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Abstract

The NLRP3 inflammasome is activated in the cytoplasm of cells and its products such as IL-1β are 

exported through a non-classical ER-Golgi pathway. Several mechanistically distinct models 

including exocytosis of secretory lysosomes, microvesicles (MVs) and extracellular vehicles (EVs) 

have been proposed for their release. In this study, we hypothesized that the NLRP3 

inflammasome product, IL-1β in response to exogenously administrated and endogenously 

produced D-ribose stimulation is released via extracellular vesicles including EVs via a 

sphingolipid-mediated molecular mechanisms controlling lysosome and multivesicular body 

(MVB) interaction. First, we demonstrated that both endogenous and exogenous D-ribose induced 

NLRP3 inflammasome activation to produce IL-1β, which was released via EVs in podocytes. 

Then, we found that colocalization of marker MVB marker VPS16 with IL-1β within podocytes 

increased upon D-ribose stimulation, which was accompanied by decreased colocalization of 

lysosome marker Lamp-1 and VPS16, suggesting decrease in MVB inclusion of IL-1β due to 

reduced lysosome and MVB interaction. All these changes were mimicked and accelerated by 

lysosome v-ATPase inhibitor, bafilomycin. Moreover, ceramide in podocytes was found elevated 

upon D-ribose stimulation, and prior treatments of podocyte with acid sphingomyelinase (Asm) 

inhibitor, amitriptyline, acid ceramidase (AC) inducer, genistein, or AC CRISPR/cas9 activation 

plasmids were found to decrease D-ribose-induced ceramide accumulation, EVs release and IL-1β 
secretion due to reduced interactions of lysosome with MVBs. These results suggest that 

inflammasome-derived products such as IL-1β during D-ribose stimulation are released via EVs, 

in which lysosomal sphingolipid-mediated regulation of lysosome function plays an important 

role.
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1. Introduction

D-Ribose is a naturally occurring monosaccharide known as “molecular currency” because 

of its role in intracellular energy transfer [1]. D-Ribose has been used as supplemental 

therapy for replenishing ATP levels in certain pathologic conditions such as, chronic fatigue 

syndrome [2] fibromyalgia and myocardial dysfunction [3]. Recent studies demonstrated D-

ribose induced intracellular ROS production and NF-κB activation leading to endothelial 

dysfunction and cognitive impairment, in particular of diabetic encephalopathy [4]. Our 

studies in mice reported that D-ribose-induced mesangial cell damage and renal dysfunction 

caused nephropathy mediated via RAGE-dependent NF-κB signaling pathway [5]. 

Prolonged administration of D-ribose in mice induces NLRP3 inflammasome activation in 

podocytes, contributing to podocyte injury and consequent glomerular sclerosis via AGE-

RAGE signaling pathway. In this regard various pathological stimulations initiates formation 

and activation of Nlrp3 inflammasome leading to the autocatalysis and activation of 

caspase-1, which in turn lead to maturation of pro-inflammatory cytokines, such as bioactive 

interleukin-1β (IL-1β) and interleukin-18 (IL-18). This NLRP3 inflammasome activation 

has been considered as an intracellular machinery to trigger inflammatory response to lead 

to chronic inflammation or degenerative injury in a variety of tissues and organs, such as 

kidney [6] and liver [7]. Among inflammasome products, IL-1β is a primary proin- 

flammatory cytokine mainly involved in inflammatory processes during various pathological 

conditions, such as pyroptosis [8], and IL-1β was often used as a common prototype product 

in studies on NLRP3 inflammasomes [9]. The mechanistic pathway for the secretion of 

active IL-1β produced by D-ribose-induced NLRP3 inflammasome in podocytes to result in 

glomerular injury, which may be a crucial step for triggering D-ribose-mediated nephropathy 

during diabetes.

Over the last two decades, it has become clear that cells can release vesicles that harbor and 

deliver functional molecules to recipient cells, in particular, extracellular vehicles (EVs) that 

are originated from the luminal membrane of multivesicular bodies (MVBs) [10–12]. Earlier 

in 1990, Rubartelli et al. in human monocytes showed that IL-1β is actively secreted via 

intracellular vesicles involving translocation of intracellular membranes which is different 

from classical endoplasmic reticulum-Golgi route [13]. After a decade, exocytosis of 

proIL-1β containing vesicles was reported for the transport of cytosolic IL-1β out of the cell, 

a secretory route regulated by various factors like ATP and osmotic conditions [14]. 

However, further studies are needed to clarify whether the secretion of IL-1β produced via 

NLRP3 inflammasome activation is via enhanced EVs release under pathological conditions. 

It is now well known that EVs are small vesicles (30–100 nm) of endosomal origin delimited 

by a lipid bilayer, and their secretion maintains cellular homeostasis in its producing cells by 

exporting various unnecessary or harmful materials [15], and functions as an alternate 

disposal pathway to lysosomes [16]. EVs were recognized to be an important medium for 

cellular communication. EVs regulate various pathological and physiological processes by 
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delivering mRNAs, miRNAs, and a variety of proteins to receptor cells [17]. The biogenesis 

of EVs and their release are regulated by various factors. One of important regulators in 

sphingolipid signaling pathway is ceramide, which was associated with MVBs formation 

and EVs release [18,19]. Ceramide has also been reported to initiate NLRP3 inflammasome 

formation and activation [20,21], and promote NLRP3-dependent IL-1β production [22]. 

Based on these results, we wondered whether the sphingolipid metabolism or ceramide is 

involved in EVs formation or release, in particular, under different pathological conditions.

To answer this question, the present study hypothesized that sphingolipid metabolism 

regulates lysosome trafficking and fusion with MVBs and thereby controls EVs release. 

IL-1β produced by D-ribose-induced NLRP3 inflammasome activation was released via 

EVs, which is regulated by lysosomal sphingolipid-mediated signaling pathway. We first 

examined whether both exogenously administrated D-ribose and endogenously produced D-

ribose-induced NLRP3 inflammasome activation and accompanied increases in EVs release 

in podocytes. Then, we observed whether D-ribose enhanced EVs release is due to 

dysregulation of AC-ceramide mediated lysosome function, in particular, the interaction of 

lysosome with MVBs. Finally, we performed in vivo experiments to confirm the 

involvement of enhanced IL-1β release due to decreases in lysosome-MBVs interactions in 

podocyte dysfunction and glomerular injury. Our results together demonstrated that IL-1β 
produced by NLRP3 inflammasome activation in podocytes upon D-ribose stimulation is 

indeed increasingly released via EVs that is controlled by lysosomal sphingolipid pathway.

2. Materials and methods

2.1. Animals

Eight-week-old, male C57BL/6J (The Jackson Laboratory, Bar Harbor, ME) were 

intraperitoneally (i.p.) injected vehicle or D-ribose (dissolved in 0.9% saline) at a dose of 2 

g/kg BW, once a day, for 30 days. Then, mice were sacrificed and their kidneys were 

harvested. All animal experimental protocols were approved by the Institutional Animal 

Care and Use Committee of the Virginia Commonwealth University.

2.2. Cell culture

A conditionally immortalized mouse podocyte cell line (Graciously provided by Dr. P. E. 

Klotman, Division of Nephrology, Department of Medicine, Mount Sinai School of 

medicine, New York, NY), was cultured and maintained as described previously [23]. For all 

experiments, culture medium was replaced with serum-free medium prior to treatments. 

Podocytes were incubated with D-ribose (25 mM, Sigma, USA) or phosphonoacetic acid 

(1.0 mM, Sigma Aldrich, USA) for 24 h. Acid ceramidase (AC), AC inducer genistein 

(genis, 20 μM, Sigma Aldrich, USA) and acid sphingomyelinase (Asm) inhibitor, 

amitriptyline (Ami, 20 μM, Sigma, St. Louis, MO, USA) were used 30 min prior to 

treatments [24,25].

2.3. Western blot analysis

Equal amount of protein was resolved on SDS-PAGE gels and transferred to PVDF 

membrane. After blocking, membranes were incubated with primary antibodies rabbit anti 

Hong et al. Page 3

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ASC (1:1000, cell signaling technology, USA), rabbit anti-Cle-Caspase-1 (1:1000, cell 

signaling technology, USA), rabbit anti-pro-Caspase-1 (1:1000, Abcam, Cambridge, MA, 

USA), rabbit anti-acid ceramidase antibody (1:1000, LSBio, USA) and rabbit anti-β-actin 

(1:10000, Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4 °C. After overnight 

incubation, membranes were washed and incubated with donkey anti-rabbit-HRP IgG 

(1:5000, Santa Cruz Biotechnology, Dallas, TX, USA) for 1 h at room temperature. Finally, 

bands were detected by chemiluminescence technique using LI-COR Odyssey Fc and the 

band intensity of target proteins were normalized to β-actin and calculated with Image J 

software version 1.44p (NIH, Bethesda, MD, USA).

2.4. Assays of Caspase-1 activity and IL-1β production

Cell culture medium was used to measure Caspase-1 activity using a commercial 

colorimetric assay kit (Biovision, Mountain View, CA), and IL-1β production was detected 

with mouse IL-1β ELISA kit (R&D systems, USA) according to manufacturer’s 

instructions.

2.5. CRISPR/Cas9 activation plasmid transfection

An AC CRISPR/Cas9 activation plasmid was purchased from Santa Cruz Biotechnology, 

Dallas, TX, USA. Plasmid transfection was performed with the Polyethylenimine 

(Polyscience Inc., Eppelheim, Germany) according to manufacturer’s instructions.

2.6. Immunofluorescence microscopy

After treatments, kidney slides and podocyte culture coverslips (cell density is 1000/well in 

24-well-plate) were fixed, blocked and incubated with primary antibodies against NLRP3 

(1:100, Abcam, Cambridge, MA, USA), cleaved-caspase-1 (1:200, Santa Cruz 

Biotechnology, Dallas, TX, USA), VPS16 (1:100, Proteintech Group, Chicago, IL, USA), 

IL-1β (1:200, R&D systems, USA), Lamp-1(1:100, Abcam, Cambridge, MA, USA) at 4 °C 

overnight. Then samples were incubated with corresponding secondary antibodies with 

either Alexa- 488- or Alexa-555-labeled (Invitrogen) for 1 h at room temperature in the dark 

room. Finally, samples were mounted with mounting medium containing DAPI sealed with 

nail polish and pictures were taken under confocal laser scanning microscope (Fluoview 

FV1000; Olympus, Tokyo, Japan). There were 5–6 slides in every group, and 3 to 5 frames 

were chosen in every sample at random to show the characteristics of cell statues. Co-

localization coefficient was analyzed with Image Pro Plus 6.0 software (Media Cybernetics, 

Bethesda, MD) and expressed as Pearson’s correlation coefficient (PCC) [26].

2.7. Immunohistochemistry

The kidneys were dissected from the mice, fixed in 10% buffered formalin for 24 h, 

embedded in paraffin and were cut into 5 μm slices to make tissue slides. After 

deparrafinization followed by heat-induced antigen retrieval, slides were incubated with 

primary antibodies against Annexin-II (1:100, Santa Cruz Biotechnology, Dallas, TX, USA), 

CD63 (1:100, Santa Cruz Biotechnology, Dallas, TX, USA) and alkaline phosphatase 

(1:100, Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4 °C, and then incubated 

with biotinylated secondary antibodies and a streptavidin peroxidase complex (PK-7800, 
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Vector Laboratories, Burlingame, CA, USA). Then slides were incubated with DAB and 

counterstained with hematoxylin. Followed by washing, dehydration, and finally slides were 

mounted with permount DPX and observed under microscopy as described previously [27]. 

The area percentage of the positive staining was calculated with Image Pro Plus 6.0 software 

[27].

2.8. EVs isolation from cultured podocytes

Culture medium was collected from the podocytes, centrifuged at 1200g for 15 min at 4 °C 

to remove the debris. Supernatant was transferred into sterile Eppendorf tubes and 

centrifuged at 10,000g for 30 min at 4 °C. 0.22 μm filter was used to remove microvesicles 

from the supernatant, and then centrifuged again at 100,000g for 90 min at 4 °C. Finally, 

supernatant was discarded and the remaining EVs pellet was resuspended in 50 μl cold PBS 

for further analysis [28].

2.9. Nanoparticle tracking analysis (NTA)

NTA measurements were performed with a NanoSight NTA3.2 Dev Build 3.2.16 (Malvern 

Instruments Ltd., UK), equipped with a sample chamber with a 638-nm laser and a Viton 

fluoroelastomer O-ring. The samples were injected in the sample chamber with sterile 

syringes (BD, New Jersey, USA) until the liquid reached the tip of the nozzle. All 

measurements were performed at room temperature. The screen gain and camera level was 

10 and 13 respectively. Each sample was measured at standard measurement, 30 s with 

manual shutter and gain adjustments. Three measurements of the each sample was 

performed. 3D figures were exported from the software. Particles sized between 50 and 100 

nm were calculated [29].

2.10. High performance liquid chromatography tandem mass spectrometry (HPLC-
MS/MS) analysis of ceramides, sphingosine, and sphingosine-1- phosphate

Separation, identification and quantitation of ceramides, sphingosine, and sphingosine-1-

phosphate were performed by HPLC-MS/MS. Internal standard solution containing 10 ng 

each of ceramide C12, sphingosine C17, and sphingosine-1-phosphate C17 was added to 

each cell sample and calibrator. Ceramides, SPH, and S1P were extracted using the Bligh-

Dyer method under acidic conditions [30]. Briefly, 2:1 methanol: chloroform (v/v) and 1 N 

HCl was added to all samples and calibrators. Cell samples were sonicated for 30 s and 

centrifuged at 13,200 rpm for 5 min. Calibrators were mixed for 5 min then and centrifuged 

at 13,200 rpm for 5 min. The organic phases were collected, and the samples and calibrators 

were extracted again with chloroform. The organic phases were combined and evaporated to 

dryness using nitrogen gas, reconstituted in 100 μl ethanol, and placed in autosampler vials 

for HPLC-MS/MS analysis on a Sciex 6500+ QTRAP System with an IonDrive Turbo V 

source for TurbolonSpray® (Ontario, Canada) attached to a Shimadzu Nexera X2 UPLC 

system (Kyoto, Japan) controlled by Analyst software. Chromatographic separation was 

performed on a Restek Force Biphenyl column 100 ×3 mm, 5 μm (Bellefonte, PA). The 

acquisition mode used was multiple reactions monitoring (MRM).
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2.11. Cell activity and cell damage assay

Cell activity was assessed by CCK-8 assay kit (Dojindo, Japan). Cells were incubated with 

10% CCK-8 solution at 37 °C for 1 h. The absorbance was measured with a microplate 

reader at 450 nm wavelength. Lactate Dehydrogenase (LDH) level in culture supernatant can 

be detected to reflect cell damage. After treatment, the supernatant was collected and 

analyzed with LDH assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) 

according to manufacturer’s instructions.

2.12. Statistical analysis

Data are presented as means ± SE. The significant differences between and within multiple 

groups were examined using one way or two way ANOVA, followed by Duncan’s multiple-

range test. P < 0.05 was considered statistically significant.

3. Results

3.1. Exogenous and endogenous D-ribose induced inflammasome formation in 
podocytes

As demonstrated in our previous study, exogenous D-ribose treatment induced formation 

and activation of NLRP3 inflammasome in podocytes. The present study confirmed whether 

endogenous D-ribose also induced the formation and activation of NLRP3 inflammasome by 

inhibition of ribokinase, an enzyme that catalyzes the formation of D-ribose-5-phosphate 

from D-ribose [31]. We observed that phosphonoacetic acid (PAA), a ribokinase inhibitor, 

induced NLRP3 inflammasome formation and activation in podocytes. As depicted in Fig. 

1A, both D-ribose and PAA treatment significantly increased the colocalization of NLRP3 

(green) and caspase-l(red). The Pearson correlation coefficient is shown in summarized bar 

Fig. 1B. By western blot analysis, both D-ribose and PAA treatment was found to 

remarkably increase the expression of cle-caspsae-1 as shown in Fig. 1C, D. In addition, 

biochemical analyses showed the caspase-1 activity was significantly increased in D-ribose 

and PAA treatment groups than vehicle (Fig. 1E). These results demonstrated that both 

exogenous and endogenous D-ribose induced formation and activation NLRP3 

inflammasome in podocytes.

3.2. D-Ribose-induced IL-1β release through EVs secretion by lysosome dysfunction in 
podocytes

Literature cites that NLRP3 inflammasome formation and activation leads to production of 

mature IL-1β, IL-18. To explore how IL-1β, a proinflammatory cytokine is secreted out of 

cells, we assessed the contribution of EVs as IL-1β release mechanisms in an experimental 

cell model of podocytes. We confirmed EVs with its marker CD63 by western blot 

(Supplementary Fig. 1A). Using a nanoparticle tracking analysis system, we found that 

secretion of EVs (50–100 nm) from podocytes markedly increased by both D-ribose and 

PAA, as shown by representative 3-D histograms, which were further increased with prior 

treatment of bafilomycin A1 (Baf), a lysosome v-ATPase inhibitor (Fig. 2A). Fig. 2B 

showed summarized data of the particle number sized between 50 and 100 nm, and the curve 

of particle number vs. particle size < 200 nm was shown in Supplementary Fig. 1B. By 
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ELISA, we observed that IL-1β production in EVs isolated from supernatant of D-ribose 

and PAA treatment groups were significantly higher than vehicle group which were further 

increased by pretreatment with bafilomycin A1 as shown in Fig. 2C. Moreover, the 

expression of cle-caspase-1/procaspase-1 and ASC in EVs were also found to be up-

regulated after DR or PAA treatment (Supplementary Fig. 2). Using confocal microscopy, in 

Baf treated podocytes, we observed that both D-ribose and PAA markedly increased 

colocalization of MVBs (VPS16, green) and IL-1β (red) resulting in the secretion of EVs 

loaded with IL-1β in podocytes (Fig. 2D) Furthermore, we observed that Baf-induced 

lysosomal dysfunction caused more decreased co-localization of MVBs (VPS16, green) vs. 

lysosomes (Lamp-1, red) in both D-ribose and PAA treated podocytes which indicates loss 

of MVBs interactions or even fusion with lysosomes causing secretion of EVs (Fig. 2F). The 

Pearson colocalization coefficient (PCC) of (VPS16, green) vs. (IL-1β, red) was clearly 

increased while as PCC of VPS16 and Lamp-1 was decreased by both D-ribose and PAA 

treatment in Baf treated podocytes as shown in Fig. 2E, G. Together these results concluded 

that D-ribose also caused lysosomal dysfunction, indicating that D-ribose and bafilomycin 

might share similar mechanistic pathway in the secretion of extracellular vehicles carrying 

inflammasome products like IL-1β.

3.3. D-Ribose-induced ceramide formation in podocytes regulated by lysosomal-
ceramide sphingolipid pathway

HPLC-MS/MS analysis was performed to determine if exogenous and endogenous D-ribose-

induced ceramide formation in podocytes. Fig. 3A shows a representative chromatogram of 

sphingosine (SPH), sphingosine-1-phosphate (S1P) and ceramide from podocytes with 

different treatments. Clear peaks corresponding to S1P C17, S1P, SPH C17, SPH, ceramides 

C12, C14, C16, C18, C20, C22 and C24 were detected. We observed that both D-ribose and 

PAA caused a significant increase in C16 production as compared to vehicle Ctrl group. 

Next, we tested if modulation of lysosomal-ceramide sphingolipid pathway regulated D-

ribose-induced ceramide formation. For this podocytes were treated with amitriptyline (an 

Asm inhibitor), genistein (an AC activator) and acid ceramidase (AC) CRISPR activation 

plasmid. We found that amitriptyline, genistein and AC CRISPR activation plasmid 

significantly decreased both D-ribose and PAA-induced C16 production in podocytes. The 

summarized data is shown in Fig. 3B. However, there is no remarkable change in the 

sphingosine production with D-ribose and PAA treatment as compared to the vehicle. 

Interestingly, amitriptyline had no significant effect on sphingosine levels, while genistein 

and AC CRISPR activation plasmid treatment significantly increased sphingosine levels as 

compared to vehicle Ctrl group (Fig. 3C). These data suggest that lysosomal-ceramide 

sphingolipid pathway play an important role in D-ribose-induced ceramide formation in 

podocytes.

3.4. Asm inhibition blocked D-ribose-induced IL-1β secretion by blocking EVs release in 
podocytes

To investigate the role of the sphingolipid salvage pathway in D-ribose-induced IL-1β 
secretion by EVs release, podocytes were pretreated with amitriptyline, an Asm inhibitor. 

Using a nanoparticle tracking analysis system, we found that amitriptyline blocked secretion 

of EVs (50–100 nm) in both D-ribose and PAA treated podocytes as shown in (Fig. 4A). 
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Next, by ELISA we observed that D-ribose and PAA-induced IL-1β production in EVs was 

significantly decreased by amitriptyline treatment (Fig. 4B), which was confirmed by 

decreased of colocalization of MVBs (VPS16, green) and IL-1β (red) (Fig. 4C). The 

colocalization coefficient (PCC) of both markers in D-ribose and PAA-treated podocytes 

was clearly reduced by amitriptyline as shown in bar graph (Fig. 4E). Furthermore, we 

found that amitriptyline significantly increased colocalization of MVBs (VPS16, green) vs. 

lysosomes (Lamp-1, red) in all treatment groups as shown Fig. 4D. The PCC analysis 

showed in the bar graph (Fig. 4F). These results indicate that lysosomal-ceramide pathway 

can modulate the IL-1β production by blocking the EVs release in podocytes which in turn 

can prevent the glomerular injury.

3.5. Pharmacological and genetic activation of acid ceramidase decreased D-ribose-
induced IL-1β secretion by blocking EVs release in podocytes

To further investigate the role of the lysosomal-ceramide sphingolipid pathway in both 

exogenous and endogenous D-ribose-induced IL-1β secretion by EVs release, podocytes 

were pretreated with genistein, an acid ceramidase (AC) activator. We observed that both 

EVs release (particle number) and IL-1β production was significantly increased by 

exogenous and endogenous D-ribose, whileas genistein treatment blocked this D-ribose-

induced increase as shown in Fig. 5A, B. Confocal microscopy showed that genistein 

significantly decreased both exogenous and endogenous D-ribose-induced increased 

colocalization of MVBs (VPS16, green) vs. (IL-1β, red) (Fig. 5C), whileas colocalization of 

MVBs (VPS16, green) vs. lysosomes (Lamp-1, red) was significantly increased (Fig. 5D). 

The PCC analysis showed in the bar graph (Fig. 5E, F).

To further confirm the role of AC enzyme, AC CRISPR activation plasmid was transfected 

into podocytes prior to treatment of D-ribose or Vehl. As shown in Fig. 6A and B, we 

observed a remarkable increase in AC expression with the treatment of AC CRISPR 

activation plasmid, indicating the good transfecting efficiency. Similar to genistein, an AC 

activator, AC CRISPR activator plasmid significantly decreased the D-ribose-induced 

increase in EVs number and IL-1β production (Fig. 6C and D). Also, colocalization of 

MVBs (VPS16, green) vs. (IL-1β, red) (Fig. 6E) was significantly decreased but 

colocalization of MVBs (VPS16, green) vs. lysosomes (Lamp-1, red) was significantly 

increased (Fig. 6F) by AC CRISPR activator plasmid by both exogenous and endogenous D-

ribose in podocytes. The PCC analysis showed in the bar graph (Fig. 6G, H). Both 

pharmacological and genetic manipulations indicated that lysosomal-ceramide pathway in 

particular AC play an important role in D-ribose-induced IL-1β secretion via increased EVs 

release.

3.6. D-Ribose-induced IL-1β release through EVs secretion by reduced lysosome-MVBs 
interactions in the glomeruli of mice

To validate our in vitro results whether D-ribose induce IL-1β release through EVs secretion 

in glomeruli in vivo, 8-week-old, male C57BL/6J mice were intraperitoneally (i.p.) injected 

with vehicle or D-ribose. We first found that after 30 days treatment of D-ribose, the plasma 

levels of IL-1β in mice was 348.71 ng/l, significantly up-regulated than Vehl group (326.87 

ng/l). By immunohistochemistry we found that D-ribose significantly increased the 
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expression of EVs markers like Annexin-II, CD63 and ALP in glomeruli as compared to 

vehicle treated mice as shown in the Fig. 7A. Furthermore, consistent to our in vitro data, D-

ribose significantly decreased the colocalization of MVBs (VPS16, green) vs. lysosomes 

(Lamp-1, red) in glomeruli (Fig. 7B) whereas as colocalization of MVBs (VPS16, green) vs. 

(IL-1β, red) was significantly increased as shown in Fig. 7C. Moreover, D-ribose down-

regulated the colocalization of nephrin (green) and VPS16 (red) in glomeruli (Fig. 7D). 

These results indicate that D-ribose result in reduced lysosome-MVB interactions, 

increasing fusion of MVBs with plasma membrane and enhanced IL-1β release through EVs 

secretion.

4. Discussion

In the present study, we examined whether lysosomal-ceramide metabolism via AC regulates 

IL-1β secretion through extracellular vesicles during D-ribose-induced NLRP3 

inflammasome activation in podocytes. Firstly, we demonstrated that both exogenous and 

endogenous D-ribose induced formation and activation of NLRP3 inflammasome in 

podocytes. Endogenous D-ribose formation was induced by phosphonoacetic acid (PAA), a 

ribokinase inhibitor, an enzyme that catalyzes the formation of D-ribose-5-phosphate from 

D-ribose. Both D-ribose and PAA was shown to increase the secretion of EVs, and also 

IL-1β levels in these isolated EVs, which were further increased by prior treatment of 

bafilomycin A1, a lysosome v-ATPase inhibitor. Increased colocalization of MVBs marker 

(VPS16) and IL-1β was observed. These results indicate that the secretion ofIL-1β 
containing EVs was increased in both D-ribose and PAA-treated podocytes. By HPLC-

MS/MS analysis, we showed that D-ribose and PAA caused a significant increase in C16-

ceramide production, which can be blocked by genetic and pharmacologic activation of AC 

expression and activity, but enhanced by inhibition of AC expression and activity. It is clear 

that AC is a critical enzyme that control ceramide levels in lysosomes and thereby may 

contribute to the control of lysosome function and consequent EVs release in podocytes 

during D-ribose stimulation.

Furthermore, we observed that amitriptyline, an Asm inhibitor, blocked D-ribose and PAA-

induced secretion of EVs and their IL-1β levels from podocytes, which was followed by 

increased inclusion of IL-1β as shown by colocalization of VPS16 vs. IL-1β. However, the 

colocalization of MVBs (VPS16) vs. lysosomes (Lamp-1) was decreased, suggesting 

reduction of IL-1β containing MVBs degradation via lysosome that leads to increases in 

EVs release. We also demonstrated that genistein, an AC gene expression inducer and AC 

CRISPR/Cas9 activation plasmid attenuation of enhanced EVs release induced by both 

exogeneous and endogenous D-ribose in podocytes, which were associated with reduced 

lysosome-MVB interactions and increased IL-1β containing MVBs. These results suggest 

that lysosomal AC -mediated lysosomal ceramide metabolism plays a crucial role in IL-1β 
release via EVs during NLRP3 inflammasome activation induced by D-ribose.

D-Ribose has been recently emerging as a novel pathogenic factor for organ damages during 

diabetes mellitus. However, the molecular mechanism mediating the action of D-ribose 

remains poorly understood. In the present study, we first demonstrated that both exogenous 

and endogenous D-ribose induced the formation and activation of NLRP3 inflammasome in 
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podocytes, confirming that NLRP3 inflammasome activation may be a critical mechanism 

for D-ribose induced-podocyte injury and glomerular sclerosis. NLRP3 inflammasome 

products such as IL-1β were released via EVs out of podocytes in response to either 

exogenously administrated or endogenously produced D-ribose, which was mimicked 

lysosome dysfunction induced by bafilomycin A1. We also found that IL-1β was also up-

regulated after D-glucose treatment, which can be further increased with Bafilomycin 

(Supplementary Fig. 3A). Furthermore, we found that EVs isolated from vehicle-treated 

podocytes had no significant effects on mesangial cell activity. However, EVs isolated from 

D-ribose treated podocytes decreased mesangial cell activity by 10.5% compared to Vehl-

treated cells (Supplementary Fig. 3B and C). To our knowledge, this is the first experimental 

evidence showing the products of NRLP3 inflammasome activation in podocytes upon D-

ribose stimulation are released via EVs, thereby triggering the inflammatory response in 

glomeruli and leading to chronic sterile glomerular inflammation and ultimate sclerosis 

There is growing evidence that EVs are a molecular signaling package for some specific 

target cells [10,32] and are used by the originating cell to dispose unnecessary or harmful 

materials [15,33–35]. In the context of inflammation, some reports have shown that 

extracellular ATP stimulation in murine macrophages lead to P2X7R-induced formation of 

multivesicular bodies (MVBs), which contain IL-1β, and these inflammasome loaded 

intraluminal vesicles (ILVs) are released by exocytosis [36]. In human THP-1 monocytes 

and microglia cells, MVs shedding is predicted as a general mechanism for secretion IL-1β 
[37,38]. However, other studies in activated human monocytes also revealed that both pro-

IL-1β and caspase-1 are entrapped in the vesicles, which as an endolysosomal compartment 

undergo exocytosis in the form of secretory lysosomes [14,39], but not via EVs. Dupont et 

al. also showed that autophagy via Atg5-dependent export pathway has a positive 

contribution to the secretion of the proinflammatory cytokine IL-1β in different mammalian 

cells [40]. It seems that different cells under different conditions may use different 

mechanisms to release IL-1β. Our results indicate that enhanced EVs secretion may be a 

crucial mechanism mediating the release of NLRP3 inflammasome produced IL-1β in 

podocytes upon D-ribose stimulation.

This activating mechanism instigating the inflammatory response in podocytes and 

glomeruli may also contribute to the development of diabetic nephropathy because D-ribose 

has now been emerging as a novel pathogenic factor for organ damages during diabetes 

mellitus in addition to elevated blood glucose levels. Therefore, blockade of NLRP3 

inflammasome activation or inhibition of the release of NRLP3 inflammasome products may 

be a therapeutic strategy for prevent or treatment of diabetic nephropathy (DN), which is 

characterized by hyperfiltration, albuminuria, and decline in glomerular filtration rate 

(GFR), leading to progressive renal fibrosis or sclerosis [41].

In animal experiments, we also observed that mice on the high D-ribose diet had increased 

EVs in their glomeruli, as shown by largely increased levels of EVs markers CD63 and ALP 

in glomeruli. It was also found that inclusion of NRLP3 inflammasome product, IL-1β in 

MVB was increased, while the interaction of lysosome with MVBs was reduced in 

glomerular podocytes of these mice receiving the high D-ribose diet. These results indicate 

that D-ribose activated inflammasome in podocytes of mice may trigger consequent 

inflammatory response in glomeruli via EVs-mediated release of IL-1β or other products, 
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which ultimately leads to podocyte dysfunction, glomerular injury and the development of 

glomerular sclerosis, as shown by previous studies [42–44]. Together, all data suggested that 

lysosomal sphingolipid pathway plays a crucial role in NLRP3 inflammasome-dependent 

IL-1β release via EVs leading to glomeruli podocyte injury. The present study did attempt to 

explore the mechanism by which EVs-derived inflammasome products such as IL-1β cause 

glomerular injury and ultimate sclerosis, recent studies have indicated that EVs produced 

and secreted in the kidney are not only an important biomarker to depict kidney function or 

disease, but also serve as an critical mechanism mediating intra-renal signaling, in particular, 

cell-to-cell communication, which may participate in the development of different kidney 

diseases [45–47]. There is evidence that podocyte-derived EVs increased in diabetic mice 

even before onset of albuminuria [48]. Increased EVs may serve as a signaling vesicle to 

trigger phenotype changes in neighbor cells, to produce podocyte dysfunction and to 

promote fibrogenesis in glomeruli or other tissues in the kidney [45–47], resulting in the 

development of albuminuria [49].

Another important finding of the present study is that IL-1β release via EVs is regulated by 

ceramide sphingolipid metabolism via lysosomal AC and Asm. Ceramide is released from 

the hydrolysis of membrane sphingomyelin by various sphingomyelinases such as Asm, 

serine palmitoyltransferase, and ceramide synthase [50]. Lysosomal ceramide is mainly 

metabolized into sphingosine by AC.

Studies have shown that ceramide may be importantly involved in activation of kidney tissue 

inflammation and thereby leads to chronic renal diseases under different pathological 

conditions such as obesity, hyperhomocysteinemia, diabetes mellitus and other renal 

inflammatory diseases. With respect to ceramide regulation of EVs biogenesis and secretion, 

there is report that SMPD3-derived ceramide triggers budding of EVs vesicles into 

multivesicular endosomes [19,32], suggesting that ceramide is important sphingolipid 

required for EVs formation, secretion and function [51], The present study demonstrated 

that D-ribose increased the ceramide levels in podocytes, which were decreased by both 

Asm inhibition with amitriptyline or AC activation by AC gene inducer, genestein or AC 

CRISPR/Cas9 activation plasmid. This suggests that increased D-ribose in the kidney may 

act on podocytes to not only induce NLRP3 inflammasome activation, but also increase 

ceramide level in lysosomes to promote EVs secretion, thereby transporting NLRP3 

inflammosome products out of podocyte to exert their role in triggering glomerular 

inflammatory response.

In summary, the present study demonstrated that NLRP3 inflammasome products such as 

IL-1β were increasingly released via EVs secreted from podocytes upon D-ribose 

stimulation, which may lead to glomerular podocyte injury. This EVs-mediated release of 

NLRP3 inflammasome products is controlled by lysosomal ceramide-mediated signaling. 

Targeting this EVs-mediated release of NLRP3 inflammosome products regulated by 

ceramide signaling may represent a novel strategy for prevention and treatment of diabetic 

nephropathy given the important role of D-ribose in diabetic organ damage.
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Fig. 1. 
Exogenous and endogenous D-ribose-induced inflammasome formation and activation in 

podocytes.

A. Representative confocal microscopic images of NLRP3 (green) and caspase-1 (red) 

(n=4). B. Bar graph shows summarized data depicting co-localization of NLRP3 vs. 

caspase-1 in podocytes treated with D-ribose and PAA (n=4). C. Representative western blot 

gel of Pro-caspase-1 and Cle-caspase-1 in podocytes treated with D-ribose and PAA (n=4). 

D. Bar graph shows summarized data of Pro-caspase-1 and Cle-caspase-1 in podocytes 
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treated with D-ribose and PAA (n=4). E. Caspase-1 activity in podocytes treated with D-

ribose and PAA (n=5). *P < 0.05 versus Vehl group. Vehl, Vehicle; DR, D-ribose; PAA, 

Phosphonoacetic acid.
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Fig. 2. 
IL-1β release through EVs secretion mediated by lysosome dysfunction in D-ribose-treated 

podocytes.

A. Representative 3D graphs depicting number of EVs isolated from cell supernatant with 

different treatments (n = 6). B. Summarized bar graph shows changes in EVs number with 

different treatments (n = 6). C. Bar graph shows IL-1β levels in EVs isolated from cell 

supernatant with different treatments (n = 6). D. Representative confocal microscopic 

images showing the co-localization of VPS 16 (green) and IL-1β (red) and E. co-
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localization of VPS 16 (green) and Lamp-1 (red) in podocytes with different treatments (n = 

5). Summarized data depicting co-localization of F. VPS 16 (green) and IL-1β (red) and G. 

co-localization of VPS 16 (green) and Lamp-1 (red) in podocytes with different treatments 

(n = 5). *P < 0.05 versus Ctrl-Vehl group, #P < 0.05 versus Ctrl group. Ctrl, control; Vehl, 

Vehicle; DR, D-ribose; PAA, Phosphonoacetic acid; Baf, bafilomycin A1.
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Fig. 3. 
Effects of Asm inhibition and AC activation on ceramide C16 and sphingosine production in 

podocytes.

A. Representative chromatogram of ceramide and sphingosine (SPH) analyzed by UPLC-

MS/MS analysis (n = 5). Summarized bar shows B. ceramide C16 and C. sphingosine 

production in podocytes with different treatments (n = 5). *P < 0.05 versus Ctrl-Vehl group, 

#P < 0.05 versus Ctrl group. Ctrl, control; Vehl, Vehicle; DR, D-ribose; PAA, 
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Phosphonoacetic acid; Ami, amiftiptyline; Genis, genistein; CRISPR, acid ceramidase 

CRISPR activation plasmid; cps, Counts per second.

Hong et al. Page 20

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Effects of acid sphingomyelinase (Asm) inhibition on IL-1β release and EVs secretion.

A. Summarized data of EVs number isolated from cell supernatant with different treatments, 

as determined by Nanosight (n = 6). B. IL-1β levels in EVs isolated from cell supernatant 

with different treatments (n = 6). Representative confocal microscopic images showing the 

co-localization of C. VPS 16 (green) and IL-1β (red) and D. co-localization of VPS 16 

(green) and Lamp-1 (red) with bafilomycin treatment in D-ribose and PAA- treated 

podocytes. Summarized bar graph depicting co-localization of E. VPS 16 (green) and IL-1β 
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(red) and F. VPS 16 (green) and Lamp-1 (red) (n = 5). *P < 0.05 versus Ctrl-Vehl group, #P 

< 0.05 versus Ctrl group. Ctrl, control; Vehl, Vehicle; DR, D-ribose; PAA, Phosphonoacetic 

acid; Ami, amitriptyline.
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Fig. 5. 
Effects of acid ceramidase (AC) activation on D-ribose-induced IL-1β release and EVs 

secretion.

A. Bar graph shows summarized data of EVs number isolated from cell supernatant with 

different treatments, as determined by Nanosight (n=6). B. IL-1β levels in EVs isolated from 

cell supernatant with different treatments (n=6). Representative confocal microscopic 

images showing the co-localization of C. VPS 16 (green) and IL-1β (red) and D. co-

localization of VPS 16 (green) and Lamp-1 (red) with genestein treatment in D-ribose and 
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PAA-treated podocytes (n=5). Summarized data depicting co-localization of E. VPS 16 

(green) and IL-1β (red) and F. VPS 16 (green) and Lamp-1 (red) (n=5). *P < 0.05 versus 

Ctrl-Vehl group, #P < 0.05 versus Ctrl group. Ctrl, control; Vehl, Vehicle; DR, D-ribose; 

PAA, Phosphonoacetic acid; Genis, genistein.
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Fig. 6. 
Effect of acid ceramidase CRISPR/Cas9 activation plasmid on D-ribose-induced IL-1β 
release and EVs secretion.

A. Representative western blot gel document showing the effect of acid ceramidase CRISPR 

activation plasmid on the expression of acid ceramidase (AC) in podocytes (n = 4). B. 

Summarized bar graph shows change in AC expression using AC CRISPR activation 

plasmid. C. Summarized data of EVs number isolated from cell supernatant treated with AC 

CRISPR activation plasmid in D-ribose and PAA-treated podocytes (n = 6). D. IL-1β levels 

Hong et al. Page 25

Biochim Biophys Acta Mol Cell Res. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in EVs isolated from cell supernatant treated with AC CRISPR activation plasmid in D-

ribose and PAA-treated podocytes (n = 6). Representative confocal microscopic images 

showing the co-localization of E. VPS 16 (green) and IL-1β (red) and F. co-localization of 

VPS 16 (green) and Lamp-1 (red) treated with AC CRISPR activation plasmid in D-ribose 

and PAA-treated podocytes (n = 5). Summarized data depicting co-localization of G. VPS 

16 (green) and IL-1β (red) and H. VPS 16 (green) and Lamp-1 (red) (n = 5). *P < 0.05 

versus Ctrl-Vehl group, #P < 0.05 versus Ctrl group. Ctrl, control; Vehl, Vehicle; DR, D-

ribose; PAA, Phosphonoacetic acid; CRISPR, acid ceramidase CRISPR activation plasmid.
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Fig. 7. 
D-Ribose-induced IL-1β release and EVs secretion in the glomeruli of mice.

A. Representative images and summarized bar graph shows immunostaining of glomeruli 

for EVs markers like Annexin-II, CD63 and alkaline phosphatase (ALP) in the glomeruli of 

mice treated with D-ribose (n = 5). B. Representative confocal images and summarized bar 

diagram shows co-localization of VPS 16 (green) vs. Lamp-1 (red) in the glomeruli of mice 

treated with D-ribose (n = 5). C. Representative confocal images and summarized bar 

diagram shows co-localization of VPS 16 (green) vs. IL-1β (red) in the glomeruli of mice 

treated with D-ribose (n = 5). D. Representative confocal images and summarized bar 

diagram shows co-localization of Nephrin (green) vs. VPS16 (red) in the glomeruli of mice 

treated with D-ribose (n = 5). *P < 0.05 versus Vehl group. Vehl, Vehicle; DR, D-ribose.
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