used for
Disordered–Ordered Binary Classification
For disordered–ordered classification, the following built-in
models of the MATLAB Classification Toolbox were used.

Tree:A binary classification decision tree is a learning method,
where internal nodes represent the inspection of a predictor,
branches show the outcome of the inspection, and leaf nodes
represent class labels. Based on the number of leaves, we
categorized trees as “simple” and “medium.” The maximum
number of leaves is 4 in a simple tree and 20 in a medium tree.

Support vector machines: SVMs are methods which use a
subset of training data to create a decision function. The data
points in this subset are called support vectors. We used different
kernel functions for our models: linear and radial basis function
(RBF). SVM algorithms aim to find a hyperplane that separates
two labeled classes with the widest possible margin.

K-nearest neighbors:KNN classification is based on finding the
k-nearest training point to the new data point and using them to
predict the label. We used four types of KNN methods which
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calculate the Euclidean distance between data points. “Fine,”
“medium,” and “coarse” examine 1, 10, and 100 nearest
neighbors, respectively. “Weighted” applies a squared inverse
distance weighting function on the 10 nearest neighbors,
which results in nearer neighbors having a larger impact. The
fifth KNN method we implemented uses a different distance
metric; it considers the cosine of the angle between vectors
pointing from the origin to data points searching for 10
nearest neighbors.

Discriminant: Discriminant analyses create a decision surface,
which may be linear or quadratic. In the case of “diaglinear” and
“diagquadratic” models, the covariance matrices are diagonal
(i.e., all the off-diagonal elements—covariances—are zeros;
only variances are non-zero values). As opposed to SVM
models, discriminant analyses do not include the condition of
making margins as wide as possible.

Steps of Finding the Optimal Classification
Method
We aimed to classify proteins based on two or three data points.
Therefore, we implemented classifiers that consider either a pair
or a triplet of wavelengths, and perform classification by using CD
values at the given wavelengths. Wavelength pairs and triplets
consisted of wavelengths with a minimum pairwise difference of
3 nm in the 175–250 nm wavelength range. To develop the
disorder determination method in a certain wavelength range,
we used all proteins whose spectra covered the studied range.

Leave-one-out cross-validation error rates were calculated by
summing misclassified proteins and dividing their number by the
total number of proteins. Error rates were determined separately
for disordered and ordered proteins and for the total dataset.

The robustness of each method was also tested. We simulated
the effect of inaccurate concentration measurement by rescaling
the amplitude of test spectra and examined the sensitivity of
methods to the scaling factor in the range of 0.5–2. Furthermore,
the dependence of the methods’ accuracy on noise was evaluated.
Noise was added independently to each CD value using random
values from normal distribution (µ = 0 M−1 cm−1, σ = 0.1 M−1

cm−1 or σ = 0.05 M−1 cm−1). The effect of noise was calculated by
averaging the results of 1,000 simulations.

When picking the best classifiers, the global error, error on
disordered structure, preferably higher wavelengths for analysis,
and the robustness were considered.

MATLAB scripts used in the present study are provided in the
Supplementary Material.

RESULTS AND DISCUSSION

Reference Dataset of IDPs and Ordered
Proteins
To investigate the problem of distinction between disordered
and ordered protein structures based on CD data alone, we
collected the CD spectra of IDPs and proteins with ordered
structures from various sources. In total, 140 high-quality
SRCD spectra in a wide wavelength range from 175 or

180 nm of globular native proteins were downloaded from
the protein CD databank (PCDDB) (Whitmore et al., 2017).
The spectra of 9 globular native proteins, 2 amyloid fibrils, and
26 disordered polypeptides were the result of our SRCD
measurements. These include IDPs, such as ERD14 (early
responsive to dehydration) plant chaperone and its variants
(Murvai et al., 2021), histone–lysine N-methyltransferase
constructs, artificial peptides designed for maximal disorder,
and β-structure-rich globular proteins, such as dUTPase and
SH3 domains that have CD spectra similar to disordered
proteins. Overall, 85 spectra were collected from the
literature (based on the references in Uversky (2002),
Uversky (2003), Uversky and Fink (2004)), including those
of 30 globular proteins and 55 IDPs. These spectra varied in
their wavelength range. To develop the disorder prediction
method in a certain wavelength range, we used all proteins
whose spectra covered the studied range. The proteins of the
reference set are presented in Supplementary Table S1, and
the size of the reference set as a function of the wavelength
cutoff is presented in Supplementary Figure S1.

Classical CD Plot of IDPs and Ordered
Proteins
We reproduced the double-wavelength plot using CD
intensities at 200 and 222 nm wavelengths on the available
data on proteins reported by Uversky (2002), Uversky (2003),
Uversky and Fink (2004), as shown in Figure 1A. IDPs and
globular proteins were separated with some overlap in the plot.
However, when we completed this plot with all the proteins in
our database, this picture has changed significantly
(Figure 1B). Although the newly added spectra of
disordered peptides concentrated well on the previous
disordered ones, the globular proteins covered a much
wider space and even overlapped with the disordered region
ruining the spatial separation.

The CD spectra of those globular proteins that are located in
the disordered region in the double-wavelength plot are
similar to that of the disordered ones, despite their fully
ordered globular structure (Figure 2). Their X-ray
structures revealed that these proteins have highly right-
hand twisted antiparallel β-sheet structures (Ho and Curmi,
2002; Micsonai et al., 2015) (Figure 2). This problem has
already been pointed out in our previous work (Micsonai et al.,
2018) as a major issue in the distinction between highly twisted
antiparallel β-sheets and disordered structures in secondary
structure content estimation. These results reveal that the
simple use of the 200 and 222 nm CD data might be
insufficient for the proper distinction between IDPs and
ordered proteins, and an improvement of this methodology
is highly beneficial.

Identification of IDPs Using Various
Mathematical Models
To develop a binary classification method (IDP vs. ordered
structure) for an accurate and automatized IDP identification,
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we analyzed the CD spectra of our database using various
mathematical models, such as decision trees with different
number of branches (tree: simple and medium); support vector
machines with different kernel functions [SVM: linear and
radial basis function (RBF)]; k-nearest neighbor classification
with Euclidean distance and three different numbers of nearest
neighbors, a weighted distance function and a cosine distance
metric (KNN: fine, medium, coarse, weighted, and cosine); and
discriminant analyses with linear or quadratic decision surface
including linear diagonal or quadratic diagonal models
(discriminant: linear, quadratic, diaglinear, and
diagquadratic). These models are available in the MATLAB
Classification Toolbox.

As a starting point, we tested the performance of using the
CD amplitudes at 200 and 222 nm wavelengths to identify
IDPs using the 85 spectra collected from the literature based on
Uversky’s works (Uversky, 2002; Uversky, 2003; Uversky and
Fink, 2004) as training set and using our entire database as test
set (in a cross-validated manner). SVM–RBF was proven to be

the best mathematical model providing 11.1, 3.5, and 8.6%
errors in identifying the ordered structures, disordered
structures, in overall accuracy, respectively (see also
Figure 1B). In the next step, we tested the performance of
all models using CD data at two wavelengths varying the
wavelength values to find the best performing pairs as a
function of the cutoff wavelength of the CD spectra. The
different methods varied in global error and in the error on
ordered and disordered structures. We selected the best
methods for minimal global errors and for minimal errors
in disorder prediction. The results were dependent on the
spectral range (wavelength cutoff), as shown in
Supplementary Table S2. Generally, decision tree
algorithms provided good performance; however, other
models also gave similar results. The error was increasing
with higher cutoff wavelengths. As an example, with 200 nm
cutoff, SVM-linear showed 7.7 and 2.5% errors for ordered and
disordered structures and 6.1% global error using the 204 and
215 nm wavelength pair, respectively.

FIGURE 1 | 2D-plot of CD data of IDPs and ordered proteins. (A)Mean residue ellipticities at 200 and 222 nm wavelengths for IDPs (yellow) and globular proteins
(light blue) were collected from the literature for proteins previously studied by Uversky (2002), Uversky (2003), Uversky and Fink (2004). “Random coil” and “premolten
globule” types of IDPs were not distinguished in our work. (B) Plot of the full reference database. IDPs over the ones presented in (A) are shown in red, while the additional
globular ones are shown in dark blue. Hollow circles show those proteins that are incorrectly classified as disordered or ordered by using the 200 and 222 nm
wavelength data of proteins presented in panel A as training set for disordered–ordered classification (see later). Note the large spectral (and conformational) space
covered by the ordered proteins.

FIGURE 2 | CD spectra of disordered proteins and some globular proteins with similar spectra. Proteins rich in highly twisted antiparallel β-sheets (colored spectra
and corresponding structures) exhibit CD spectra reminiscent of disordered proteins (gray), which makes the distinction between them difficult. Alpha-chymotrypsin
(PDB ID: 5CHA), chymotrypsinogen (2CGA), trypsin inhibitor (5PTI), elastase (3EST), ferredoxin (2FDN), ecotin (1ECZ), dUTP pyrophosphatase (1Q5U), and trypsin
inhibitor (Kunitz) (1BA7) are shown.
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On further analysis, we studied if disorder–order
classification can be improved by using three data points.
Spectra with 175 nm cutoff could be classified without any
error by the SVM–RBF algorithm using the “182-
194–209 nm” data triplet (Table 1). It is worthy to note
that the number of disordered spectra was only 21 in this
wavelength range. For all algorithms, the error was increasing
with higher wavelength cutoff; however, it was significantly
lower in the case using two wavelengths for classification. At
each cutoff wavelengths, 3–5 algorithms gave similar results,
making it difficult to select between them at first sight.
Generally, SVM-linear and RBF, KNN-fine and cosine,
tree-medium, and discriminant-quadratic algorithms using
various wavelength triplets worked efficiently. At 200 nm
cutoff, the accuracy is decreased, which, we believe, is
because the spectra collected down to 175 or 180 nm have
higher quality than the spectra collected from the literature
with 190 or 200 nm wavelength cutoffs. Spectra in the PCDDB
and collected by us underwent a careful inspection (Woollett
et al., 2013). However, the error of the classification is still
sufficiently low for these methods to be suitable as
experimental classifiers for IDPs (Table 1). The error of
classification for all the algorithms as the function of cutoff
wavelength for two and three wavelengths is presented in
Supplementary Figures S2–S5. Tables presenting the detailed
results of all algorithms are provided as the Supplementary
Material.

Effect of Concentration Error on
Disorder–Order Classification
Due to their unusual amino acid composition, concentration
determination of IDPs with the widely used basic techniques is
challenging and might lead to large inaccuracies (Szőllősi et al.,
2007). Measurement by the aromatic absorption is
problematic because of the usually low number of such
residues in IDPs. Colorimetric assays are also affected by
the special amino acid composition of IDPs and are
sensitive to contaminations. One solution might be the
absorbance measurement at 205 or 214 nm (Kuipers and
Gruppen, 2007; Anthis and Clore, 2013; Micsonai et al.,
2021); however, buffer absorption can limit its applicability.
Measurement by mass of the dry sample usually also produces
errors because of the bound water or remaining salts. We
estimated that a 20% error might regularly occur in
concentration measurements of IDPs, which might have an
effect on the accuracy of disorder classification. Thus, we
tested the robustness of the classification algorithms for
such errors by re-evaluating the spectra after rescaling them
with factors between 0.5 and 2. Supplementary Figure S6
shows the dependence of the classification error on the
rescaling for the various algorithms presented in Table 1.
Most of the methods showed a surprisingly high sensitivity
for concentration errors. The SVM–RBF algorithm works
without error on the correctly normalized spectra (scale

TABLE 1 | Disorder–order classification using three wavelengths.a

Wavelength (nm) Error (%)

Cutoff (nm) Algorithm WL1 WL2 WL3 Ordered Disordered Global

175 SVM–RBF 182 194 209 0 0 0
Discr-quadratic 179 214 225 0.8 0 0.7
Tree-medium 192 220 228 0.8 0 0.7

180 KNN-fine 184 197 208 0.7 0 0.6
Discr-quadratic 197 216 221 1.3 0 1.1
SVM–RBF 195 217 227 2 0 1.7
Tree-simple 185 192 211 2 0 1.7

185 Tree-medium 191 201 250 1.3 2.7 1.6
SVM–RBF 195 217 227 2 2.4 2.1
Discr-quadratic 199 213 234 2 2.4 2.1

190 Tree-medium 191 201 250 1.9 5.6 2.8
SVM–RBF 196 216 229 2.4 5.1 3.1
Discr-quadratic 199 213 234 3.5 1.7 3.1

195 Discr-quadratic 199 213 234 3.5 2.9 3.3
SVM-linear 196 212 235 4.1 1.5 3.4
KNN-cosine 197 206 233 4.7 1.5 3.8
SVM–RBF 196 216 223 3.5 4.4 3.8
Discr-linear 195 219 237 3.5 4.5 3.8

200 KNN-cosine 212 217 225 4.7 1.5 3.8
SVM-linear 202 205 231 7.2 2.5 5.7
SVM–RBF 206 212 229 5 7.5 5.7
Discr-quadratic 201 211 215 6.6 3.8 5.7
KNN-fine 212 215 227 3.9 10 5.7

205 KNN-cosine 212 217 225 3.3 7.4 4.6
SVM–RBF 206 212 229 5 7.4 5.7
KNN-fine 212 215 227 3.9 9.9 5.7

aAlgorithms showing the least errors using three wavelengths (WL1, WL2, WL3) for classification as a function of the cutoff wavelength are presented. For training dataset, for a given
wavelength triplet, all proteins’ spectra that covered those wavelengths were used.
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factor = 1); however, even a 10% increase in the spectral
amplitude increases the error on the disordered structure
identification to over 10% (Figure 3A). The exception is the
KNN-cosine method, which showed no dependence on the
spectral amplitude (Figure 3A). The “cosine” distance metric
of the KNN algorithm uses the cosine of the angle between
vectors pointing from the origin and data points. The direction
of these vectors will neither change with scaling nor will the
angles. Considering these facts, we propose the selection of
KNN-cosine as the optimal classification algorithm. It
performs with acceptable accuracy and is free of
concentration errors (Figures 3B,C). Table 2 shows the
performance of KNN-cosine as a function of the wavelength
cutoff. Intriguingly, the best wavelength triplet in the cutoff
range from 175 to 179 nm is proven to be the “214-
218–232 nm” triplet. It suggests that we do not really need

CD data down to 175 nm for the binary classification.
However, with a cutoff of 200 nm, KNN-cosine provided
significantly lower accuracy, despite the fact that the lower
wavelength range was not needed for the method. We believe
this is because of the quality difference between SRCD spectra
collected down to 175 nm and conventional measurements
with 200 nm wavelength minimum. To address this question,
further investigations were carried out.

Effect of Experimental Noise
To investigate the effect of spectrum quality/spectral noise on the
disordered–ordered classification, we added artificial noise to the

FIGURE 3 | Effect of concentration error on disordered–ordered classification and introduction of the KNN-cosinemethod. (A) Error of the SVM–RBF algorithm as a
function of the scaling factor on the spectra of the database with 175 nm cutoff are shown for disordered (red) and ordered (black) structures. The global error is shown in
blue. Dashed lines show the errors of classification using the KNN-cosine algorithm for disordered (red), ordered (black), and the overall error (blue). For convenience,
±20% and ±50% changes in the concentration (i.e., in the scaling factor) are shown. (B)Reference points in the space determined by the CD datameasured at 197,
206, and 233 nm wavelengths and an example for vectors by using the KNN-cosine method. Red and blue points represent ordered and disordered proteins,
respectively. (C) The distance metric of this KNN algorithm uses the cosine of the angle between vectors pointing from the origin to data points. The prediction is based
on the labels (ordered/disordered) of the first 10 reference points with the lowest “distance” from the test point. The direction and the angles of the vectors will not change
with scaling, that is, the method is independent of concentration errors.

TABLE 2 | Accuracy of KNN-cosine algorithm as a function of cutoff wavelength.a

Wavelength (nm) Error (%)

Cutoff (nm) WL1 WL2 WL3 Ordered Disordered Global

175 214 218 232 1.6 0 1.3
176 214 218 232 1.5 0 1.3
177 214 218 232 1.5 0 1.3
178 214 218 232 1.5 0 1.3
179 214 218 232 1.5 0 1.3
180 197 206 233 4 0 3.4
183 197 206 233 4 0 3.3
185 197 206 233 3.9 0 3.1
190 197 206 233 4.7 1.7 3.9
195 197 206 233 4.7 1.5 3.8
198 198 205 237 4 2.9 3.7
200 212 217 225 3.3 7.5 4.6
205 212 217 225 3.3 7.4 4.6

aWavelengths of the data points (WL1, WL2, WL3) for the best performance at each
cutoff and the errors of classification are shown. FIGURE 4 | Accuracy of the KNN-cosine method as a function of

wavelength cutoff. Error on disordered (red) and ordered (black) proteins and
the global error (blue) are shown with solid curves for the original spectra and
with dashed and dotted lines for spectra with added noise of σ = 0.05
and 0.1 M−1cm−1, respectively. Up to 197 nm cutoff, the “197-206-233 nm”

triplet and above 197 nm, the “212-217-225 nm” triplet were used for
analysis.
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spectra tested. The noise was added independently to each CD
value using random values from normal distribution (µ = 0 M−1

cm−1, σ = 0.1 M−1 cm−1 or σ = 0.05 M−1 cm−1). The effect of noise
was calculated by averaging the results of 1,000 simulations on
each of the wavelength triplets of the KNN-cosine model on the
possible wavelength cutoff ranges (Supplementary Figure S7).
The addition of noise significantly increased the error of
classification. Noise had the highest effect when using the
“214-218-232 nm” data triplet possibly because 214 and
218 nm data are close to each other. The “197-206-233 nm”
triplet was more robust for noise and generally showed a good
performance for all possible wavelength ranges from 175 nm up
to 197 nm cutoffs. Therefore, we suggest using this model as a
classification tool. Above 197 nm, the “212-217-225 nm” data
triplet should be used (Supplementary Figure S7). Performance
of the KNN-cosine method combined for all wavelength cutoffs
including the effect of noise is presented in Figure 4.

Based on all these results, for the best disorder–order
classification, it is recommended to collect good-quality CD
spectra down to ~195 nm and use the KNN-cosine algorithm
with data at 197-206-233 nm wavelengths.

Disorder Classification for Limited
Wavelength Range, Under Strong
Absorbing Conditions
It is an interesting and maybe unexpected finding that KNN-
cosine with the data triplet “212-217-225 nm,” that is, with
212 nm lowest wavelength, is a good choice for disorder
classification. Although the error shown in Figure 4 is
increased for cutoffs above 197 nm, this is somewhat
misleading. This method gives better results for high-
quality spectra recorded down to 175–180 nm even without
using any of their data points below 212 nm for the
classification (Supplementary Figure S7). The error on
these spectra, downloaded from PCDDB or measured by us

using SRCD, is 3.3, 0, and 2.8% for ordered structure,
disordered structure, and globally, respectively. These
spectra were treated and validated using careful protocols
(Kelly et al., 2005; Woollett et al., 2013; Micsonai et al., 2021).
The 89 spectra collected from the literature have obviously
lower average quality, and this increases the error of the
classification on them to 3.3, 10.9, and 8.24% for
disordered and ordered structures and for global error,
respectively. These calculations were performed in a leave-
one-out cross-validated manner using all available data as
training dataset. Careful, noiseless experiments with correct
baseline subtractions might give better accuracy than the
average error found here.

A real advantage of the KNN-cosine method with “212-
217-225 nm” data is that it can be used for CD spectra
recorded in the presence of strongly absorbing solutions
such as the case of chemical denaturants (e.g., urea and
GdnHCl), or under crowded conditions if the spectrum can
only be recorded down to ~210 nm. It might help to study the
crucial question if a supposedly IDP will indeed exhibit
disordered structures under crowded conditions or become
structured (Szasz et al., 2011; Qin and Zhou, 2013; Banks et al.,
2018; Simpson et al., 2020; König et al., 2021).

Experimental Classification of Disorder vs.
In Silico Predictions
Numerous bioinformatics tools have been developed in the
last decade to predict intrinsic disorder from the amino acid
sequence (Katuwawala et al., 2019; Liu et al., 2019; Necci et al.,
2021). Among them, AlphaFold2 was proven to be the most
accurate method to detect disorder. Low values of the plDDT
parameter (confidence) have been shown to be indicative of
disordered regions (Jumper et al., 2021). AlphaFold2 and
previous methods are useful when investigating large
datasets, and high-throughput analysis is needed, and they

FIGURE 5 |Case studies showing the structural variability of individual proteins, which can only be revealed experimentally. (A)CD spectrum of α-synuclein in water
is characteristic of a fully disordered chain. In 30% TFE, the protein exhibits an ordered, α-helix-rich conformation, and at higher concentrations (10 mg/ml), it readily
forms oligomers with a spectral shape of β-structure. (B) In the native state, β2-microglobulin (β2m) exhibits a β-sandwich fold of an antiparallel β-structure. At low pH or in
3 M GdnHCl, its structure becomes disordered. (C) ERD14 disordered plant chaperone and its artificial pair consisting of the full scrambled sequence both exhibit
disordered structure in water. The presence of 30% TFE induces the formation of α-helix in the wild-type protein, while its scrambled variant preserves its disordered
conformation. For (C), experimental data modified from Murvai et al. (2021) were used with the authors’ permission. The results of the binary classification are shown by
O (ordered) and D (disordered) letters in the figures.
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indeed provide good statistics. However, in silico predictions
always have a level of uncertainty and thus need experimental
verification, especially when investigations are narrowed
down and focus on a particular protein. To confirm this
statement, we analyzed the disordered proteins of our
reference database by AlphaFold2 and found that several
disordered chains were mistakenly predicted to be highly
α-helical, such as α-synuclein, thymosin-α1, basic
subdomain of the c-Jun oncoprotein, α-tubulin (fragment
404–451), β-tubulin (fragment 395–445), S21 protein from
the 30S subunit of the E. coli ribosome, and artificial
disordered peptides #1, 2, and 6. Moreover, computational
methods, like AlphaFold2, can neither take the actual
environmental conditions into account, such as pH, ionic
strength, temperature, the presence of additives or crowding
agents, the effect of protein concentration, intermolecular
interactions, nor accurately calculate the effect of single
mutations (unless the crystal structure was already solved
and deposited in the PDB) and the effects of post-translational
modifications (e.g., phosphorylation) (Pak et al., 2021;
Perrakis and Sixma, 2021). As IDPs are specifically
sensitive to their surroundings, depending on the solvent
environment, a single polypeptide chain can take up
various conformations, which results in important
biological readouts. Therefore, an experimental method,
such as CD spectroscopy, can validate and specify the
prediction of AlphaFold2 and should be used for this
purpose. When CD spectroscopy confirms the prediction of
AlphaFold2, the site-specific information of AlphaFold2 is
likely valuable. However, if there is a large discrepancy
between the prediction of AlphaFold2 and the experimental
results, then the priority has to be given to the experience.

Case Studies
As a further support for the aforementioned statement, here, we
provide specific case studies presenting the dependence of the protein
structure and disorder on the buffer conditions. These reveal the
necessity of experimental techniques and the limitations of in silico
predictions for the detection of protein disorder. One example is the
well-known α-synuclein, a protein associated with Parkinson’s
disease. It is an IDP, and CD spectroscopy shows that indeed, the
protein is disordered under physiological buffer conditions. In the
presence of 30%TFE, whichmimics a less polar solvent environment,
such as inmembranes, the protein becomes ordered with 47% α-helix
content as estimated from the CD spectrum by the BeStSel algorithm
(Micsonai et al., 2015; Micsonai et al., 2018). At concentrations above
2mg/ml, α-synuclein readily forms oligomers in 30% TFE with a
spectral shape characteristic of the β-structure. The corresponding
CD spectra of α-synuclein and results of the binary classification are
shown in Figure 5A. In contrast, AlphaFold2, irrespectively of the
buffer conditions, erroneously predicts with high confidence that 64%
of the α-synuclein chain is in an α-helical structure.

β2-microglobulin (β2m) is the light chain of MHC-1 and
can also be found in a monomeric form in the blood. It causes
serious complications upon long-term dialysis depositing in
the form of amyloid fibrils in the osteoarticular system of
patients. The native protein exhibits an immunoglobulin fold

with an antiparallel β-sandwich, which is a cinch for
AlphaFold2. However, β2m is sensitive to the drop of pH;
it becomes unfolded below pH 4, which cannot be deduced
from the AlphaFold2 prediction. We also present the
disordered spectrum of the protein in 3 M GdnHCl,
showing that it is possible to identify disordered structures
even in highly absorbing solutions by our method
(Figure 5B).

ERD14 is a disordered plant chaperone, which is correctly
predicted by AlphaFold2. However, in 30% TFE, the protein gains
a significant amount of α-helix, which turns out to be indispensable
for the protein’s function (Murvai et al., 2020). An artificial variant of
ERD14 with a full-scrambled sequence (having the same amino acid
composition) and no biological function is similarly disordered in
water; however, in the presence of TFE, it still preserves its disordered
conformation. In this type of comparison, CD spectroscopy reveals
the secondary structure forming tendency of disordered wild-type
ERD14 under suitable conditions or upon intermolecular interactions
(Figure 5C).

In our previous work on a Trp-cage miniprotein (Kardos et al.,
2015), we showed that a single side-chain phosphorylation can cause
drastic conformational changes. Our classification shows that the
protein obviously loses its α-helix content and becomes disordered
upon the phosphorylation of its Ser9 residue. Such drastic change is
also missed when the structure is predicted with AlphaFold2.

These examples reveal the limitations of in silico predictions and
the necessity of integration of various experimental techniques for
the detection of protein disorder.

Limitations: Intrinsically Disordered
Regions (IDRs)
The binary classification method presented here is to identify
essentially disordered proteins, that is, to detect “global” disorder.
In the case of partial disorder, this binary classification will not detect
a disordered protein region of an otherwise ordered protein. In such a
case, partial disorder can be deduced from the secondary structure
composition determined by analyzing the entire CD spectrum with
some of the available methods, such as BeStSel (Micsonai et al., 2018;
Micsonai et al., 2021). Upon intermolecular interactions of disordered
proteins, localized segments might take up ordered structure, which,
depending on the size of the segment, might not change the result of
the classification. To study such partial structural changes, a full CD
spectrum analysis is required with BeStSel (Micsonai et al., 2015;
Micsonai et al., 2018) or other algorithms (Sreerama and Woody,
2000; Lobley et al., 2002).

CONCLUSION

Intrinsically disordered proteins are abundant in nature and
responsible for a plethora of cellular functions (Dunker et al.,
2002; Habchi et al., 2014). They lack a stable tertiary structure
and form dynamic conformational ensembles due to their
characteristic physicochemical properties and amino acid
composition (Varadi et al., 2015; Katuwawala et al., 2020).
Although numerous bioinformatics tools have been developed
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for disorder prediction in the last 2 decades, there is still a high
need for experimental verification of the disordered state.
Here, we proposed an automatized binary disorder–order
classification by analyzing far-UV CD spectroscopy data.
The method uses CD data at three wavelength points,
which makes high-throughput data collection possible. To
reach the best classification accuracy, CD of the protein
should be measurable down to 197 nm in good quality.
However, in case of strong absorbing samples, such as in
crowded environmental conditions, 212 nm lowest
wavelength still provides acceptable performance. The
mathematical analysis uses the k-nearest neighbor
algorithm with cosine distance function, which is
independent of the spectral amplitude, that is, free of
concentration determination errors. We believe the
classification method will be useful in identifying or
verifying disorder in individual problems and will also
facilitate the growth of experimental data in IDP databases,
such as DisProt (Quaglia et al., 2021). The method is
implemented on a webserver and freely available for
academic use at https://bestsel.elte.hu/idp_classification.php.
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