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Abstract

Captive environments trigger the propagation and multiplication of parasites among different

reptile species, thus weakening their immune response and causing infections and diseases.

Technological advances of convolutional neural networks have opened a new field for detect-

ing and classifying diseases which have shown great potential to overcome the shortcomings

of manual detection performed by experts. Therefore, we propose an approach to identify six

captive reptiles parasitic agents (Ophionyssus natricis, Blastocystis sp, Oxiurdo egg, Rhyti-

doides similis, Strongyloides, Taenia) or the absence of such parasites from a microscope

stool images dataset. Towards this end, we first use an image segmentation stage to detect

the parasite within the image, which combines the Contrast Limited Adaptive Histogram

Equalization (CLAHE) technique, the OTSU binarization method, and morphological opera-

tions. Then, we carry out a classification stage through MobileNet CNN under a transfer

learning scheme. This method was validated on a stool image dataset containing 3616

images data samples and 26 videos from the six parasites mentioned above. The results

obtained indicate that our transfer learning-based approach can learn a helpful representa-

tion from the dataset. We obtained an average accuracy of 94.26% across the seven classes

(i.e., six parasitic agents and the absence of parasites), which statistically outperformed, at a

95% confidence level, a custom CNN trained from scratch.

Introduction

Reptile parasitology research has not been fully explored in the scientific literature [1]. Para-

sites are one of the most common infectious agents and easily spread within wildlife manage-

ment and care centers [2], which can cause injury or immune suppression in reptiles,
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increasing the mortality rate or leading to secondary diseases [3]. It has been shown that some

types of parasites cause hepatitis in snakes [4]; others affect the behavior and physiology of the

lizards, and even some parasites can cause chronic enteritis with edema and hemorrhagic

intestinal mucosa [4]. Also, mites in reptiles cause weakness due to blood loss, pneumonia,

and even septicemia [5]. The need to control parasitism in captive species is important because

they can be a source of transmission of zoonotic diseases, which in turn may be transmitted

from animal to human [6]. Manual parasite classification methods involve analyzing stool

microscope images by experts. However, this task requires significant effort and time since, in

a center where reptiles are sheltered, they may have a very high parasite load of different types,

so that it could affect their health. Automatic classification tools for parasitic animal agents can

help researchers or keepers to operate much faster and efficiently. Consequently, it is possible

to perform faster diagnoses and prepare the adequate deworming protocols to prevent diseases

in captive reptiles.

In this context, Convolutional Neural Networks (CNNs) have proven to be a valuable tool

to find and classify patterns in images easier than the specialists, which invest long identifica-

tion times prone to error. CNNs have been studied for several years, achieving good results in

image classification tasks, and by using similar models, it is possible to generalize algorithms

to solve different types of problems [7]. For example, these machine learning tools have

recently been tested in many fields including medicine and biology [8, 9]. There are several

factors [10] that influence the effectiveness of CNNs (e.g., architecture, data processing, seg-

mentation). Moreover, the complexity involved in training a CNN from scratch is in general

not feasible when the data are insufficient. Therefore, this has led to the use of supporting

methods such as data augmentation and transfer learning [11]. The latter uses a previously

trained CNN with a base task, and then fine-tune it on a target task [12].

In light of this, this paper proposes a new approach for identifying parasitic agents from

microscopic stool images or the absence of parasites that affect reptiles in captivity, through

segmentation algorithms, data augmentation strategies, and CNNs under a transfer learning

scheme.

Related work

This section describes several previous studies on similar domains as our approach employing

image processing and machine learning techniques to classify different species, including

intestinal parasites from fecal samples, as in our case. For example, in [13] an in-clinic canine

and feline fecal parasite detection system integrated with a deep learning-based algorithm was

used to locate, classify, and identify parasite eggs (i.e. Ancylostoma, Toxocara, Trichuris and

taeniid eggs) found on fecal microscopic slides. An object detection network based on Single

Shot MultiBox Detector (SSD) with Inception v2 deep learning backbone was used for locali-

zation and classification. Classification accuracy of 93.8% was achieved across the four targeted

parasites in a data set of 100 fecal samples containing a minimum of 10 fecal samples for each

targeted parasite. Similarly, in [14], a low-cost, automated parasite diagnostic system using

fecal samples of sheep via a portable robotic microscope and a CNN based on the U-Net struc-

ture is presented. The system was trained with egg parasite morphologies of ascarid, Trichuris
spp., strongyle, and Coccidia, achieving an accuracy of 92% to 96%.

Previous works [15] also investigated human intestinal parasites classification using deep

belief networks over three datasets composed of Helminth eggs, Helminth larvae, and proto-

zoan cysts, achieving about 94% of balanced accuracy score, even with considering unbalanced

classes and also fecal impurities. In [16], a ResNet152 residual network was used for the detec-

tion and identification of visible components in fecal microscopic images, including
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Hookworm eggs, Ascarid eggs, and Whipworm eggs, amongst other fecal components, report-

ing mean average precision (mAP) and an average recall (AR) of 89.95% and 93.88%, 96.90%

and 91.21%, and 88.61% and 94.37%, respectively.

Similarly, in [17], deep convolutional neural networks were used for the diagnosis of

Malaria in thick blood smears, tuberculosis in sputum samples, and intestinal parasite

(hookworm) eggs in stool samples, reporting area under the curve (AUC) up to 100% for

Malaria and 99% for tuberculosis and hookworm and average classification precisions of

97%, 93%, and 93%, respectively. While in [18], the authors present a method for the

detection and binary classification of cells infected by the malaria parasite in blood images.

They propose a segmentation stage based on morphological top-hat operators [19], and the

classification stage uses different sets of texture and shape features that feed a neural network.

[9] presents a survey of deep learning applications for medical image processing, including his-

tological and microscopical elements detection, such as parasites detection in stained blood

smear samples.

Furthermore, image processing and deep learning-based algorithms have also been used to

identify and classify tiny insects. For example, in [20], a model for the detection of adult white-

fly (Bemisia tabaci) and thrips (Frankliniella occidentalis) in the greenhouses was proposed.

An image acquisition system using adhesive traps allowed the collection of the database. Seg-

mentation was performed using the OTSU algorithm and other digital image processing meth-

ods. Finally, the classification was carried out with the help of a feed-forward neural network.

Similar work is addressed by [21], where several morphological features related to the size and

color of the specimens were extracted and analyzed to classify them.

Moreover, in [22], a real-time remote insect trap monitoring system employing IoT and a

method for classifying insects based on a Faster region-based CNN (R-CNN) and ResNet 50,

applying transfer learning was proposed. The results show that the system could automatically

identify insects with 94% accuracy.

Finally, in [23] an approach to classify protozoa and metazoa organisms in wastewater

treatment plants was proposed. Specifically, they compare discriminant analysis, neural net-

works and decision trees. They found that the discriminant analysis and the neural network

performances were quite similar, while the decision tree technique was less efficient.

Despite these efforts, as far as we know, this is the first attempt to build a machine learning

model to specifically classify reptilian parasites using convolutional neural networks from

microscopic stool images. For this, as in previous works, we will use traditional digital image

processing techniques such as binarization and segmentation [18, 20, 23] in a pre-processing

stage to prepare image samples for our classifier. Then, we are going to use a CNN-based clas-

sifier under a transfer learning scheme as in [22]. The contributions of this paper are related to

(a) the unprecedented study of an end-to-end machine learning model based on image seg-

mentation and CNNs for learning expressive features from microscopic stool images to dis-

criminate reptilian parasites; (b) the comparison of a transfer learning scheme against a

custom CNN training from scratch, and (c) the introduction of a new public dataset contain-

ing microscopic stool images collected and annotated by experts.

Materials and methods

In this section we first describe in detail the dataset from the stool sample collection to the

labeling process by an expert veterinarian. Next, we explain the stages of the proposed method,

and finally we introduce the experimental setup to evaluate our methodology.
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Dataset

The dataset collection is a five-stage procedure from stool sample collection and preparation

to microscope sample analysis as shown in Fig 1. The dataset contains images of coproparasitic

samples of two orders of reptiles: Chelonians (e.g., aquatic, semi-aquatic and terrestrial turtles)

and Squamates (Ophidians such as venomous and non-venomous snakes, and Saurians such

as lizards, geckos and iguanas) that live in captivity in the Vivarium in Quito (Ecuador)

https://vivarium.org.ec, which houses approximately 350 animals of different species of

amphibians and reptiles.

During the first stage, the collection of stool samples was carried out by the indirect

method, i.e., from the samples of stool deposited in the areas where each animal is located.

Since the indirect method employed in this study does not involve the collection of samples

directly from the animal, ethical approval was not required. The samples were collected with a

tongue depressor for each sample to avoid contamination, and then they were stored within

Fig 1. Dataset collection procedure.

https://doi.org/10.1371/journal.pone.0271529.g001
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vacuum-sealed Ziploc bags. These bags were labeled and put into an airtight cooler container,

and then stored at a temperature between 1˚C to 6˚C. In total, 118 stool samples were col-

lected, out of which 81 samples were collected from 17 different species of the suborder Ophid-
ians, 23 samples belong to 7 different species of the order Chelonians, and 14 samples

correspond to 5 different species of the suborder Saurians.
In the second stage, a sub-sampling procedure was performed, i.e., each sample was divided

into three new independent samples. So, we ended up with three different groups of 118 sam-

ples per group (i.e., a total of 354 stool samples) with the same order and suborder distribution

as the 118 original stool samples from stage 1.

In stage three, the stool samples have been prepared before being analyzed under the micro-

scope. For this purpose, three widely used methods have been used to diagnose parasitic infec-

tions. Since some method makes it possible to identify some parasites better than others, each of

the three groups of samples was analyzed by one of the three methods. Concretely, samples

from group 1 were processed by the direct method, where the fresh stool samples were directly

placed under the microscope to look for mostly mobile parasite forms. Samples from the second

group were prepared using the flotation technique method, which causes the parasite forms to

float to the surface due to their lower density compared to the density of the solution in which

they have been immersed. Finally, samples from group 3 were prepared using the sedimentation

technique, in which parasites naturally settled by gravity in a medium of lower density.

In stage four, an expert veterinarian carried out an exhaustive scanning along with each

sample to find known parasitic forms using a digital tactile microscope (Better Scientific Led

Q190A-LCD, magnification of X10, X40, and X100).

Finally, in stage 5, when a parasite was found according to the criteria of an expert veteri-

narian, the specialist zoomed in to better capture the parasite under the microscope and saved

an image or video from it with its corresponding label.

The aforementioned sample collection, preparation, and labeling processes were performed

by an expert veterinarian (author A. Núñez) specifically for this study. The specialist manually

labeled 3616 images and 26 videos containing 4849 frames from six parasites (see Fig 2 for

examples of each parasite) according to the distribution shown in Table 1. Video frames that

did not contain a parasite were removed. It is worth noting that each image or frame contains

only one parasite in our dataset.

Proposed method

Our proposed approach is composed of several stages as shown in Fig 3. The first stage

involves collecting images from reptile feces. A veterinarian specialist labeled the images

according to the parasite present in them. These images must pass through a segmentation

process to reduce background noise to appreciate the parasite as clearly as possible. Also, they

must go through a process of data augmentation to deal with the unbalanced classes. The pre-

trained MobileNet architecture is used to train a new model on our images in the transfer

learning stage. Finally, the trained model predicts the type of parasite for previously unseen

reptile feces images or the absence of parasites (i.e., hereinafter called None class). Next, we

describe in detail each of these stages.

Region segmentation. Segmentation is a digital image procedure that extracts the region

of interest from the original image [24]. The segmentation stage was crucial to achieving good

performance in the network training stage since most of the images in the database are very

noisy (e.g., as shown in Fig 4a) since the images were taken from animal feces. With this aim,

the images were processed by the following steps as depicted in Fig 4.
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• CLAHE (Contrast Limited Adaptive Histogram Equalization) is a digital image processing

technique that improves the image contrast without increasing noise. It selects different sec-

tions of the image to redistribute their pixel brightness values. As a result, the image contrast

is improved while preserving the contours of the objects [25], as shown in Fig 4b.

• After converting the RGB (red, green, blue) color image to grayscale, the image binarization

through the Otsu’s method [26] is applied, which determines the most appropriate conver-

sion threshold by minimizing the intra-class variance between two assumed pixel classes

(usually, black and white), as shown in Fig 4d.

Fig 2. Examples of each parasite. (a) Acaro (Ophionyssus natricis); (b) Blastocystis sp; (c) Oxiurdo egg; (d) Rhytidoides similis; (e)

Strongyloides; (f) Taenia.

https://doi.org/10.1371/journal.pone.0271529.g002

Table 1. Parasites database distribution.

Parasites (labels) Total images Videos

Mite—Ophionyssus natricis (ophi) 245 2 (1236 frames)

Blastocystis sp (blas) 950 0

Oxiurdo egg (oxi) 345 6 (888 frames)

Rhytidoides similis (rhyti) 1072 6 (1048 frames)

Strongyloides (strong) 648 11 (764 frames)

Taenia (tae) 356 1 (913 frames)

Total 3616 4849

https://doi.org/10.1371/journal.pone.0271529.t001
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• Morphological operations [27] (Fig 4e and 4f) are performed by eroding and then dilating

the image pixels in order to decrease noise in the image through the kernel

B ¼

1 1 1

1 1 1

1 1 1

2

6
6
6
6
6
6

3

7
7
7
7
7
7

Observe that erosion tends to remove small objects due to debris or garbage so that only sub-

stantive objects remain, whereas dilation makes objects such as the parasite more visible.

The morphological gradient (Fig 4g) of an image I is then obtained by calculating the differ-

ence between the dilation (�) and erode (⊖) operations from the previous step using the

kernel B, according to the following equation

G ¼ ðI� BÞ � ðI� BÞ 8I 2 R2

In the resulting image G, the contours of the most significant objects are emphasized [28].

Fig 3. Block diagram of the proposed approach.

https://doi.org/10.1371/journal.pone.0271529.g003

PLOS ONE Automatic identification of intestinal parasites in reptiles using microscopic stool images and CNNs

PLOS ONE | https://doi.org/10.1371/journal.pone.0271529 August 4, 2022 7 / 24

https://doi.org/10.1371/journal.pone.0271529.g003
https://doi.org/10.1371/journal.pone.0271529


• Finally, the areas of possible objects are computed after the morphological gradient opera-

tion application. We pick the top eight largest areas to feed the neural network classifier

because it is very likely that one of them contains the target object. For instance, Fig 4h and

4i. depicts how one of the largest areas might contain the parasite. Since, at test time, it may

occur that the majority or even all of the eight largest areas do not enclose any parasite due

to some sufficiently large debris or garbage within the image, the neural network includes a

no parasite class. Thus, we have added 1744 no parasite examples to the dataset from the

largest areas detected by our region segmenter with no parasite within them. They normally

Fig 4. Parasite detection using image processing techniques: (a) original image; (b) image contrast enhancement using CLAHE; (c) color

to grayscale image conversion; (d) image binarization using the OTSU method; (e) erode-based morphological operation; (f) dilate-based

morphological operation; (g) morphological gradient operation; (h) the largest areas are strong candidate regions to contain the region of

interest (the image depicts only the largest one), and (i) plotting the region of interest in the original image.

https://doi.org/10.1371/journal.pone.0271529.g004
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correspond to large pieces of debris or garbage (see Fig 5) as verified by our expert

veterinarian.

Although the segmentation stage ensures that our system automatically finds a set of candi-

date regions containing a parasite during the testing time, in order to train the neural network,

our expert veterinarian manually verified that the segmented images and video frames from

the database training data were segmented correctly. If a training example was wrongly seg-

mented, our expert veterinarian manually segmented that image. Hence, we guarantee that the

ground truth labels are entirely correct during training while avoiding biases in our classifica-

tion model.

Data augmentation. The objective of data augmentation techniques is to generate new

image samples by transforming the original one. Usually, these transformations are affine

transformations, i.e., projective transformations that do not move the objects of the image

[29]. Thus, they preserve the collinearity of the objects features in the space under analysis. At

present, data augmentation is a practical solution to train deep network models which demand

a vast amount of image samples, avoiding model overfitting. We used the following augmenta-

tion strategies:

• Rotation range: It is the degree range for random rotations. We used a range between -180

to +180 degrees.

Fig 5. Some examples of samples from the None class. They normally correspond to large pieces of debris or

garbage.

https://doi.org/10.1371/journal.pone.0271529.g005
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• Width shift range: It randomly shifts an image to the left or right by a proportional percent-

age of the image width. This value was set to 0.2, i.e., 20% of the image width.

• Height shift range: Similar to the previous transformation, but the shift is up or down. This

value was set to 0.2.

• Zoom range: It allows for varying the zoom of an image randomly. This value was set to 0.2,

i.e., the zoom range lies between 80% to 120%.

• Horizontal flip: It randomly allows an image to be flipped horizontally.

• Vertical flip: It randomly allows an image to be flipped vertically.

Through this process, we augmented the dataset instances so that each class has roughly

1500 images, including original images, augmented images, and video frames to increase the

opportunity for a better model’s performance. Since the videos contain parasites in movement,

which are visually similar to resulting images from data augmentation procedures, we avoid

using data augmentation strategies in the video samples.

Finally, for the rhyti class, the data augmentation algorithms were not used since the

instances from this class in conjunction with video frames already reached more than 2000

images. For a similar reason, we did not augment the None class. After performing these pro-

cedures, a total of 11843 images were obtained with the distribution shown in Table 2.

Region classification using transfer learning with the MobileNet CNN. Commonly,

machine learning is constrained to use the same input feature space for training and testing

developed models. Otherwise, the predictive performance of the classifier is degraded due to

any difference in data (train and test) distributions [8]. In some problems, such as the reptile

intestinal parasite classification, collecting training and testing data that matches the feature

space while conserving the same data distribution can be tough (the target object is micro-

scopic) and expensive (laboratory experts and equipment). Thus, creating a high-performance

classifier (learner) for a specific target domain trained from a related source domain is a bene-

ficial transferred learning solution.

In this way, as the region classification is a specific subtask of the overall object classifica-

tion, we considered the ImageNet database [30] as the source domain and the reptile intestinal

parasite data as the target domain, as shown in Fig 6. Also, we used the MobileNet [31] archi-

tecture as the classifier, which is a CNN model trained with the ImageNet database, containing

about 14 million images. This model can provide classification performances comparable to

other more robust artificial neural networks such as ResNet [32] or VGG16 [33]. However, it

consumes less computational resources thanks to the depthwise separable convolution blocks

Table 2. Total number of images in the parasites database after data augmentation.

Parasites Class Original Images Augmented Images Video Frames Total Images

ophi 245 118 1236 1599

blas 950 550 0 1500

oxi 345 402 888 1635

rhyti 1072 0 1048 2120

strong 648 262 764 1674

tae 356 302 913 1571

None 1744 0 0 1744

Total 5360 1634 4849 11843

https://doi.org/10.1371/journal.pone.0271529.t002
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(DWSCB). These blocks reduce the calculation time (approximately 8 to 9 times) concerning a

standard convolution operation [31], making it suitable for limited resource devices [31].

MobileNet was designed to classify 1000 classes of objects. Thus, the later step of the model

belonging to the classifier is irrelevant to our multiclass classification problem. In opposite, we

transfer all convolutional layers (depthwise separable and standard blocks) with their settings

and weights to a similar model that modifies the classifier to handle seven classes (see Table 2).

Six of them belong to parasites. One class called None represents the open set (non-existence

of parasites). The main advancement of the new classifier is the inclusion of a dropout layer

with a rate value of 25% to improve the generalization error and to avoid overfitting [34], as

shown in Fig 6. Transferring only the object feature extractor part of the pre-trained Mobile-

Net model allows us to avoid long training time and to fine-tune the new weights of the pro-

posed model. Moreover, the use of a transfer learning solution helps us separately transform

both domains (source and target) into a common latent feature space that unifies the input

space of the developed classifier.

Experimental setup

This section describes the experimentation methodology employed to assess the proposed

approach, such as data partition, data augmentation, neural network configuration, compari-

son with a custom CNN model and the evaluation metrics.

Fig 6. Workflow of the transferred learning solution.

https://doi.org/10.1371/journal.pone.0271529.g006
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Data partition. We have used the experimental dataset described in Table 2, which is

composed of 11843 instances including original images, augmented images and video frames.

We have applied a stratified five-fold cross-validation method [35] (k = 5) on the experimental

dataset to secure disjoint sets (training and test) and to ensure that the seven classes have pro-

portional representation on each fold.

Neural network configuration. Since we use transfer learning with the MobileNet that

was previously trained with different images (i.e., from the Image Net dataset), a parameter

tuning process was performed for all layers in the network. Other hyperparameters and set-

tings were stated as:

• Optimization Algorithm: The Adam method was used as it works better than the common

stochastic gradient descent. It adapts the learning rate while training for different parameters

from first and second-moment estimates of the gradients [36].

• Learning rate: This hyperparameter allows the weights to be updated for each epoch during

the training of a neural network. We used a small learning rate as suggested by [37] with an

initial value of 0.001. This hyperparameter was reduced by a factor of 0.5 whether the net-

work had not improved its accuracy in 2 epochs.

• Loss function: Since this classification problem is multiclass, the categorical cross-entropy

was chosen as the loss function since it leads to faster training as well as improved generaliza-

tion for classification tasks [38].

Baseline CNN model. We trained a custom CNN, built from scratch to compare against

the transfer learning scheme with MobileNet. This network receives 224x224 images as input

and has seven outputs classes, similar to the MobileNet network. The custom network has C
convolutional blocks as shown in Fig 7. Each block is composed of the following layers:

• Convolutional layer with F filters of size 3 × 3. We set the strides values to 1x1 and zero pad-

ding such that the output has the same dimensions as the input.

• Batch Normalization Layer (BN) layer that acts as a regularizer to avoid overfitting and pri-

marily enables training with higher learning rates, which is the cause of faster convergence

and better generalization [39].

• Leaky ReLU Layer with a slope of 0.3 has a faster calculation speed and convergence rate,

unlike other activation functions such as the sigmoid, thanks to its linearity. Also, this layer

Fig 7. Custom CNN for C = 6 blocks and F = 128 filters.

https://doi.org/10.1371/journal.pone.0271529.g007
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was introduced to avoid the vanishing gradient problem since this layer does not cause satu-

ration for negative and positive inputs [40].

• Max Pooling layer allows reducing the dimensionality of the feature maps by summarizing

the most active presence of a feature [41].

• Dropout Layer with a drop rate of 0.25 that helps to prevent overfitting [34].

After the convolutional blocks, a flatten layer and one dense layer of 512 nodes with Leaky

ReLU activation were added. Finally, the output layer is a seven-node dense layer with softmax

activation to discriminate each of the six types of parasites or the absence of parasites (i.e. the

None class).

We varied C from 3 to 6 convolutional blocks by keeping constant F = 128 filters to explore

how depth affects the network performance. Then, we kept constant C = 6 convolutional

blocks and varied F for 32, 64, and 128 filters to analyze the impact of filter size on the

network.

Evaluation metrics. We used the Area Under the Curve (AUC) metric obtained from the

ROC (Receiver Operating Characteristic) curve on the same five-fold cross-validation parti-

tions for both the custom CNN and the transfer learning architectures. The ROC curve was

obtained by plotting the sensitivity or true positive rate (TPR) on the y-axis against the speci-

ficity or false positive rate (FPR) on the x-axis for different threshold decision values varying

from 0 to 1.

Moreover, in order to guarantee a fair and statistically reliable comparison, we repeated

four times (with different random seeds) the five-fold cross-validation partition scheme, giving

a total of 20 runs for each neural network architecture. Since we deal with a multiclass prob-

lem, we used the micro-average AUC to compare the transfer learning scheme against the cus-

tom CNN. Finally, we calculated the confusion matrix from a five-fold cross-validation run

and the overall accuracy of all runs.

Results and discussion

Before presenting the results with our transfer learning scheme, we present the results of the

hyperparameter optimization of the number of convolutional blocks C and the number of fil-

ters F from the custom CNN. In Table 3, we show the average accuracy for different values of

C and F across the 20 runs with different data partitions. We also show the number of trainable

parameters for each experiment. Observe that as the number of filters increases, the average

accuracy also increases. To select the best custom CNN model, we selected the one with the

best average accuracy. In case there are statistically similar results according to the t-test at

95% accuracy, we chose the one with the lowest number of trainable parameters. According to

Table 3. Average accuracy and standard deviation (std) with their respective number of trainable parameters and p-values for different values of C and F across 20

runs with different random data partitions. P-values are calculated using 128 filters and 6 convolution blocks as the pivot.

Filters F Conv. blocks C Accuracy (std) Trainable param P-value

128 3 80.03 (4.72) 51,683,847 0.00996

128 4 81.97 (3.74) 13,296,519 0.0981

128 5 80.62 (2.37) 3,810,567 0.00155

128 6 83.96 (1.63) 1,333,376 –

64 6 81.90 (2.20) 486,215 0.034

32 6 74.85 (2.40) 199,079 7.3e-6

https://doi.org/10.1371/journal.pone.0271529.t003
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this strategy, the best model is achieved with 128 filters and 6 convolutional blocks, which

hereinafter will be referred as the optimized custom CNN.

The two-dimensional embedding learned by MobileNet before the softmax layer is depicted

in Fig 8. Note that the learned features form quite distinctive clusters for the six parasite clas-

ses, demonstrating that MobileNet can learn a helpful representation from the images. How-

ever, the embedding also shows how challenging is for the neural network to discriminate the

absence of a parasite (i.e., the None class) due to their very similar visual characteristics with

respect to some parasite instances, as shown in Fig 8g through Fig 8j.

Also, it is worth noting that there is some overlapping among classes due to similarities in

morphology and color. For instance, observe in the T-SNE embedding how some blas images

overlap tae images due to their visual similarities, as depicted in Fig 8e and 8f for tae and blas

classes, respectively.

Also, note that the T-SNE embedding tends to form three different clusters for the rhyti

class. The parasite’s natural motion can explain these three rhyti clusters during the collection

stage. To exemplify this, observe the three representative rhyti examples from Fig 8b–8d taken

from these three rhyti clusters. When the parasite was observed by microscope, it might be in a

Fig 8. a) The T-SNE embedding shows that MobileNet is learning a meaningful representation of the image classes. On the other hand, Figs b), c),

and d) show representative parasites from three different clusters of the rhyti class. Meanwhile, Figs e) and f) depict some examples of the tae and blas

parasites, respectively, from overlapping regions to show their similarity. Finally, Figs g) through j) show how the neural network struggles to

discriminate a parasite from background noise.

https://doi.org/10.1371/journal.pone.0271529.g008
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retracted position as shown in Fig 8b. As the parasite’s motion evolves, the parasite might take

a more elongated shape as shown in Fig 8c. Finally, this parasite might also be often found in a

curved shape which is its feeding position as shown in Fig 8d. Here, it’s important to note that

the neural network could learn this parasite’s motion stages during training.

The T-SNE embedding for the optimized custom CNN can be seen in Fig 9. Although the

T-SNE plot tends to group similar parasites, note how the classes overlap far more when com-

pared to MobileNet’s T-SNE. Concretely, classes strong, oxi, and tae are confused with each

other more frequently. There is also confusion between tae and blas to a lesser degree. More-

over, the None class is often confused with the majority of the parasites, even more than the

MobileNet’s T-SNE.

The representation of True Positive Rate (TPR) vs. False Positive Rate (FPR) by ROC curves

of each class for MobileNet, as depicted in Fig 10, shows that the lowest AUC of 99.010% is

achieved for the None parasite and the highest AUC of 99.977% for the ophi parasite. Also, it

shows the micro average that adds the contributions of all the classes before calculating the

average accuracy, obtaining a value of 99.638%. The Fig 11 shows similar ROC annotations for

the optimized custom CNN, obtaining the lowest AUC of 96.228% for the None class and the

highest AUC of 99.986% for the rhyti class), and a micro average value of 98.211%.

In Fig 12a and 12b, we can see the confusion matrix and the normalized confusion matrix

obtained with MobileNet, respectively. Observe that for all classes the performance is above

90%. As expected from Fig 8, the confusion matrix shows how the neural network struggles

more to distinguish the absence of parasites because there are background objects (i.e., debris

or garbage) very similar to parasites. According to our expert veterinarian, even for specialist it

is sometimes hard to discriminate the parasite from background noise but having an accuracy

above 90% makes our system very suitable to perform faster diagnoses to treat captive reptile

diseases. Also, a high degree of confusion is observed between the oxi class and the blas and

Fig 9. T-SNE plot of the multiclass model for the optimized custom net. Observe how the classes overlap far more when compared to MobileNet’s

T-SNE.

https://doi.org/10.1371/journal.pone.0271529.g009
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Fig 10. ROC plot for the MobileNet model.

https://doi.org/10.1371/journal.pone.0271529.g010

Fig 11. ROC plot for the optimized custom CNN.

https://doi.org/10.1371/journal.pone.0271529.g011
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strong classes. Some confusion is also observed between tae and blas classes. This result was

expected since both classes overlap in the T-SNE embedding.

Concerning the optimized custom CNN, Fig 12c and 12d shows its confusion matrix and

normalized confusion matrix, respectively. When compared to the MobileNet, the optimized

custom CNN has lower accuracy across all classes. Specifically, the oxi class has a high confu-

sion with the strong and blas classes and moderately with ophi class. Likewise, blas is often

confused with strong and tae. In general, there is confusion between all classes except for the

rhyti class. Moreover, the optimized custom CNN has far more trouble than the MobileNet’s

approach to distinguish the absence of parasites, specially from blas, strong and oxi parasites.

This result was expected from what has been seen previously in the T-SNE embedding as

shown in Fig 9.

Fig 12. a) MobileNet’s confusion matrix b) MobileNet’s normalized confusion matrix c) Optimized custom CNN’s confusion matrix d)

Optimized custom CNN’s normalized confusion matrix.

https://doi.org/10.1371/journal.pone.0271529.g012
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Table 4 shows the accuracy for both the transfer learning scheme with MobilNet and the

optimized custom CNN (i.e., 128 filters and 6 convolutional blocks). Observe that the accuracy

value obtained by MobileNet (94.26%) is better than the optimized custom CNN. We perform

a t-test to confirm whether this improvement is statistically significant. The t-test confirms

that the mobile network statistically outperforms the optimized custom CNN at a 0.05 signifi-

cance level, according to the p-value shown in Table 4.

Fig 13a and 13b show the learning curves for the transfer learning scheme and the opti-

mized custom CNN, respectively. With MobiletNet, the neural network achieves better perfor-

mance before 10 epochs during training, while the optimized custom CNN takes more than 30

epochs. This is because MobileNet, being a pre-trained network, does not learn from scratch

as the custom CNN does it.

Finally, in Table 5 we analyze the performance of our image segmentation stage. We passed

the 3616 database images through our segmenter obtaining the eight largest regions that hope-

fully might enclose the parasite. As expected, the largest area (Ranking 1 in Table 5) is the most

likely to contain the parasite, accounting for 94.94% of correctly segmented images. From the

second to the eighth largest regions the contributions to the segmentation accuracy are rela-

tively small, but in conjunction they increased the segmentation performance by 1.71% (i.e.,

an overall segmentation accuracy of 96.65%). Observe that if we included only the largest

region, the overall segmentation error would be 5.06%. When expanding to the eight largest

regions, the overall segmentation error was reduced by a third to 3.35%.

Limitations

Our approach also presents some limitations that decrease its performance due to wrong seg-

mentation or wrong classification predictions. Some wrong segmentation examples are shown

in Fig 14. Concretely, an interior region from a blas parasite was incorrectly segmented in Fig

14a. Moreover, a blas parasite was partially cropped during segmentation in Fig 14b. Finally,

the parasite was completely missed in Fig 14c and instead some debris was captured by the seg-

mentation stage.

Wrong classification predictions also occurred as shown in Fig 15, where visually similar

parasites are confused. For instance, our approach struggles to differentiate the granules in

cytoplasm found on blas parasites, as shown in Fig 15a, which in turn may cause confusion

with the tae class as shown as Fig 15b. Moreover, our neural network is sometimes not capable

of recognizing the tae visual patterns such as its onchosperal membrane as shown in Fig 15d,

which again leads to misclassification as blas. With respect to the oxi parasite from Fig 15e, it is

incorrectly classified as blas since our method is not distinguishing the tae’s oval shape from

the blas’ circular shape. In the same figure, it also seems that the similarities between the blas

parasite and the tae’s embryon increase the classification error. Moreover, the oxy example

from Fig 15g depicts an elongated oval shape which may be confused with the similar shape

from the strong larva in movement. Finally, observe in Fig 15h that a rhyti parasite is visually

similar to background noise, causing a wrong prediction. In this example, the shape and spe-

cially the color are confused with background noise because the neural network is not capable

of distinguish the inner details of the rhyti parasite.

Table 4. Accuracy, standard deviation and p-values. The accuracy is the average across the 20 runs with different random data partitions. P-values are calculated using

the optimized custom CNN as pivot.

Approach Accuracy Standard % P-value Deviation

MobileNet 94.26 0.56 2.5e-8

Optimized custom CNN 83.96 1.63 -

https://doi.org/10.1371/journal.pone.0271529.t004
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Comparison with other intestinal parasites identification methods

Although, to the best of our knowledge, our approach is the first attempt to develop a machine

learning model to specifically classify reptile intestinal parasites using CNNs from microscopic

stool images, in order to explore the novelty and significance of our method, we compared it

Fig 13. Learning curve for a) MobileNet, b) optimized custom CNN.

https://doi.org/10.1371/journal.pone.0271529.g013
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with existing advanced approaches for intestinal parasite identification in fecal samples in

other species, such as mammals, as shown in Table 6. The results suggest that the proposed

approach detects and identifies intestinal parasites in fecal samples with comparable accuracy.

Conclusion

The proposed system for classifying parasitic agents was designed to obtain an adequate per-

formance using a resource-efficient model like MobileNet. Image segmentation mechanisms

were a vitally important task since most images had debris or garbage introducing excessive

noise due to the nature of their acquisition. Since segmentation errors might occur, the inclu-

sion of a None class for training the neural network has proven to be very suitable to avoid

false positives, i.e., wrongly classifying background noise as parasite classes. The use of data

augmentation through video frames for the training stage was crucial to improving network

performance due to limited database size. Also, data augmentation algorithms addressed the

Table 5. Segmentation accuracy for the eight largest areas found by the image segmentation stage. Ranking 1 rep-

resents the largest area, ranking 2 represents the second largest area and so on.

Largest Area Ranking % of Correctly Segmented

1 94.94%

2 0.39%

3 0.39%

4 0.17%

5 0.17%

6 0.28%

7 0.11%

8 0.22%

Overall Segmentation Accuracy 96.65%

Overall Segmentation Error 3.35%

https://doi.org/10.1371/journal.pone.0271529.t005

Fig 14. Examples of wrong segmentation.

https://doi.org/10.1371/journal.pone.0271529.g014
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unbalanced class problem found in this dataset. Our results show that the MobileNet outper-

forms a optimized custom CNN trained from scratch, demonstrating that transfer learning

schemes are suitable to learn relevant features in this domain. Since obtaining labeled data of

reptile parasites is an intensive and mainly manual task performed by experts veterinarians, it

Fig 15. Examples of wrong predictions.

https://doi.org/10.1371/journal.pone.0271529.g015

Table 6. Performance comparison with other fecal parasites identification methods.

Study Parasite Detection in Parasites ACC

Nagamori et al. 2020 [13] Cats and Dogs Ancylostoma 93.8

Toxocara
Trichuris
Taeniid eggs

Li et al. 2019 [14] Sheep Ascarid 92 to 96

Trichuris spp.
Strongyle

Coccidia
Roder et al. 2020 [15] Humans Helminth eggs 94

Helminth larvae

Protozoan cysts

Li et al. 2020 [16] Humans Hookworm eggs 92.16

Ascarid eggs

Whipworm eggs

Proposed method Reptiles Ophionyssus natricis 94.26

Blastocystis sp
Oxiurdo egg
Rhytidoides similis
Strongyloides
Taenia

https://doi.org/10.1371/journal.pone.0271529.t006
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should be interesting to explore more advanced data augmentation techniques, such as those

using the generative adversarial network (GANS) [42]. Moreover, a future study could explore

new forms of segmentation (e.g., U-net segmentation [43]) that could improve overall system

performance.
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Validation: Carla Parra, Felipe Grijalva, Bryan Núñez, Alejandra Núñez.
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Writing – review & editing: Carla Parra, Felipe Grijalva, Bryan Núñez, Noel Pérez, Diego
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22. Ramalingam B, Mohan RE, Pookkuttath S, Gómez BF, Sairam Borusu CSC, Wee Teng T, et al.

Remote insects trap monitoring system using deep learning framework and IoT. Sensors. 2020; 20

(18):5280. https://doi.org/10.3390/s20185280 PMID: 32942750

23. Ginoris Y, Amaral A, Nicolau A, Coelho M, Ferreira E. Recognition of protozoa and metazoa using

image analysis tools, discriminant analysis, neural networks and decision trees. Analytica Chimica

Acta. 2007; 595(1-2):160–169. https://doi.org/10.1016/j.aca.2006.12.055 PMID: 17605996

24. Bhargavi K., Jyothi S. A survey on threshold based segmentation technique in image processing Inter-

national Journal of Innovative Research and Development. 2014; 12(3):234–239

25. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, et al. Adaptive histogram equali-

zation and its variations. Computer vision, graphics, and image processing. 1987; 39(3):355–368.

https://doi.org/10.1016/S0734-189X(87)80186-X

26. Otsu N. A threshold selection method from gray-level histograms. IEEE transactions on systems, man,

and cybernetics. 1979; 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

27. Ragnemalm I. Fast erosion and dilation by contour processing and thresholding of distance maps. Pat-

tern recognition letters. 1992; 13(3):161–166. https://doi.org/10.1016/0167-8655(92)90055-5

PLOS ONE Automatic identification of intestinal parasites in reptiles using microscopic stool images and CNNs

PLOS ONE | https://doi.org/10.1371/journal.pone.0271529 August 4, 2022 23 / 24

https://doi.org/10.1016/j.pt.2020.04.014
http://www.ncbi.nlm.nih.gov/pubmed/32448703
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1007/978-3-319-65981-7_12
https://doi.org/10.1038/s41598-019-50437-0
http://www.ncbi.nlm.nih.gov/pubmed/31578338
https://doi.org/10.1002/jbio.201800410
http://www.ncbi.nlm.nih.gov/pubmed/31081258
https://doi.org/10.1002/mp.14352
https://doi.org/10.1002/mp.14352
http://www.ncbi.nlm.nih.gov/pubmed/32583463
https://doi.org/10.1016/j.compag.2016.07.008
https://doi.org/10.3390/s20185280
http://www.ncbi.nlm.nih.gov/pubmed/32942750
https://doi.org/10.1016/j.aca.2006.12.055
http://www.ncbi.nlm.nih.gov/pubmed/17605996
https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/0167-8655(92)90055-5
https://doi.org/10.1371/journal.pone.0271529


28. Evans AN, Liu XU. A morphological gradient approach to color edge detection. IEEE Transactions on

Image Processing. 2006; 15(6):1454–1463. https://doi.org/10.1109/TIP.2005.864164 PMID: 16764270

29. Croft H, Falconer K, Guy R. Unsolved problems in geometry: unsolved problems in intuitive mathemat-

ics. Springer Science & Business Media. New York: Springer-Verlag, p. 3, 1991.

30. Russakovsky O., Deng J., Su H. K., Satheesh S., Ma S., Huang Z., et al. ImageNet Large Scale Visual

Recognition Challenge In: International Journal of Computer Vision (IJCV) vol. 115, no 3 2015;. https://

doi.org/10.1007/s11263-015-0816-y

31. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv preprint arXiv:170404861. 2017;.

32. Targ S, Almeida D, Lyman K. Resnet in resnet: Generalizing residual architectures. arXiv preprint

arXiv:1603.08029. 2016;

33. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556. 2014;.

34. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning research. 2014; 15(1):1929–1958.

35. Bengio Y, Grandvalet Y. No unbiased estimator of the variance of k-fold cross-validation. Journal of

machine learning research. 2004; 5(Sep):1089–1105.

36. Bock S, Weiß M. In: 2019 International Joint Conference on Neural Networks (IJCNN). IEEE; 2019.

p. 1–8.

37. Wilson DR, Martinez TR. The need for small learning rates on large problems. In: IJCNN’01. Interna-

tional Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222). vol. 1. IEEE; 2001.

p. 115–119.

38. Bishop Christopher M. Pattern Recognition and Machine Learning. vol. 128, no 9. 2006;.

39. Tran T, Kwon OH, Kwon KR, Lee SH, Kang KW. Blood cell images segmentation using deep learning

semantic segmentation. In: 2018 IEEE International Conference on Electronics and Communication

Engineering (ICECE). IEEE; 2018. p. 13–16.

40. Xu J, Li Z, Du B, Zhang M, Liu J. Reluplex made more practical: Leaky ReLU. In: 2020 IEEE Symposium

on Computers and Communications (ISCC). IEEE; 2020. p. 1–7.

41. Grefenstette E, Blunsom P, et al. A convolutional neural network for modelling sentences. In: The 52nd

Annual Meeting of the Association for Computational Linguistics, Baltimore, Maryland; 2014.

42. Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, et al. GANs for medical

image analysis. Artificial Intelligence in Medicine. 2020; p. 101938. https://doi.org/10.1016/j.artmed.

2020.101938 PMID: 34756215

43. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

In: International Conference on Medical image computing and computer-assisted intervention.

Springer; 2015. p. 234–241.

PLOS ONE Automatic identification of intestinal parasites in reptiles using microscopic stool images and CNNs

PLOS ONE | https://doi.org/10.1371/journal.pone.0271529 August 4, 2022 24 / 24

https://doi.org/10.1109/TIP.2005.864164
http://www.ncbi.nlm.nih.gov/pubmed/16764270
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.artmed.2020.101938
https://doi.org/10.1016/j.artmed.2020.101938
http://www.ncbi.nlm.nih.gov/pubmed/34756215
https://doi.org/10.1371/journal.pone.0271529

