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Autonomous Non Antioxidant Roles
for Fasciola hepatica Secreted
Thioredoxin-1 and Peroxiredoxin-1
Amber Dorey, Krystyna Cwiklinski , James Rooney†, Carolina De Marco Verissimo,
Jesús López Corrales , Heather Jewhurst , Barbara Fazekas, Nichola Eliza Davies Calvani ,
Siobhán Hamon, Siobhán Gaughan, John P. Dalton* and Richard Lalor

Molecular Parasitology Laboratory, Centre of One Health (COH), Ryan Institute, National University of Ireland, Galway, Ireland

Trematode parasites of the genus Fasciola are the cause of liver fluke disease (fasciolosis)
in humans and their livestock. Infection of the host involves invasion through the intestinal
wall followed by migration in the liver that results in extensive damage, before the parasite
settles as a mature egg-laying adult in the bile ducts. Genomic and transcriptomic studies
revealed that increased metabolic stress during the rapid growth and development of
F. hepatica is balanced with the up-regulation of the thiol-independent antioxidant system.
In this cascade system thioredoxin/glutathione reductase (TGR) reduces thioredoxin (Trx),
which then reduces and activates peroxiredoxin (Prx), whose major function is to protect
cells against the damaging hydrogen peroxide free radicals. F. hepatica expresses a single
TGR, three Trx and three Prx genes; however, the transcriptional expression of Trx1 and
Prx1 far out-weighs (>50-fold) other members of their family, and both are major
components of the parasite secretome. While Prx1 possesses a leader signal peptide
that directs its secretion through the classical pathway and explains why this enzyme is
found freely soluble in the secretome, Trx1 lacks a leader peptide and is secreted via an
alternative pathway that packages the majority of this enzyme into extracellular vesicles
(EVs). Here we propose that F. hepatica Prx1 and Trx1 do not function as part of the
parasite’s stress-inducible thiol-dependant cascade, but play autonomous roles in
defence against the general anti-pathogen oxidative burst by innate immune cells, in
the modulation of host immune responses and regulation of inflammation.

Keywords: Fasciola , helminth, antioxidants, thioredoxin, thioredoxin peroxidase, peroxiredoxin,
immunomodulation, inflammation
INTRODUCTION

Digenean trematodes are internal obligate parasites responsible for a plethora of foodborne zoonotic
diseases in humans and their livestock. They have a complex life cycle that involves migration
within multiple different intermediate and definitive host species. They can reside within their
definitive mammalian host for years, and even decades. They include the liver flukes (Fasciola spp.,
Opisthorchis spp., and Clonorchis spp.), blood flukes (Schistosoma spp.) and lung flukes
gy | www.frontiersin.org May 2021 | Volume 11 | Article 6672721
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(Paragonimus spp.) that, collectively, infect over 250 million
people worldwide (Keiser and Utzinger, 2009; Furst et al., 2012).

Fasciolosis caused by infection with Fasciola hepatica is
classically associated with livestock (sheep and cattle) on farms
in temperate climates. Due to human migration and animal trade
over the past few centuries the disease has one of the most
widespread geographical distributions of any helminth
(Robinson and Dalton, 2009). The spread of the disease has
been enhanced by the superior adaptability of this parasite to its
different hosts since it can infect, develop and produce off-spring
in many mammals that it has only encountered in relatively
recent times e.g., camelids, capybara and kangaroos. Fasciolosis
caused by Fasciola gigantica, on the other hand, is most prevalent
in tropical regions where it is most commonly found in cattle and
water buffalo (Copeman and Copland, 2008; Mas-Coma et al.,
2019). Where both F. hepatica and F. gigantica are sympatric, for
example in China, Korea, and Southeast Asia, hybrids forms of
the parasite have emerged (Calvani and Šlapeta, 2021).

Both F. hepatica and F. gigantica have a similar life cycle
involving an intermediate snail and definitive mammalian host.
The mammalian hosts become infected after they consume
encysted parasites (metacercariae) attached to vegetation
(grass, rice) or floating in water (Andrews, 1999). The
metacercariae emerge from their cysts as newly excysted
juveniles (NEJs) in the low-oxygen environment of the small
intestine and, with the assistance of abundant protease secretion,
traverse the intestinal wall within hours (Andrews, 1999;
Cwiklinski et al., 2018). Aside from small tracks, the
microscopic F. hepatica NEJs leave little clinical evidence of
their travels through the intestinal wall that lack any signs of
immune cellular infiltration to the vicinity of challenge in naïve
animals (Van Milligen et al., 1998).

Serious damage begins after the parasite enters the liver and
begins migration through the parenchymal tissues, again with
the aid of secreted proteases, causing excessive haemorrhaging,
which results in anaemia (Molina-Hernández et al., 2015). It is
this damage that results in poor animal growth and loss of
productivity (wool, meat and milk yields), the extent of which
depends on the level of infection where large numbers of F.
hepatica entering the liver around the same time can cause
sudden death in sheep (Molina-Hernández et al., 2015; Nadis,
2020). After about 8-12 weeks F. hepatica migrates into the bile
ducts where it matures and uses the nutrients from its obligate
blood feeding activity to produce numerous progeny in the form
of eggs. Eggs are passed in faeces, where they eventually
embryonate on pasture before hatching to release miracidia
that go on to infect the intermediate snail host. Within the
snail host the parasites multiply via clonal expansion before
emerging as cercariae that encyst as metacercariae on vegetation
contaminating pastures, thus continuing the life cycle (Graczyk
and Fried, 1999; Hodgkinson et al., 2018).

Similar to that observed in other helminth infections, the
early immune response to the invading parasite is mixed or non-
polarised (Espino and Rivera, 2009). However, within a week of
infection the developing immune response in mice exhibits all
the hallmarks of a strongly polarised Th2-driven response;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
including, the dominance of IgG1 antibody isotypes over IgG2
(Phiri et al., 2006), the recruitment and proliferation of
eosinophils (Ruiz-Campillo et al., 2017), the differentiation of
alternatively activated macrophages (M2s) (Donnelly et al.,
2008), the secretion of IL-4/IL-5/IL-13 by T-cells (Espino and
Rivera, 2009), as well as the suppression of Th1-associate
cytokines (O’Neill et al., 2000). Studies in ruminants suggest
that sheep and cattle also elicit Th2-driven responses to acute
infection, which progresses into a hyporesponsive or
immunosuppressive state as the disease becomes chronic
(Escamilla et al., 2016; Sachdev et al., 2017). Several studies
suggest that Th2-driven immune responses make the host
susceptible to subsequent infection (Aitken et al., 1981;
Chauvin et al., 1995; Brady et al., 1999; Cwiklinski et al., 2016),
and both infection and vaccine studies suggest that it is necessary
to induce Th1-mediated responses for protection to be achieved
(Pleasance et al., 2011; Villa-Mancera et al., 2014; Noya
et al., 2017).
THE BEST FORM OF DEFENCE IS HAVING
A GOOD OFFENCE

The ability of F. hepatica to survive and thrive in its varied
mammalian hosts for such a long time is reflective of the
parasites’ capacity to evade, modulate or supress the host’s
immune responses (Molina-Hernández et al., 2015). The
parasites immune evasion techniques include the continual
sloughing of their exterior ‘fuzzy’ surface glycocalyx, along
with bound host antibody, thus rendering it ineffective (Hanna,
1980a; Lammas and Duffus, 1983; Haçarız et al., 2011).
Additionally, the antigenic and structural composition of the
glycocalyx changes as the parasites migrate from intestine to liver
to bile duct, leaving the successively-mounting host immune
responses redundant (Hanna, 1980b). Histological observations
of livers taken from infected hosts show that the damage caused
by the aggressive and rapid tunnelling of the parasite becomes
infiltrated with an immense amount of immune cells
(eosinophils, lymphocytes, macrophages). However, rather
than killing the parasite these cells appear to be playing the
role of plugging the tracts left in the parasites’ wake, preventing
excessive blood loss and, most importantly, facilitating wound
repair as the tracts gradually become fibrotic and sealed with
collagen (Zafra et al., 2013a; Zafra et al., 2013b; Frigerio
et al., 2020).

The best form of defence, however, is having a good offence,
and helminth parasites achieve this largely by the excretion/
secretion of a multitude of immune-impairing, -suppressive or
-modulatory factors (Hewitson et al., 2009; Ryan et al., 2020). In
the case of F. hepatica, these include proteases, protease inhibitors,
antioxidants, cathelicidin-like helminth defence molecules (HDM)
and glycolytic enzymes (Jefferies et al., 2001; Morphew et al., 2007;
Ryan et al., 2020), many of which have been shown to influence
different aspects of the host’s immune response. For example, early
studies showed that secreted cysteine proteases (now known as
cathepsin B and cathepsin L proteases) can specifically cleave
May 2021 | Volume 11 | Article 667272
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immunoglobulins (Igs) at their hinge region, separating the
antibody binding Fab fragment from the Fc domain and thus
preventing the ability of bound Ig to attract Fc-binding innate
immune cells (eosinophils, macrophages) (Chapman and
Mitchell, 1982). The secreted F. hepatica HDMs abrogate NLP3-
inflammasome-mediated inflammatory responses in innate
immune cells by impairing lysosomal acidification (Robinson
et al., 2012; Alvarado et al., 2017), while fatty acid binding
proteins (FABP 12/15) are shown to induce alternatively
activated macrophages that overexpress anti-inflammatory
cytokines, thereby contributing to a hyporesponsive
environment favoured by the parasite (Figueroa-Santiago and
Espino, 2014; Ruiz-Jiménez and Espino, 2014; Ramos-Benıt́ez
et al., 2017). Several molecules, such as F. hepatica cathepsin L1
cysteine proteases, glutathione S- transferases (GST) and Kunitz-
type molecules, reduce the capacity of dendritic cells to induce the
robust T-cell responses required to effectively eliminate the
parasite (Dowling et al., 2010; Falcon et al., 2014; Ryan et al.,
2020). Glycosylated mucins and TGF-b mimics secreted by
invading parasites may also play immunosuppressive or
immunoregulatory roles by influencing DC or T-cell phenotype
differentiation to block Th1 type responses developing
(Musah-Eroje and Flynn, 2018). Metabolism-associated
enzymatic factors liberated by the parasite and not classically
associated with immunosuppression, such as fructose-
bisphosphate aldolase and glyceraldehyde phosphate
dehydrogenase, have recently been shown to bind to the host’s
immune mediating factors such as IFN-g, IL-2 and IL-17 (Liu
et al., 2017). However, the exact effect that the binding of F.
hepatica products has on these factors remains to be elucidated.

Detailed genomic, transcriptomic, and proteomic (somatic
and secretome) analyses that have emerged over the last few
years have revealed that the liver fluke parasite tightly regulates
the expression and secretion of many molecules during its
migration in the mammalian host (Cwiklinski and Dalton,
2018). The growth from a microscopic organism to a mature
egg-producing adult parasite (~2 cm x 1 cm) is correlated with
the up-regulation and differential expression of a range of gene
families critical for the stage-specific phases within the
mammalian host (Cwiklinski et al., 2015). In particular, an
increased transcription of >8000 transcripts, many of which
encode pathways involved with intense signal transduction,
protein production and neoblast development, is observed
when the parasite invades and migrates through the liver
parenchyma (Cwiklinski et al., 2021). Direct associations can
also be made between transcript up-regulation and the secretion
of molecules involved in the parasite-host inter-relationship e.g.,
the aforementioned secreted immune regulatory proteases,
protease inhibitors and HDMs (Robinson et al., 2009;
Cwiklinski et al., 2018; Cwiklinski et al., 2021).

An interesting observation emerged when the expression of
various antioxidant enzymes of the migrating parasite were
examined alongside the expression of homologous enzymes in
the host liver, suggesting that metabolic stress occurs in both the
parasite and liver (Cwiklinski et al., 2021). The mammalian liver
is naturally a high-metabolising organ susceptible to oxidative
stress in many infectious and non-infectious chronic diseases,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
including hepatitis C, alcoholic liver disease and liver
fibroproliferative disease (Cichoż-Lach and Michalak, 2014).
The elevation of metabolic stress in the liver during infection
with F. hepatica is therefore not surprising since a major effort is
required to recruit immune cells to damaged areas in order to
minimise necrosis, repair perforated tissue and to induce
fibrogenesis (Saleh, 2008; Bottari et al., 2015; Da Silva et al.,
2017). In contrast, the metabolic stress exerted on the parasite
arises from two sources; (1) internally by the increased cellular
metabolic activity and associated generation of reactive oxygen
species (ROS) driven primarily as a result of the aerobic
respiration by the rapidly growing and developing parasite,
and (2) externally by the parasite’s need to respond to the
general anti-pathogen ROS burst from the host’s innate
immune cells. Both of these metabolic pressures demand the
up-regulation of transcripts encoding superoxide dismutase
(SOD), glutathione peroxidase (GPx), glutathione S-transferase
(GST), as well as members of the thiol-dependent antioxidant
system (Figure 1A). The thiol-dependent antioxidant system is
the primary means by which cells and parasites defend against
the major biological ROS hydrogen peroxide (H2O2). Recent
studies have, however, shown that various players in this system
are not only part of a defence mechanism but may also perform a
range of functions that can be central to the parasite’s ability to
manipulate the host immune responses (Ishii et al., 2012; Perkins
et al., 2014).
ENZYMES IN THE F. HEPATICA THIOL-
DEPENDENT ANTIOXIDANT CASCADE

The F. hepatica thiol-dependent antioxidant cascade includes the
enzymes thioredoxin-glutathione reductase (TGR), thioredoxin
(Trx) and thioredoxin peroxidase/peroxiredoxin (Prx). These
proteins interact via a redox cascade event whereby TGR
reduces Trx with the assistance of nicotinamide adenine
dinucleotide phosphate (NADPH), which in turn reduces Prx
to recharge its redox state and activates its antioxidant properties
(Figure 1A).

TGR, the first protein involved in this redox antioxidant
cascade, is an oxidoreductase enzyme that can reduce both Trx
and glutathione disulfide (GSSG) in a 1:1 ratio, in much the same
way as thioredoxin reductase (TrxR) and glutathione reductase
(GR) separately perform this function in mammalian cells. It is
important to note, however, that no independent TrxR or GR
enzymes have been identified in F. hepatica (Guevara-Flores
et al., 2011). Sequence analysis of TGR has identified binding
domains suitable for both NADPH and FAD, a thiol-disulphide
redox active centre that has been described for mammalian TR
and GR, as well as a glutaredoxin (Grx) domain (Maggioli et al.,
2011). TGR enzymes are atypical due to the presence of a
selenocysteine insertion sequence (SECIS) element, encoded by
a TGA codon that enables the incorporation of selenium into the
TGR protein (Böck et al., 1991). A study of the structure of F.
gigantica TGR demonstrated the requirement for the
selenocysteine (Sec) element for both TrxR and GR activity
(Kalita et al., 2018). The enzymes’ high sensitivity to inhibition
May 2021 | Volume 11 | Article 667272
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by aurothioglucose confirmed it as a selenoenzyme (Maggioli
et al., 2004). The inhibition of Schistosoma mansoni TGR by
auroanofin, an antirheumatic compound (Kuntz et al., 2007), is
facilitated by the binding of the compound between the catalytic
cysteines of the FAD-binding site (Cys154-Cys159), preventing
the donation of electrons to the enzyme by flavin adenine
dinucleotide (FAD) (Angelucci et al., 2009). Similar
investigations into the inhibition of F. gigantica TGR by
auranofin determined that it is the interaction of the gold
particle of auranofin with His571 of TGR that results in the
inhibition of enzyme activity (Kalita et al., 2018). The S. mansoni
TGR was proposed as a tractable drug target due to the parasites’
inability to survive in the presence of auranofin (Feng
et al., 2020).

Trx is a ~12 kDa oxidoreductase protein with a catalytically
active dithiol site that reduces exposed disulfide bridges on Prx
and other proteins. It has a conserved structure composed of a
core that is formed from a four-stranded b-sheet, surrounded by
three a-helices (Eklund et al., 1984; Martin, 1995). The
tryptophan-cysteine-glycine-proline-cysteine (WCGPC) motif
of the Trx active site protrudes from the 3-D structure of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
molecule and is highly conserved (Shoda et al., 1999). The redox
active cysteine pair (Cys31 and Cys34) (Ren et al., 2017) enables
the enzyme to exist in either the oxidised disulphide state or the
reduced dithiol state (Line et al., 2008). A proline situated
between the two cysteines (Pro33) is essential to facilitate the
reducing power of Trx (Collet and Messens, 2010). The
substitution of this proline with histidine in Escherichia coli
Trx resulted in a lower reducing potential compared to the wild-
type enzyme (Krause et al., 1991). Similarly, in Staphylococcus
aureus the substitution of the proline with either serine or
threonine resulted in a seven-fold reduction in the reducing
potential of the enzyme (Roos et al., 2007).

Prxs are found in both prokaryotes and eukaryotes and are
well characterised in many protists and helminth parasites (see
review by Angelucci et al., 2016). Their discovery in F. hepatica
helped explain how helminth parasites deal with SOD-generated
hydrogen peroxide since they lack the enzyme catalase that
together with glutathione peroxidase (GPx) converts the toxic
reactive oxygen molecules into water and hydrogen peroxide
(McGonigle et al., 1997; McGonigle et al., 1998). Since the
discovery of Prx, the enzyme has undergone several name
A B

C

FIGURE 1 | (A) Schematic of the generalised model of the thiol-dependent antioxidant cascade. TGR with the assistance of FADH2 and NADPH converts oxidised
Trx to reduced Trx which subsequently reduces Prx to its activated form. (B) Graphical representation of the most abundantly transcribed genes of the three
enzymes in the F. hepatica thiol-dependent antioxidant cascade by the newly excysted juveniles (NEJ) that traverse the small intestinal wall, the liver stage immature
parasites 21 days post infection (Immature) and the mature adult stage parasite that resides within the bile ducts (Adult). Data is displayed as transcripts per million
(TPM) and is extrapolated from the transcriptome study by Cwiklinski et al. (2015). (C) Graphical representation of the protein abundance within the NEJ, Immature
and Adult parasite secretomes (ES proteins), represented by Exponentially Modified Protein Abundance Index (emPAI). The Adult secretome data shows the protein
abundance within the extracellular vesicles, specifically the microvesicles recovered following centrifugation at 15, 000 x g (Adult_EV_15K) and the exosomes isolated
after centrifugation at 120, 000 x g (Adult_EV_120K), in addition to the EV-depleted ES proteins. The proteomic data for NEJ, immature and adult parasites is
extrapolated from Cwiklinski et al. (2018), Cwiklinski et al. (2021) and Murphy et al. (2020), respectively.
May 2021 | Volume 11 | Article 667272
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changes, first described as thiol specific antioxidants and then
thioredoxin peroxidase (which often still appears in helminth
proteomic studies) before being termed peroxiredoxin
(Figure 1). Prx is a 25 kDa enzyme that when activated to its
reduced form by Trx, provides protection to the parasite via the
breakdown of hydrogen peroxide (McGonigle et al., 1997), a
mechanism reliant upon a conserved cysteine residue in the
enzyme’s NH2-terminal portion (Rhee et al., 2001). The enzyme
found in F. hepatica shows high levels of homology to other
peroxiredoxin enzymes, including those found in rodents,
ruminants, and humans (Salazar-Calderón et al., 2000). The
peroxiredoxin of F. hepatica is a 2-Cys enzyme, the most
widely distributed subfamily of Prxs (Hall et al., 2009), that is
characterised by two active cysteine residues at positions 47 and
170 (McGonigle et al., 1997). Incubation of recombinant F.
hepatica peroxiredoxin, rFhePrx, with super-coiled plasmid
DNA and DTT demonstrated the ability of the antioxidant to
protect against oxidative stress (Sekiya et al., 2006), and supports
the idea that F. hepatica produces Prx in order to protect itself
from oxidative damage within the host environment. It has been
shown that Prxs can form dimers and higher molecular size
multimers depending on the redox status of the cell; at low
oxidative stress they can act as peroxidases whereas at high levels
of stress they act as holdases, enzymes that can assist the non-
covalent folding of proteins and prevent protein aggregation
(Jang et al., 2004; Teixeira et al., 2015). This interchange of
oligomeric states has been shown for the 2-Cys peroxiredoxins of
adult S. mansoni and provides an explanation of how a sensing
mechanism for hydrogen peroxide concentration can be
translated to a functional molecular switch (Saccoccia et al.,
2012). At present, we can only assume a similar mechanism
exists for F. hepatica Prx.
WHAT DOES OUR -OMICS ANALYSIS
REVEAL ABOUT THE ENZYMES IN THE
F. HEPATICA THIOL-DEPENDENT
ANTIOXIDANT CASCADE?

Our recent analysis of the F. hepatica genome published by
Cwiklinski et al. (2015) revealed that TGR is encoded by a single
copy gene, and transcriptomic analysis shows this is
constitutively expressed during the stages that infect the
mammalian host. The genome contains three genes that
encode Trx enzymes, Trx1, 2 and 3, all of which are also
constitutively expressed. However, Trx1 is expressed >50 times
higher than both Trx2 and 3 (each less than 40 transcripts per
million; TPM) (Figure 1B). There are also three Prx genes
present within the F. hepatica genome (Prx1, 2 and 3) but, as
in the case for the Trxs, the expression of one, Prx1, greatly
outweighs the other two genes. Prx1 displays stage-specific
transcription, with the highest expression observed during the
NEJ stage at >250 times greater (~10,000 TPM) than the other
two Prx genes and the other members of the thiol-dependent
antioxidant cascade (Figure 1B). This disparity in the expression
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
of Trx1 and Prx1 sets them apart from the other members of
their family, implying that they play alternative roles.

Proteomic profiling of the secreted proteins of the infectious
NEJs, immature 21-day post-infection and adult parasites
identified TGR, Trx1 and Prx1 but no other members of the
thiol-dependent antioxidant cascade (Cwiklinski et al., 2018;
Murphy et al., 2020; Cwiklinski et al., 2021) (Figure 1C). TGR
was detected in the NEJ secretome, but was only minimal in that
of the immature and mature adult parasite. In contrast, both
Trx1 and Prx1 were abundant in all secretomes, although Trx1
was more dominant in the NEJ stage while, conversely, Prx1 was
most abundant in the adult parasite secreted products. We also
found Trx1 and Prx1 enzymes within the contents of different
sized extracellular vesicles/exosomes recovered by differential
centrifugation (15K and 120K; Murphy et al., 2020) from adult
worm secretory products. The majority of Trx1 observed was
associated with the microvesicles (15K) while Prx1, although
present within both the EV fractions, was predominantly in the
soluble non-vesicle fraction and thus it seems unlikely that the
two interact in a reducing cascade.
LEADER (LP) AND LEADERLESS (LLP)
PROTEIN SECRETORY PATHWAYS: TRX1
AND PRX1 GO THEIR SEPARATE WAYS

Since Trx1 and Prx1 are found in abundance in the secretory
products of F. hepatica, it follows that they are readily released
into the extracellular environment by the parasite and, by
extension, likely to be released in vivo during infection
(Murphy et al., 2020). Conventionally in eukaryotic organisms,
proteins destined for secretion contain an N-terminal
hydrophobic signal peptide that targets the protein for
translocation and processing in the endoplasmic reticulum and
Golgi apparatus. The proteins are subsequently packaged into
secretory vesicles that fuse to the plasma membrane and release
the proteins freely into the extracellular environment (Palade,
1966; Blobel and Dobberstein, 1975). Our recent analysis of the
F. hepatica genome discovered that Prx1 is unique amongst the
three-membered family in possessing a signal secretory peptide
suggesting it is secreted via the classical leader pathway (LP).
This would explain its predominance in the secretome and, more
relevantly, in the freely-soluble fraction.

In contrast, Trx1 falls into the general category of leaderless
secretory proteins (LLPs), of which the mechanism of cellular
release remains less clearly understood but may occur through
numerous unconventional processes (Sitia and Rubartelli, 2020).
Direct translocation of LLPs through the plasma membrane via
lipidic or proteinaceous pores is one proposed mechanism
(Steringer et al., 2012; He et al., 2015). Packaging of these
proteins into autophagosomes, multivesicular bodies, and
secretory endolysosomes is another established mechanism
involved in the translocation of LLPs across the plasma
membrane (Dupont et al., 2011; Zhang et al., 2015). It is clear
from our studies that Trx1 is packaged into extracellular vesicles/
May 2021 | Volume 11 | Article 667272
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exosomes before release from the surface tegument or from
gastrodermal epithelial cells. Therefore, Trx1 is unlikely to be
freely soluble but more probably delivered to host cells along
with the total exosome cargo (de la Torre-Escudero et al., 2019;
Murphy et al., 2020).
PRX1 AND TRX1 – SPECIALISED
IMMUNOMODULATORY PROTEINS?

The results of our analysis of the F. hepatica genome is in keeping
with the idea that a functional thiol-dependent antioxidant
cascade operates as a defence system against metabolic stress
in this parasite. However, it is unclear how TGR, which is
encoded by a single copy gene, interacts with the triple Trx
and Prx members of this system. Perhaps the various Trxs and
Prxs are expressed in different parasite tissues that are under
varying levels of metabolic stress (e.g., tegument, reproductive
system, gastrodermis etc) and/or duplication of the anti-oxidant
genes have generated enzymes with enhanced or varied
functions, a feature we have observed in the expanded families
of cysteine proteases and protease inhibitors (Cwiklinski et al.,
2019; De Marco Verissimo et al., 2020; Smith et al., 2020).
Obviously, elucidation of this conundrum awaits more detailed
biochemical and cellular studies of each antioxidant member.
Notwithstanding, the abundant gene expression and secretion of
Trx1 and Prx1 is at variance with a role for these two anti-
oxidants alongside the other members in the general cellular
metabolism of the parasite and is more in line with their
involvement in specialised host-parasite interactions i.e., direct
manipulation of host responses. Furthermore, the distinct
secretory routes taken by Trx1 and Prx1 would suggest that
these are not functional partners but act autonomously. So, what
could the function of Trx1 and Prx1 be?

A secondary role for Prx, which we now know is Prx1, in host
immune modulation was previously described by us after the
antioxidant was discovered as a major component of a fraction of
adult F. hepatica ES products that induced Th2-immune
responses in mice (Donnelly et al., 2005; Donnelly et al., 2008).
We subsequently found that addition of a functionally-active
recombinant form of Prx1 to cultured macrophages induced
their differentiation into M2s. Moreover, intraperitoneal
injection of BALB/c mice with the same protein induced the
recruitment into the peritoneal space of M2s that were not
responsive to stimulation with LPS (Donnelly et al., 2008).
Since M2s play a key role in maintaining the Th2 responses of
the host immune system, as well as in suppressing the host
inflammatory response (Donnelly et al., 2008), we proposed a
role for Prx1 in the immunoregulation of the host response by F.
hepatica. Importantly, the ability of Prx1 to induce M2s in vitro
and in vivo was independent of its antioxidant properties since
an inactive recombinant variant was equally immunoregulatory
as the wild-type enzyme. We also demonstrated that host
(mouse) Prx had similar M2 properties when injected
intraperitoneally, prompting us to suggest that parasite Prx
acts like a host damage-associated molecular pattern (DAMP).
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Unlike Prx1, however, novel functions of F. hepatica Trx
remain to be discovered. Sequence alignments and structural
models of the various F. hepatica Trxs with those from other
parasites (protozoan and helminth) and mammals reveal a fully
conserved structure including the protruding five amino acid
motif (WCGPC) at its active site and neighbouring residues vital
for its functionality (Salazar-Calderón et al . , 2001;
Changklungmoa et al., 2014). This could infer that FhTrx1
exhibits some or all of the expanding assortment of
endogenous and exogenous activities that are emerging for
human Trx1 (hTrx). For example, besides reducing Prx
intracellularly, Trx acts as a hydrogen donor for proteins
involved in DNA synthesis (Zahedi Avval and Holmgren,
2009), is involved in the redox control of the inflammatory
related transcription factors like NF-kB and AP-1 (Schenk et al.,
1994), and prevents apoptosis via direct binding with apoptosis
signal-regulating kinase (Liu and Min, 2002). Its extracellular
activity is predominantly mediated enzymatically rather than
through classical receptor-like binding (Bertini et al., 1999) and
includes reduction and modulation of the activity of extracellular
receptors (Schwertassek et al., 2007; Xu et al., 2008) and
reduction of IL-1beta mRNA and protein synthesis through
suppression of NF-kB activation (Billiet et al., 2005). Trx
maintains extracellular cysteine in its reduced form, which is
essential for the survival and expansion of activated T-cells
(Angelini et al., 2002), and significantly enhances the
production of IL-2 and IL-10 (Sido et a l . , 2005) .
Administration of recombinant hTrx abrogated the
inflammatory progression of chronic pancreatitis, mediated in
part by the inactivation of IL-4 in vivo (Plugis et al., 2018). It also
r educ ed a cu t e s k in infl ammato r y r e a c t i on s and
lipopolysaccharide-induced infiltration by desensitising innate
immune cells to the chemokines KC, RANTES and MCP-1
(Nakamura et al., 2001; Pagliei et al., 2002; Ono et al., 2013).
CONCLUDING REMARKS

The growth and development of F. hepatica in the mammalian
host places a major metabolic burden on the parasite as it
migrates through host tissues, especially during the early
invasive stages that rely on stored glycogen for energy (Bennett
and Threadgold, 1973; Bennett, 1977). It is a vulnerable time for
the parasites and, therefore, they must possess an effective
antioxidant system to protect cells from stress-related oxidative
damage. The parasites must contend with ROS-mediated attack
from the host immune effector cells, such as macrophages and
eosinophils, and a rapidly developing host inflammatory
response. Turnover and antigenic changes to the surface
tegument are effective mechanisms of immune avoidance but
the secretion of molecules is a proactive way in which the parasite
can penetrate and feed on its host, as well as manipulate its
immune response to assist its survival.

The thiol-dependent antioxidant cascade is an important
system for F. hepatica to cope with increasing metabolic-
derived ROS, but expansion of members of this system by gene
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duplication has freed up particular members, Trx1 and Prx1, to
diverge in function and become part of the parasites’ armoury in
defence and, indeed, offense. The absolute function(s) of the
secreted Trx1 and Prx1 remain uncertain but their abundance in
parasite secretions and our few studies on their activity on
immune cells encourage further studies on their potential in
immune regulation. Recent studies in mammalian systems are
unveiling a diverse range of novel functions for Trx and Prx
independent of their antioxidants properties, particularly in the
regulation of inflammation (Ishii et al., 2012; Perkins et al.,
2014). Indeed, it is tempting to suggest that parasites are
intervening in the host immune regulation by molecular and
functional mimicry.

Our current -omics derived information provides a sound
base to better understand the components of the F. hepatica
thiol-dependent antioxidant cascade, and indeed other non-thiol
dependent antioxidant systems, and their role in parasite
physiology and parasite-host interaction. The pivotal role that
these systems play in parasite survival makes them tractable
targets to which anti-parasite drugs or vaccines could be targeted.
Comparative studies by Piedrafita et al. (2000) on the
susceptibility of F. hepatica and F. gigantica NEJs to killing by
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pro-inflammatory macrophages found a link between
antioxidant expression and resistance. More recent studies
have demonstrated the effectiveness of the TGR inhibitor gold
(I) drug auranofin against several parasites, including
schistosomes (Feng et al., 2020), that augurs well for the
treatment of F. hepatica infection given that the single enzyme
is pivotal to the whole cascade (Figure 1). The Trx1 and Prx1
enzymes may also be considered targets for vaccine-induced
immune responses, either alone, together or in a cocktail with
other antioxidants.
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Escamilla, A., Zafra, R., Pérez, J., McNeilly, T. N., Pacheco, I. L., Buffoni, L., et al.
(2016). Distribution of Foxp3+ T Cells in the Liver and Hepatic Lymph Nodes
of Goats and Sheep Experimentally Infected With Fasciola Hepatica. Vet.
Parasitol 230, 14–19. doi: 10.1016/j.vetpar.2016.10.020

Espino, A. M., and Rivera, F. (2009). Quantitation of Cytokine mRNA by Real-
Time RT-PCR During a Vaccination Trial in a Rabbit Model of Fascioliasis.
Vet. Parasitol. 169, 82–92. doi: 10.1016/j.vetpar.2009.12.018
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Falcon, C. R., Masih, D., Gatti, G., Sanchez, M. C., Motran, C. C., and Cervi, L.
(2014). Fasciola Hepatica Kunitz Type Molecule Decreases Dendritic Cell
Activation and Their Ability to Induce Inflammatory Responses. PloS One 9,
e114505. doi: 10.1371/journal.pone.0114505

Feng, L., Pomel, S., Latre de Late, P., Taravaud, A., Loiseau, P. M., Maes, L., et al.
(2020). Repurposing Auranofin and Evaluation of a New Gold(I) Compound
for the Search of Treatment of Human and Cattle Parasitic Piseases: From
Protozoa to Helminth Infections. Molecules (Basel Switzerland) 25, 5075.
doi: 10.3390/molecules25215075

Figueroa-Santiago, O., and Espino, A. M. (2014). Fasciola Hepatica Fatty Acid
Binding Protein Induces the Alternative Activation of Human Macrophages.
Infect. Immun. 82, 5005–5012. doi: 10.1128/IAI.02541-14

Frigerio, S., da Costa, V., Costa, M., Festari, M. F., Landeira, M., Rodrıǵuez-
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Salazar-Calderón, M., Martıń-Alonso, J. M., Ruiz de Eguino, A. D., Casais, R.,
Marıń, M. S., and Parra, F. (2000). Fasciola Hepatica: Heterologous Expression
and Functional Characterization of a Thioredoxin Peroxidase. Exp. Parasitol.
95, 63–70. doi: 10.1006/expr.2000.4495
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