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Abstract

Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic
dysfunctions in Parkinson’s disease (PD). In particular, a-synuclein may affect dopaminergic neuron function as it interacts
with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence
from our ‘‘in vitro’’ studies showed that a-synuclein aggregation decreases the expression and membrane trafficking of the
DAT as the DAT is retained into a-synuclein-immunopositive inclusions. This notwithstanding, ‘‘in vivo’’ studies on PD
animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of a-
synuclein are missing. By using the proximity ligation assay, a technique which allows the ‘‘in situ’’ visualization of protein-
protein interactions, we studied the occurrence of alterations in the distribution of DAT/a-synuclein complexes in the
SYN120 transgenic mouse model, showing insoluble a-synuclein aggregates into dopaminergic neurons of the nigrostriatal
system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/a-
synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations
were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type
littermates. Our data indicate that, in the early pathogenesis of PD, a-synuclein acts as a fine modulator of the dopaminergic
synapse by regulating the subcellular distribution of key proteins such as the DAT.
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Introduction

Parkinson’s disease (PD) is characterized by a progressive loss of

dopamine (DA) neurons of the nigrostriatal system and by the

presence of Lewy bodies (LB), proteinaceous inclusions mainly

composed by filamentous a-synuclein aggregates [1–3].

Alpha-synuclein is a natively unfolded protein which plays a

central role in the control of dopaminergic neuronal functions

[3;4] and which is thought to be critically implicated in PD

pathophysiology. Indeed, besides the fact that a-synuclein is the

main protein component of LB, genetic studies indicate that

mutations and multiplications of the a-synuclein gene are

responsible for the onset of familial forms of PD. Recent findings

showed that decreased putaminal DA transporter (DAT) binding

and DA deficits occur in patients bearing nigral a-synuclein

burden [5] shading light upon the notion that, in the PD brain, a-

synuclein deposition in the substantia nigra inversely correlates

with striatal DAT functions. This is a relevant observation, as the

DAT acts as a key modulator of dopaminergic signalling by

mediating rapid clearance of DA from the synaptic cleft [6;7]. The

DAT is localized both at synaptic and extra-synaptic sites in cell

bodies and dendrites of dopaminergic neurons of the substantia

nigra, as well as in dopaminergic terminals in the striatum [8;9]. At

these locations, it mediates stimulated and quantal DA reuptake,

thus controlling DA recycling at the synapse as well as the lifetime

of DA spillover [6;10;11]. Therefore, to define whether and how

a-synuclein may affect its function is crucial to unravel the

molecular mechanisms underlying DA-related PD pathophysiol-

ogy. Previous studies have shown that a direct protein-protein

interaction between these two proteins occur [6;12–14]. In

particular, the N-terminus of a-synuclein is known to bind the

C-terminus of the DAT [12;13]. Remarkably, it has been found

that this interaction is essential for the attenuation of DAT activity

mediated by a-synuclein, a function which is thought to be

relevant for the control of DA synaptic tone [13;15;16]. In

particular, it seems that a-synuclein can negatively regulate DAT

activity by tethering the transporter to the microtubular network,

as agents which disrupt microtubular dynamics abolish the

inhibitory effect of a-synuclein upon the DAT [17]. However,

the evidence that a-synuclein is a negative regulator of the DAT
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has been recently brought into question by other findings

showing that a-synuclein knock-out and null mice show reduced

DAT expression and function and a significant increase in basal

DA release [18]. Furthermore, whether the data by Sidhu and

coworkers supported the cause of a neuroprotective role of a-

synuclein through the control of DA influx, Lee and coauthors

[12] found that the formation of a-synuclein-DAT complexes

facilitates the membrane clustering of the DAT, thereby

accelerating cellular DA uptake and DA-induced cellular

apoptosis. Although results from the above cited investigations

are quite contradictory, it has to be taken into account that their

discrepancies may be due to different cellular and animal models

used for the studies. This notwithstanding, since a-synuclein

directly interacts with the DAT and this interaction is known to

modulate DAT functionality, it emerges that pathological

changes, increase and/or aggregation of a-synuclein may fatally

affect nigro-striatal dopaminergic functions by modulating DAT

subcellular localization. Prompted by this hypothesis, we recently

aimed at investigating the mechanisms through which patholog-

ical a-synuclein changes may affect DAT function by using

dopaminergic cellular systems. We found that a-synuclein

aggregation decreases DAT membrane expression and that

DAT and aggregated a-synuclein are colocalized within intracy-

toplasmic inclusions in dopaminergic cells [14]. Furthermore, we

fond that agents which are known to stimulate DAT surface

expression, such as DA D2/D3 receptor agonists or cocaine [19–

22], are able to inhibit the formation of DAT/a-synuclein

immunopositive inclusions and increase both DAT and a-

synuclein membrane expression in dopaminergic cells [14].

These data indicate that a-synuclein and DAT share common

trafficking mechanisms. [14]. Hence, the pathological aggrega-

tion of a-synuclein may alter DA neuron function by affecting

DAT distribution, a concept which is further reinforced by other

recent findings by our group. Indeed, we found the occurrence of

an age-dependent redistribution of other DAT-regulating pro-

teins: synaptic N-ethylmaleimide sensitive fusion attachment

protein receptor proteins (SNAREs), which can mediate the

rapid increase of DAT surface expression [23], in the striatum of

a transgenic mouse line expressing truncated human a-synuclein

(1-120) (SYN120 mice). These mice show an age dependent

deposition of a-synuclein aggregates in nigrostriatal dopaminergic

cells [24], a decrease in striatal DA release and reduced

locomotion, occurring prior to a frank dopaminergic neurode-

generation [24;25]. For these characteristics, the SYN120 mice

represent an ideal model for the study of the a-synuclein-related

pathological changes in the early pathogenesis of PD. Interest-

ingly, in that same research report, we found that the DAT was

also markedly redistributed in the striatum of 12-month-old

SYN120 mice when compared to wild type littermates,

supporting the idea that the pathological deposition of a-

synuclein can critically affect DAT subcellular localization.

We thus aimed at investigating whether the DAT is redistrib-

uted as a consequence of a-synuclein aggregation because of the

direct protein-protein interaction between these two proteins. To

this purpose, we studied the occurrence of changes in the

distribution of the DAT/a-synuclein complexes in the striatum

and substantia nigra of 12-month-old SYN120 transgenic mice

[24;25] by using a technique which allows the visualization of

heteromeric protein complexes: the proximity ligation assay (PLA).

We found a marked redistribution of DAT/a-synuclein complexes

in the transgenic mouse brain. These alterations were accompa-

nied by a significant increase of DAT levels, suggesting that

pathological a-synuclein accumulation is able to modulate both

the levels and the localization of DAT protein.

Methods

1 Cell cultures
Control and dopaminergic differentiated SH-SY5Y cells (SH-

SY5Y+) [14] were used. Briefly, cells were grown to confluence in

complete medium made up by Dulbecco’s modified Eagle’s

medium supplemented with 10% of heat-inactivated new born calf

serum, 100 mg/mL penicillin, 100 mg/mL streptomycin and

0.01 mM non-essential amino acids (Gibco). Cells were maintained

at 37uC in a humidified atmosphere of 5% CO2 and 95% O2.

Differentiation was performed incubating the cells for 3 days in

complete medium supplemented with 10 mM of retinoic acid (RA)

(Sigma-Aldrich) and for the following 3 days in complete medium

containing 80 nM of 12-O-tetradecanoyl-phorbol-13-acetate

(TPA).

2 Glucose deprivation
Glucose deprivation (GD) was performed according to the

protocol described by Bellucci et al., [14] with minor modifica-

tions. Briefly, SH-SY5Y+ cells were incubated for 15 min at 37uC
in Dulbecco’s modified Eagle’s medium containing no glucose

(Sigma-Aldrich) supplemented with 10% of new born calf serum

and 0.01 mM nonessential amino acids (NEAA). Then this

medium was removed and replaced with complete medium for

24 h. For the PLA, cells were fixed in 4% paraformadehyde at

24 h from GD.

3 Generation of SYN120 construct and cell transfection
The cDNA of human truncated SYN120 a-synuclein was

produced as previously described [26]. For cell transfection SH-

SY5Y cells were grown to 60–80% confluency and transfected

with either 5 mg of the SYN120 or 5 mg of the empty vector using

the Lipofectamine 2000 reagent (Invitrogen) acconding to the

manufacturer instructions. The efficiency of transfection was

assayed by Western blotting followed by the densitometric assay of

bands and statistical analysis. A statistically significant increase of

68 % (P ,0.05) of a-synuclein expression was found in the

SYN120 transfected cells when compared to control SH-SY5Y+
cells (please see figure S1A,B for further information).

4 Animals
Mice transgenic for human a-syn(1–120) were produced on a

C57BL/6S background (C57BL/6JOlaHsd, Harlan) which lacks

mouse a-synuclein [24;27]. Transgenic homozygous SYN120,

C57BL/6J and C57/BL6S mice of 12 months of age were used for

fluorescence double labelling and PLA experiments or DAT

semiquantitative determinations. Mice were bred in our animal

house facility. The mice were housed in macrolon cages with ad lib

food and water and maintained on a 12-h light/dark cycle at a

room temperature of 23 uC. All experiments were carried out

according to the Directive 2010/63/EU of the European

Parliament and of the Council of 22 September 2010 on the

protection of animals used for scientific purposes. All experimental

and surgical procedures conformed to the National Research

Guide for the Care and Use of Laboratory Animals and were

approved by the Animal Research Committees of the University of

Brescia (Protocol Permit number 04/10). All efforts were made to

minimize animal suffering, to reduce the number of animals used

and to utilize alternatives to ‘‘in vivo’’ techniques, if available.

Expression of the transgene in SYN-120 mice was assayed by

DNA extraction from tail samples and PCR analysis by using a

couple of primers (59-agggtgattcagaggcaggt-39 and 59-

ctgctccctccactgtcttc-39) recognizing a portion of the rat tyrosine

hydroxylase promoter which is driving the expression of the

DAT/a-Synuclein Redistibution in Transgenic Mice
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SYN120 transgene (please see figure S1C for further information)

as previously described [24].

5 Immunohistochemistry
For immunohistochemistry, SYN120 and control mice were

anesthetized with chloral hydrate (400 mg/kg, i.p.) and were

perfused transcardially with 4% ice-cold paraformaldehyde in

0.1 M phosphate buffer, pH 7.2. After 4 h of postfixation, brains

were put in 18% sucrose for at least 24 h and then 30 mm coronal

sections were cut with a cryostat. Single and double labelling

immunohistochemistry was performed according to previously

described methods [28;29]. The immunostaining intensity of DAT

was analysed as optical density by using the NIH IMAGE J

software (NIH, Bethesda, MD, USA). Ten striatal sections per

animal were selected at 30 mm interval and were analysed and

quantified blinded to the genotypes.

6 ‘‘In situ’’ Proximity Ligation Assay (PLA)
The ‘‘in situ’’ PLA studies on fixed cells and brain tissue were

performed as follows (O-LINK Bioscience, Upsalla, Sweden).

Briefly, fixed cells or brain slices were incubated with blocking

solution for 30 min at 37uC and then with the primary antibodies

recognizing DAT and a-synuclein at 1:200 dilution overnight at

4uC. On the following day, samples were washed in low buffered

Tris Buffered Saline with Tween 20 (TBS-T) that was prepared

according to the O-LINK bioscience recipe. Then, the cells and

brain slices were incubated with the PLA probe solution

(containing the secondary antibodies conjugated with the DNA

probes) for 120 min at 37uC. After the removal of the PLA probe

solution samples were washed in TBS-T and incubated with the

hybridization solution containing oligonucleotides that hybridize

to the PLA probes for 15 min at 37uC. Then the samples were

washed and subsequently incubated in the ligation solution

(containing the DNA ligase which allows the ligation of the

probes and oligonucleotides to form a round circle DNA strand)

for 15 min at 37uC. Subsequently, samples were washed in TBS-T

and incubated with the amplification solution, containing DNA

polymerase for the rolling cyrcle amplification (RCA), at 37uC for

90 min. Finally, the samples were incubated with the detection

stock solution (containing Texas Red labeled oligonucleotides that

hybridize to the RCA product) for 60 min at 37uC, washed in SSC

buffers (made up according to the manufacturer’s recipe) and

ethanol and then mounted and analyzed by means of a confocal

microscope.

7 Western blot studies
For DAT and total a-synuclein extraction striatal brain tissue

from C57BL/6J, C57BL/6S and SYN120 mice were lysed in

TBS+ (50 mM Tris-HCl, pH 7.4, 175 mM NaCl, 5 mM EDTA,

0.1 mM PMSF, 1 mM N-ethylmaleimide, plus complete protea-

some inhibitor mixture; Roche Diagnostics,Mannheim, Germany).

Protein concentration in the samples were measured by using the

Bradford assay (Pierce, Rockford, IL). Equal amounts of proteins

(20–25 mg) were run on 4–12% Nu-PAGE Novex Bis-Tris gels

(Invitrogen, Milan, Italy). Densitometric analysis of bands was

performed by means of Gel Pro Analyzer version 6.0 (MediaCy-

bernetics, Bethesda, MD, U.S.A.). All bands were normalized to

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels as a

control of equal loading of samples.

8 Antibodies
Alpha-synuclein was visualized by using syn-1 (BD-Bioscience,

Milan, Italy) recognizing residues 121–125 of the human form and

residues 91–99 of the human and mouse form [30] of a-synuclein.

Anti-DAT, anti-synapsin Ia/b (Calbiochem, San Diego, CA,

USA) and CREB-2 (Santa Cruz Biotechnology, Santa Cruz, CA,

USA) polyclonal antibodies were used to visualize the respective

substrates.

9 Microscopy
Fixed cells and mouse brain sections were observed by means of

an inverted light/epifluorescence microscope (Olympus IX50;

Olympus, Milan, Italy) or by means of a Zeiss confocal laser

microscope (Carl Zeiss S.p.A., Milan, Italy), with the laser set on

l= 405–488–543 nm and the height of the sections scan-

ning = 1 mm. Images (5126512 pixels) were then reconstructed

using LSM Image Examiner (Carl Zeiss S.p.A) and Adobe

Photoshop 7.0 (Adobe system, Mountain View, CA, USA)

software.

10 [3H]-DA uptake assay
[3H]-DA uptake assay was performed on SH-SY5Y+ cells and

SH-SY5Y+ cells subjected to GD. Briefly, the medium was

removed and cells were washed twice with 37uC Krebs-Ringer-

Solution (KRS) (16 mM NaH2PO4, 119 mM NaCl, 4.7 mM

KCl, 1.8 mM CaCl2, 1,2 mM MgSO4, 1,3 mM EDTA, 5,6 mM

Glucose, 1 mM L-Ascorbic Acid, pH 7,4). SH-SY5Y+ cells and

SH-SY5Y+ cells subjected to GD were than incubated in triplicate

at 37uC in KRS in absence or presence of 10 mM cocaine for

5 min. Then, [3H]-DA was added to the medium and incubated

for 15 min at 37uC. The medium was then remuved and the cells

were washed three times with ice-cold KRB. Finally, cells were

collected in NaOH 1N and [3H]-DA was quantified by using

scintillation cocktail in b-counter. Specific [3H]-DA uptake was

calculated as a ratio between % [3H]-DA levels in cell lysates

measured in basal conditions and in the presence of 10 mM

cocaine (please see figure S5 for further information).

11 [3H]-DA release assay
[3H]-DA release was assessed in SH-SY5Y+ cells and SH-

SY5Y+ cells subjected to GD. Briefly, the medium was removed

and cells were washed three times with 37uC Basal-KRS (119 mM

NaCl, 2,5 mM KCl, 2,5 mM CaCl2, 1,3 mM MgSO4, 1 mM

NaH2PO4, 26,2 mM NaHCO3, 10 mM Glucose, 1 mM L-

Ascorbic Acid, pH 7,4). Cells were then pre-loaded with [3H]-DA

for 15 min at 37uC. Later, cells were quikly washed with B-KRS at

37uC and immediately treated with B-KRS or K+-KRS (69 mM

NaCl, 5 M KCl, 2,5 mM CaCl2, 1,3 mM MgSO4, 1 mM

NaH2PO4, 26,2 mM NaHCO3, 10 mM Glucose, 1 mM L-

Ascorbic Acid, pH 7,4) or B-KRS supplemented with 10 mM

tetrodotoxin (TTX). Every 10 min samples were collected for a

total session of 30 minutes. Then, whole medium were picked up,

washed twice and cells were collected in 1N NaOH. [3H]-DA was

quantified by using scintillation cocktail in b-counter. The

percentage of [3H]-DA released in the medium was determined

as a % ratio between the D.P.M assayed in the media end the total

D.P.M. assayed in the cells (released fractions plus cell lysate

fractions, please see File S1 for further information).

12 Statistical analysis
Differences in striatal DAT levels as well as DAT O.D. between

12 month-old C57BL/6J, SYN120 and C57BL/6S mice were

assayed by one-way ANOVA followed by Tukey’s multiple

comparison test. n = 5,6 for each group. Differences between

[3H]-DA uptake (% basal/cocaine ratio) were analyzed by using

the Student’s t-test (n = 8,9 for each group). Differences between %
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[3H]-DA release from SH-SY5Y+ cells and glucose deprived SH-

SY5Y+ cells in basal conditions and after K+ or TTX treatment

were analyzed by two-way ANOVA followed by Bonferroni’s post-

comparison test (n = 7–9 for each group).

Results

1 Detection of DAT and a-synuclein interaction by PLA
‘‘in vitro’’

In order to assess whether DAT and a-synuclein complexes are

detectable by the in situ PLA we used an ‘‘in vitro’’ cell system

which has been extensively characterized by our group: dopami-

nergic differentiated SH-SY5Y (SH-SY5Y+) cells subjected to

glucose deprivation, where we previously demonstrated the

occurrence of DAT interaction with both full length and truncated

a-synuclein [14]. SH-SY5Y+ cells express increased levels of

endogenous DAT and a-synuclein afterwards dopaminergic

differentiation with all-trans-retinoic acid (RA) and 12-O-tetra-

decanoyl-phorbol-13-acetate (TPA) [14;31]. We found that in

these cells, glucose deprivation (GD) stimulated a-synuclein

aggregation and that this event decreased DAT membrane levels,

as the DAT and a-synuclein are co-localized in intracytoplasmic

inclusions following the GD insult [14]. Therefore, this cellular

system possesses ideal characteristics to evaluate whether DAT/a-

synuclein interaction is appreciable ‘‘in situ’’ by the PLA, and

whether alterations in the localization of DAT/a-synuclein

complexes can be visualized by using this method.

The DuolinkTM in situ PLA is capable of detecting protein-

protein interactions in tissue and cell samples prepared for

microscopy [32]. The method is based on the use of two primary

antibodies, raised in different species, that are recognizing the two

proteins of the target interaction. A pair of oligonucleotide labeled

secondary antibodies (PLA probes) is applied on the sample and a

signal is generated only when between the two PLA probes there is

a tight nearness. Indeed, the oligonucleotidic probes-labeled

secondary antibodies are hybridized with two oligonucleotides

which are then ligated into a closed circle when the PLA probes

are in close proximity. This round circle oligonicleotide sequence

is then amplified generating a concatemeric product extending

from the oligonucleotide arm of the PLA probe. Subsequently, this

product is hybridized with a mixture of fluorescent labeled probes

thus allowing the amplification of the signal. As a consequence a

single protein-protein interaction can be visualized in situ as a red

dot by fluorescence microscopy. Hence, this technology can detect

any antigen with proximate epitopes at the single molecule level

[32;33].

We thus investigated DAT/a-synuclein interactions in the SH-

SY5Y+ dopaminergic cell model. We found that SH-SY5Y+ cells

showed a diffuse PLA-positive signal, indicative of DAT/a-

synuclein interaction. In particular, the DAT/a-synuclein PLA-

positive signal was mainly localized at the periphery of the cell

(fig. 1A) in line with our previous findings showing that these

proteins were mainly localized on the cell membrane in the control

SH-SY5Y+ cells [14]. Furthermore, in agreement with the

previous observations showing that GD was able to induce the

formation of DAT/a-synuclein-positive inclusions in SH-SY5Y+
cells [14], we found the presence of an intense PLA-positive signal

into intracytoplasmic dot-like inclusions (fig. 1B) in the glucose

deprived SH-SY5Y+ cells, thus confirming that the DAT is

retained into intracytoplasmic inclusions following a-synuclein

aggregation as these two proteins directly interact.

Then, we aimed at evaluating whether the overexpression of

human c-terminally truncated (1–120) a-synuclein SYN120, which

is expressed by the SYN120 transgenic mice, may affect the

subcellular localization of DAT/a-synuclein complexes. To date,

about 15% of a-synuclein in LB is truncated [34–37]. The

pathological c-terminal cleavage of a-synuclein confers to the

protein an high aggregation propensity [38;39]. This form of a-

synuclein derives from the caspase like 20 S proteasomal

degradation of unstructures full length intracellular a-synuclein

[36;38] and it is believed to be implicated in the initiation and

progression of the aggregation process of full length a-synuclein as

Figure 1. Detection of DAT and a-synuclein interaction by PLA ‘‘in vitro.’’ A: DAT and a-synuclein PLA in control SH-SY5Y+ cells. Please note
a diffuse PLA-positive red signal. B: DAT and a-synuclein PLA in glucose deprived SH-SY5Y+ cells. Please note the presence of a PLA-positive inclusion
(indicated by the arrow) within one of these cells. C: DAT and a-synuclein PLA in control SH-SY5Y+ cells. The PLA signal is weak and diffuse in these
cells. D: DAT and a-synuclein PLA in SYN120-transfected SH-SY5Y+ cells. Please note the presence of an inclusion (indicated by the arrow) within one
of these cells. E: synapsin I and a-synuclein PLA on pcDNA1-transfected SH-SY5Y cells. Please note that the PLA signal appears to be weak and
diffused. F: synapsin I and a-synuclein PLA in SYN120-transfected SH-SY5Y+ cells. Some positive dots (indicated by the arrows) were visible within
these cells. G: CREB-2 and a-synuclein PLA in control SH-SY5Y+ cells. No PLA signal was detected in these cells, which is indicative of the absence of
CREB-2 and a-synuclein interaction. H: CREB-2 and a-synuclein PLA in glucose deprived-SYN120-transfected SH-SY5Y+ cells. No PLA signal is visible.
I-L: Single labeled cells were used as negative controls for PLA experiments. I: a-synuclein antibody; J: DAT antibody; K: synapsin I antibody; L: CREB-2
antibody. Scale bar: 15 mm for A–L.
doi:10.1371/journal.pone.0027959.g001
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it can seed the aggregation of the wild type form of the protein

[36–38;40;41]. We thus investigated whether transfection of the

human SYN120 a-synuclein construct, which coincides with the

formation of intracellular aggregates ‘‘in vitro’’ [26], may affect the

subcellular localization of DAT/a-synuclein complexes visualized

by the in situ PLA. We found the presence of dot-like DAT/a-

synuclein PLA-positive intracytoplasmic inclusions in the

SYN120-transfected SH-SY5Y+ cells (fig. 1D). Similarly to the

control SH-SY5Y+ cells, the cells which were transfected with the

empty pcDNA1 vector showed a diffuse PLA-positive signal in

proximity of the cell membrane, but no inclusions. Thus, our

findings indicate that the overexpression of the (1–120) c-

terminally truncated form of a-synuclein induces the formation

of intracellular inclusions containing the DAT, and is consequently

able to alter the subcellular distribution of the DAT.

To confirm that DAT levels on the plasma membrane were

decrease in the SH-SY5+ cell subjected to glucose deprivation

and in the SYN120-trensfected cells we performed immunopre-

cipitation experiments (please see File S1 for further information)

using plasma membrane extract from control, glucose deprived-

and SYN120-transfected SH-SY5Y+ cells. Our results showed

that DAT and a-synuclein levels on the plasma membrane in the

SH-SY5Y+ cells subjected to GD and transfected with the

SYN120 construct were lower when compared to control cells

(figure S2A).

In order to confirm the specificity of detection of DAT and a-

synuclein interaction by the PLA, we performed a panel of control

experiments to investigate whether synapsin I, a synaptic protein

which is known to be part of DAT [42] and a-synuclein [43]

proteome and which can also directly interact with a-synuclein in

SH-SY5Y+ cells (figure S2B), may also be found in close proximity

to a-synuclein within intracellular aggregates when this cellular

system is transfected with the SYN120 construct. In particular, we

aimed at evaluating whether a-synuclein/synapsin I interaction

can be visualized in situ by the PLA and whether the distribution of

this complex is also appreciable by the PLA. We were able to

detect a dot-like positive signal, indicative of the close proximity of

truncated a-synuclein and synapsin I within intracellular inclu-

sions, in the SYN120-transfected SH-SY5Y+ cells (fig. 1F). In the

control SH-SY5Y+ cells transfected with the empty pcDNA1

vector only a slightly detectable and diffuse PLA signal was present

(fig. 1E). These observations confirm that the PLA signal is capable

of detecting specific protein-protein interactions and indicate that

a-synuclein aggregation may affect the correct subcellular

distribution of other protein member of the DAT/a-synuclein

proteome.

To further confirm that our PLA results were indicative of

protein proximity we performed experiments to verify the absence

of protein-protein interactions between a-synuclein and CREB-2,

a transcription factor which didn’t co-immunoprecipitate with a-

synuclein in SYN120-transfected glucose deprived SH-SY5Y+
cells (please see figure S2C for further information). No interaction

between a-synuclein and CREB-2 was detected in the glucose

deprived SYN120-transfected SH-SY5Y+ cells (fig. 1H) where the

GD insult is able to induce CREB-2 production [26] as in the

control SYN-120-transfected SH-SY5Y+ cells (fig. 1G) which only

express low levels of CREB-2 [26].

Finally, we performed control experiments by incubating

SYN120-transfected SH-SY5Y+ cells with only one of the

antibodies that we used for the previously describe PLA

experiments. No PLA-positive signal was detected in the samples

which were incubated with the sole anti-syn-1 (fig. 1I), anti-DAT

(fig. 1J), anti synapsin-I (fig. 1K) or anti-CREB-2 (fig. 1L)

antibodies.

Overall, these findings confirm that a-synuclein aggregation

affects the proper localization of the DAT, and that the PLA is a

useful technique to specifically visualize DAT/a-synuclein com-

plexes and their subcellular distribution. In particular, we found

that the DAT is retained within a-synuclein intracytoplasmic

inclusions following the pathological aggregation of this latter, and

these inclusions are visible by using the PLA.

2 DAT and a-synuclein labeling in the striatum and
substantia nigra of wt and tg mice

The above described results prompted us to investigate whether

the pathological aggregation of a-synuclein may alter the correct

distribution of the DAT ‘‘in vivo’’. We thus performed in situ PLA

studies in a transgenic mouse line displaying a-synuclein

aggregation into dopaminergic neurons of the substantia nigra:

the SYN120 mice. This mouse model [24;25] express human c-

terminally truncated (1–120) a-synuclein under the guidance of the

rat TH promoter on an endogenous a-synuclein null C57BL/6S

background [27]. At 12-months of age, the SYN120 transgenic

mice show an age dependent decrease in striatal DA release and

reduced locomotion, similar to PD [24;25], which are indicative of

nigro-strital dopaminergic dysfunctions. To date, in a recent

report, we already reported a marked redistribution of DAT

protein in the striatum of this mice [25]. We thus considered that

12 month-old SYN120 mice represent an ideal model to

investigate the redistribution of DAT/a-synuclein complexes.

Twelve month-old C57BL/6J mice, expressing endogenous a-

synuclein, and C57BL/6S littermates [27] which are null for

endogenous a-synuclein, were used as controls.

Firstly, we investigated both DAT and a-synuclein localization

in the striatum and substantia nigra of 12 month old SYN120,

C57BL/6J and C57BL/6S mice by fluorescence double labeling

immunohistochemistry. We found that DAT and a-synuclein

labeling almost completely co-localized in striatal dopaminergic

terminals (arrows in fig. 2A–C) of the C57BL/6J mice, although a

small portion of DAT staining, that didn’t co-localize with a-

synuclein, was diffusely distributed throughout the striatum fig. 2B–

C. As in the C57BL/6J mouse brain, in the striatum of the

SYN120 mice DAT and a-synuclein labeling partially colocalized.

However, in these mice the distribution of DAT/a-synuclein

labeling appeared to be different. Indeed, DAT and a-synuclein

clustered in big dot-like inclusions (fig. 2D–F arrowhead) and

neurite-like structures (fig. 2D–F, arrow) that were reminiscent of

the a-synuclein-positive dots and of the Lewy neurites (LN) which

have been described in the PD brain [44–46]. In the striatum of

the C57BL/6S a-synuclein null mice we didn’t observe a-

synuclein staining and the DAT labeling displayed a distribution

that was similar to that observed in the striatum of C57BL/6J mice

(Fig. 2G–I).

In the substantia nigra of C57BL/6J mice, DAT and a-

synuclein displayed a punctuate staining which appeared to be

distributed on the cell membrane of dopaminergic neurons

(Fig. 3A–C) in agreement with previous observations showing

that DAT staining in this area of the mouse brain is mainly

present on the cell membrane of dopaminergic neurons [9;47].

This observation was confirmed by immunofluorescent experi-

ments which showed that DAT localization was similar to that of

the membrane associated protein APP (please see figure S3 for

further information). We also found that, as observed in the

striatal sections, DAT and a-synuclein labellings almost com-

pletely colocalized (fig. 3C). In the substantia nigra of the

SYN120 mice we observed that several neurons showed the same

pattern of distribution of DAT and a-synuclein staining that we

observed in the C57BL/6J mice, as they co-localized in dot-like

DAT/a-Synuclein Redistibution in Transgenic Mice
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structures on the plasma membrane (indicated by the yellow

arrow in fig. 3D–F). However, in the neurons which contained a-

synuclein inclusions, DAT staining was absent on the plasma

membrane but it was intense in correspondence of the a-

synuclein-positive aggregates in the cytoplasm (arrowhead) and in

the processes (white arrows) as showed by representative

photomicrographs in figure 3D–F. This distribution is reminis-

cent of the intracellular localization of DAT/a-synuclein

inclusions that we previously described in glucose deprived

dopaminergic cells [14]. Remarkably, in the SYN120 transgenic

mice, a-synuclein labeling, although very intense in correspon-

dence of intracellular inclusions, was still abundant on the plasma

membrane, in agreement with previous findings indicating that

truncated a-synuclein has an high propensity to interact with

plasma membranes as it easily adopts an a-helical structure [37].

Finally, in the substantia nigra of the C57BL/6S mice a-

synuclein labeling was absent (fig. 3G–I) and DAT staining was

similar to that observed in the C57BL/6J wt mice as it displayed

a punctuate distribution (Fig. 3H–I). These findings indicate that

the subcellular localization of the DAT mostly reflected that of a-

synuclein although a portion of these protein didn’t co-localize,

thus indicating that an elevated quote of these two proteins

directly interact.

3 The localization of DAT and a-synuclein PLA signal was
altered in the striatum and substantia nigra of SYN120
transgenic mice

To confirm the occurrence of DAT/a-synuclein interaction in

the SYN120 and C57BL/6J mice we performed co-immunopre-

cipitation experiments (please see File S1 for further information)

by using striatal protein extracts. C57BL/6S a-synuclein null mice

were used as negative controls. We found that a-synuclein was

present in the DAT-immunoprecipitates of the SYN120 and

C57BL/6J mice, while in the striatum of C57BL/6S mice no a-

synuclein was detected (figure S4).

To visualize alterations in the distribution of DAT and a-

synuclein complexes in the striatum and substantia nigra of the 12

month-old C57BL/6J and SYN120 mice we used the ‘‘in situ’’

PLA. Again, the C57BL/6S mouse line lacking a-synuclein was

used as negative control.

We found the occurrence of DAT and a-synuclein interactions

in little dot-like structures (fig. 4A, D) in the C57BL/6J mice. In

the striatum of the SYN120 mice DAT and a-synuclein PLA

signal displayed an altered distribution as it appeared to be

condensed in bigger aggregates (fig. 4B, E). In the a-synuclein

null mice we didn’t observe the PLA signal in the striatum,

confirming the absence of the interaction between the proteins

(fig. 4C,F).

In the substantia nigra of the C57BL/6J wt mice an evident

PLA-positive signal indicative of DAT and a-synuclein interaction

was present. In particular, the PLA signal displayed a punctuate

staining which followed the same localization of DAT and a-

synuclein that we previously visualized by fluorescence immunois-

tochemistry (fig. 5A, D).

In the substantia nigra of the SYN120 mice the PLA signal

clustered in big inclusions (fig. 5B, E). Furthermore, as observed by

fluorescent staining, a small proportion of punctuate signal

(indicated by the arrowheads in fig. 5B), reminiscent of the dot-

like morphology of Lewy neurites which have been observed in the

PD brain [44–46;48] was also detectable in the tissue.

In the substantia nigra of the a-synuclein null mice no PLA

positive signal was detected, indicating the absence of protein-

protein interaction between DAT and a-synuclein (fig. 5C,F).

Figure 2. DAT and a-synuclein double staining in the striatum. DAT (green signal) and a-synuclein (red signal) double staining in the striatum
of C57BL/6J (panel A–C), SYN120 (panel D–F) and C57BL/6S (panel G–I) mice. Panels C, F, I show the merges of DAT and a-synuclein labeling. Please
note the marked redistribution of both DAT and a-synuclein immunolabeling in the SYN120 mice. In the C57BL/6S mice which didn’t express
a-synuclein, DAT distribution was similar to that observed in the C57BL/6J mice. Scale bar: 60 mm for A–I.
doi:10.1371/journal.pone.0027959.g002
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Figure 3. DAT and a-synuclein double staining in the substantia nigra. DAT (green signal) and a-synuclein (red signal) double staining in the
substantia nigra of C57BL/6J (panel A–C), SYN120 (panel D–F) and C57BL/6S (panel G–I) mice. Panels C, F and I show the merges between DAT and a-
synuclein immunolabelings. Please note that DAT and a-synuclein co-localized in dot-like clusters in the C57BL/6J mice. In the SYN120 mice DAT
labeling was concentrated in big intracellular inclusions and within neuronal processes (arrows) and cell bodies (arrowhead) together with truncated
a-synuclein, although some cells showed the same clustered co-localization of DAT and a-synuclein that we observed in the C57BL/6J mice (yellow
arrow). In the C57BL/6S mice DAT distribution in the substantia was similar to that observed in the C57BL/6S mice. Scale bar: 40 mm for A–I.
doi:10.1371/journal.pone.0027959.g003

Figure 4. DAT and a-synuclein PLA in the striatum. DAT and a-synuclein PLA in the striatum of C57BL/6J (panel A) SYN120 (panel B) and
C57BL/6S (panel C) mice. Panels D, E and F show higher magnifications of the squares in panels A, B and C, respectively. Please note that in the
SYN120 mice the PLA signal (indicated by the arrows) displayed a more condensed distribution with respect to the C57BL/6J mice. In the C57BL/6S
mice, which were lacking a-synuclein, no PLA signal was detected. Scale bars: A = 60 mm for A–C; D = 10 mm for D–F.
doi:10.1371/journal.pone.0027959.g004
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4 DAT levels in the striatum of transgenic and control
mice

DAT levels in the striatum were assayed by semiquantitative

analysis of DAT immunopositive bands from WB experiments

(fig. 6). We found that in the 12 month-old SYN120 mice DAT

levels were significantly increased respect to the C57BL/6J mice (1
+59%; P ,0.001) and to the a-synuclein null mice (* +103%; P

,0.001). Remarkably, DAT levels in the C57BL/6S mice were

significantly lower (244%, P ,0.01) when compared to the

C57BL/6J mice.

To confirm these findings we also quantified DAT immunore-

activity by using an image analysis software. We found a

significant increase of % DAT density in the striatum of

SYN120 transgenic mice when compared to the C57BL/6J

(+95%, P ,0.001) or to the C57BL/6S (+129%, ,0.001) mice.

Conversely, DAT density was significantly decreased in the

striatum of C57BL/6S mice (234%, P ,0.05) with respect to

C57BL/6J mice.

5 Functional studies
To evaluate whether the formation of DAT-a-synuclein

complexes can coincide with a reduction of DA uptake we

assayed % [3H]-DA uptake by SH-SY5Y+ and glucose deprived

SH-SY5Y+ cells (fig. 7A). We found that in the SH-SY5Y+
subjected to GD the [3H]-DA uptake ratio was significantly lower

when compared to untreated cells (* 242.77% P ,0.05). The

specificity of DA uptake by the DAT was assayed by using cocaine

(please see figure S5A for further information).

Finally we evaluated % [3H]-DA release from SH-SY5Y+ and

glucose deprived SH-SY5Y+ cells (Fig. 7B). [3H]-DA levels in the

media, were normalized to the initial [3H]-DA quote which was

taken by the cells (please see figure S5B for further information),

and expressed as % changes. We found a significant reduction

of extracellular [3H]-DA levels after 30 minutes in control

SH-SY5Y+ cells (* 219%, P ,0.01, Bonferroni’s post comparison

test) when compared to glucose deprived SH-SY5Y+ cells. The

difference of [3H]-DA levels after 30 minutes was even higher

between K+-treated SH-SY5Y+ and K+-treated-glucose deprived-

SH-SY5Y cells (# 224%, P ,0.01, Bonferroni’s post comparison

test). TTX treatment induced a significant block of [3H]-DA

release in both SH-SY5Y+ (1 P ,0.05 Bonferroni’s post-

comparison test) and glucose deprived SH-SY5Y+ cells (u P

Figure 5. DAT and a-synuclein PLA signal in the substantia nigra. DAT and a-synuclein PLA in the substantia nigra of C57BL/6J (panel A, D)
SYN120 (panel B, E) and C57BL/6S (panel C, F) mice. Panels D, E and F show higher magnifications of the squares in panels A, B and C, respectively. In
the C57BL/6J mice PLA-positive blobs were present while in SYN120 mice the PLA signal was condensed in big dots. In the C57BL/6S mice no PLA
signal was detected. Scale bars: A = 60 mm for A–C; D = 20 mm for D–F.
doi:10.1371/journal.pone.0027959.g005

Figure 6. DAT levels in the striatum. A: Semiquantitative analysis of
DAT levels in the striatum of C57BL/6J (white bars), SYN120 (black bars)
and C57BL/6S (striped bars) mice. Please note the statistically significant
increase of DAT levels in the SYN120 transgenic mice when compared
to C57BL/6J and C57BL/6S wild type mice. B: Quantitative analysis of
DAT immunoreactivity (% optical density) in the striatum of SYN120,
C57BL/6J and C57BL/6S mice.
doi:10.1371/journal.pone.0027959.g006
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,0.05 Bonferroni’s post-comparison test). Finally, we performed

control experiments by evaluating basal, K+-stimulated, TTX-

blocked as well as K+ and TTX treated SH-SY5Y and glucose

deprived-SH-SY5Y cells in the presence of the DAT blocker

cocaine (please see File S1 for further information). Remarkably,

we found that glucose deprived SH-SY5Y+ cells showed reduced

[3H]-DA release and that cocaine abolished the time dependent

decrease of extracellular [3H]-DA levels in the media of SH-

SY5Y+ cells (figure S5C).

Discussion

Our study showed the occurrence of a redistribution of DAT/a-

synuclein complexes visualized in situ by PLA in synaptic terminals

as well in the cell soma of dopaminergic nigrostriatal neurons of

the SYN120 transgenic mouse model. We also found a significant

augment of striatal DAT levels, thus indicating that both DAT

expression and distribution are crucially affected by the synaptic

accumulation of the pathological C-terminally truncated (1–120)

form of a-synuclein. Indeed, the DAT co-localized and interacted

with a-synuclein into intracellular inclusions following the

pathological aggregation of this latter in dopaminergic neurons

of the nigrostriatal system of 12-month-old SYN120 transgenic

mice. In agreement with previous observations showing that the

residues 58–107 of a-synuclein are directly involved in the

interaction with the C-terminus of the DAT [15], our data

confirm that the carboxy-terminal truncation of a-synuclein

doesn’t alter the ability of the protein to bind the DAT.

Remarkably, our data showed a frank redistribution of DAT/a-

synuclein PLA-positive complexes both in striatal terminals and in

neuronal cell bodies of nigral dopaminergic neurons, indicating

that a-synuclein may likely play a role, not only in the control of

DAT trafficking in striatal synapses, but also in regulating DAT

localization within the somatodendritic compartment of dopami-

nergic cells. These observations are in line with our previous

findings showing that glucose deprivation, an insult which

stimulates a-synuclein insoluble aggregation, induced the forma-

tion of DAT/a-synuclein-immunopositive inclusions within the

cell bodies and processes of primary mouse mesencephalic

dopaminergic neurons [14]. In the substantia nigra, the DAT

can be specifically transported into dendrites. In particular, it is

involved in the tuning of intracellular and extracellular DA levels

in the somatodendritic compartment [49]. Therefore, our

observations indicate that, whether a-synuclein aggregation may

compromise DAT trafficking, this event may lead to alterations in

somatodendritic DA release. As DA release by the somatodentritic

compartment is a phenomenon that can usually facilitate motor

functions in physiological conditions by mechanisms that may act

independently from axon terminal DA release in the striatum, it

may be feasible that one of the consequences of a-synuclein

aggregation-dependent DAT redistribution within the dopami-

nergic neurons may be the impairment of this process. Hence,

DAT redistribution may affect both striatal synaptic and

somatodendritic DA release. This hypothesis is reinforced by the

fact that we found that glucose deprived SH-SY5Y+ cells showed a

reduction of [3H]-DA uptake and that this event was paralleled by

Figure 7. [3H]-DA uptake and [3H]-DA release in control and glucose-deprived SH-SY5Y+ cells. A: The graph is showing [3H]-DA uptake
by SH-SY5Y+ and glucose deprived SH-SY5Y+ cells (SH-SY5Y+ GD). B: The graph is showing [3H]-DA release by SH-SY5Y+ and SH-SY5Y+ GD cells in
basal contition and after TTX block or 50 mM K+ (K) treatment.
doi:10.1371/journal.pone.0027959.g007
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a time-dependent accumulation of [3H]-DA in the medium of

these same cells. Furthermore, we found that [3H]-DA release,

evaluated in the presence of the DAT blocker cocaine increased in

a time dependent manner in the SH-SY5Y+ cells. Conversely, in

the glucose deprived cells cocaine did not induced a time-

dependent increase in [3H]-DA release.

In line with results from a recent research report showing that

density of DAT immunoreactivity in the dorsal striatum is

significantly lower in the C57BL/6S mice when compared to

C57BL/6J mice [18] we found that DAT levels were reduced in

the striatum of C57BL/6S mice. Furthermore, our data showed

that the overexpression of the truncated form of a-synuclein

altered the striatal levels of the DAT. Indeed, we found a

significant increase in DAT levels in the brain of the SYN120

mice when compared to the C57BL/6J and C57BL/6S mice,

indicating that whether the lack of a-synuclein coincides with a

reduction of DAT, the overexpression of its c-terminally

truncated form induces a significant augment of DAT expression.

However, it has to be considered that 12-month-old SYN120

mice show a significant reduction of both basal and depolariza-

tion-dependent striatal DA release as well as a decrease of DA

metabolites [25] which is likely indicative of a reduction of DA

turnover. Hence, we can’t exclude that the increased expression

of the DAT may be the consequence of compensatory

mechanisms related to these alterations. Nonetheless, it could

be feasible that this phenomenon may further exacerbate the

formation of insoluble intracellular inclusions as the DAT is

retained together with aggregated a-synuclein within synaptic

terminals and neuronal cells. To date, it has been reported that

DAT-positive neurons of the nigrostriatal system express low a-

synuclein levels, suggesting that nigral dopaminergic neurons may

be particularly vulnerable to variations of a-synuclein levels [50].

This is supported by other findings showing that siRNA

knockdown of a-synuclein induced a significant 50% decrease

of DAT activity in neuroblastoma cells [51] like the knock out of

a-synuclein significantly decreases striatal DAT expression [18]

and DA uptake. Thus, a-synuclein may act by promoting DAT

expression in physiological conditions, although recent evidence

has demonstrated that overexpression of a-synuclein is able to

decrease the rate and magnitude of DAT-mediated substrate

uptake [52]. Noteworthy, the data collected in the present study

indicate that DAT expression and subcellular distribution may

also be altered as a consequence of a-synuclein aggregation.

Indeed, our findings suggest that the aggregation of a-synuclein

could impair the correct trafficking of the DAT to synaptic sites.

This hypothesis is supported by the fact that we recently

demonstrated that a-synuclein and the DAT share common

trafficking mechanisms and that as a consequence of the critical

interaction between these proteins, agents which are able to

modulate DAT trafficking to the plasma membrane, such as DA

D2/D3 receptor agonists and cocaine, may also indirectly

regualte a-synuclein localization [14;17]. On this line, it has

been shown that disruption of the interaction of a-synuclein with

microtubules enhances the cell surface recruitment of the DAT

[17]. Remarkably, besides binding to tubulin [53], the main

constituent of the microtubular network, a-synuclein can also

interact with- and modulate the dynamics of actin cytoskeleton in

physiological conditions [54;55], thus rendering it possible that its

aggregation may consequently alter various synaptic processes.

Hence, a-synuclein aggregation may result in a decrease of a-

synuclein actin-binding properties, a phenomenon which may

then alter actin cytoskeleton dynamics thus affecting DAT

trafficking to synaptic sites. In this scenario, it could be feasible

that a loss of the correct assembly of the cytoskeleton may lead to

the critic accumulation of other synaptic vesicle associated

proteins. In agreement with this hypothesis, we previously

described the occurrence of a substantial redistribution of

SNAREs in striatal synapses of SYN120 transgenic mice. It has

to be taken into account that although the DAT has not been

directly demonstrated to be present in vesicles, its membrane

content is inhibited by toxins which are able to inhibit SNAREs

function, while it is enhanced by SNAREs overexpression [23;56–

58], thus the possibility that DAT redistribution could be also a

consequence of SNAREs redistribution can’t be excluded.

Finally, another important clue to take into account is that

Afonso-Oramas and coworkers [59] recently showed that the

DAT can be either redistributed from the plasma membrane to

the endoplasmic-reticulum-Golgi compartment or persistently

down regulated in response to slight or substantial dopaminergic

lesions, respectively. Remarkably, from our previous findings we

know that dopaminergic neurons of the nigrostriatal system in the

12 month-old SYN120 transgenic mice are hypofunctioning but

do not degenerate as we couldn’t find activation of the apoptotic

or autophagic pathways or a decrease in TH levels [24;25]. This

notwithstandings, we recently found that, in the brain 12 month-

old SYN120 transgenic mice, the dopaminergic nigrostriatal

neurons bearing a-synuclein inclusions show the activation of

the unfolded protein response (UPR), an endoplasmic reticulum

stress-related pathway which is induced by a-synuclein accumu-

lation within the endoplasmic reticulum itself [26]. To date, it has

been shown that prolonged activation of the UPR usually

coincides with a block of endoplasmic reticulum-Golgi traffic

and with the inhibition of the trans-Golgi network (TGN), a system

which is crucially implicated in synaptic vesicles biogenesis and

repackaging. In this scenario, whether the trans-Golgi network is

impaired by the a-synuclein-induced UPR activation, the transfer

of a-synuclein from the cell body to the synapse which is mediated

by the fast axonal transport [43], vehiculating Golgi-derived

vesicles containing neurotransmitters or associated proteins to the

axolemma, may be critically reduced. This may lead to a stall of a-

synuclein-related synaptic vesicle pools, with a substantial

disassembling of the synaptic proteome. Therefore, we can’t

exclude that the redistribution of synaptic proteins observed in the

striatum of these mice may be a consequence of these events.

However, these aspects still need to be investigated.

Conclusions
Taken together, our observations indicate that, in the early

pathogenesis of PD a-synuclein accumulation may induce a

redistribution of the DAT. Indeed, in line with the idea that a-

synuclein is a causative agent for PD [60], we found that this

protein plays a pivotal role in the regulation of this key protein

involved in the function of dopaminergic synapses of the

nigrostriatal system. These findings point out that a-synuclein

accumulation can contribute to the onset of synaptic dysfunctions

in dopaminergic neurons of the nigrostriatal system in the PD

brain.

Supporting Information

Figure S1 A: Representative photomicrograph showing a-

synuclein expression (SYN-1 antibody) in SH-SY5Y+ cells, SH-

SY5Y+ cells subjected to GD and SYN120-transfected as well as

pcDNA1-transfected SH-SY5Y+ cells. B: The table is showing the

quantitative analysis of the SYN-1-immunopositive bands in SH-

SY5Y+ cells, SH-SY5Y+ cells subjected to GD and SYN120-

transfected as well as pcDNA1-transfected SH-SY5Y+ cells. Please

note the statistically significant increase (+1.4, P,0.01) of the
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SYN120/SYN140 ratio in the SYN120-transfected SH-SY5Y+
cells.

(TIF)

Figure S2 Western blotting and immunoprecipitation
studies on SH-SY5Y+ cells. 60 mg of proteins were loaded
in the input and 150 mg of proteins were used for the
immunoprecipitation experiments. A: Representative im-

munoblotting showing DAT immunoprecipitation from plasma

membrane extract of control, glucose deprived (SH-SY5Y+ GD)

and SYN120-transfected (SH-SY5Y+ SYN 120). Amyloid precur-

sor protein (APP) inputs from the respective membrane extracts

were used as a control. B: Representative immunoblotting showing

that DAT and synapsin 1 co-immunoprecipitated with a-synuclein

in SH-SY5Y+ cells. C: Blots are showing that although CREB-2

was induced in SYN120-transfected glucose deprived-SH-SY5Y+
cells, it didn’t co-immunoprecipitate with a-synuclein.

(TIF)

Figure S3 Double immunofluorescent staining for DAT
(panels B, F, J) and APP (A, E, I) in the substantia nigra
of C57BL/6J, SYN120 and C57BL7/6S mice. Please note

that in the substantia nigra of the C57BL/6J and C57BL/6S mice

DAT labelling showed a distribution that was similar to that of

APP, while in the SYN120 transgenic mice it was mainly located

in intracellular inclusions. Scale bar: A = 40 mm for A-L.

(TIF)

Figure S4 Western blotting and immunoprecipitation
studies on 12 month old SYN120, C57BL/6J and C57BL/
6S mice. 30 mg of proteins were loaded in the input and 100 mg

of proteins were used for the immunoprecipitation experiments. A:

Representative immunoblotting showing that the DAT co-

immunoprecipitated with truncated a-synuclein in the striatum

of 12 month old SYN120 and C57BL/6J mice. C57BL/6S mice

were used as negative controls for co-immunoprecipitation.

(TIF)

Figure S5 A: [3H]DA uptake in SH-SY5Y+ and glucose

deprived-SH-SY5Y+ cells in basal conditions and after cocaine

treatment. Please note that the glucose deprived cells showed a

statistically significantly decreased [3H]DA uptake (* 272 %, P

,0.01, Bonferroni’s post-comparison test) when compared to

control SH-SY5Y+ cells. Cocaine treatment significantly blocked

[3H]DA uptake in SH-SY5Y+ (# 2105 %, P ,0.001,

Bonferroni’s post-comparison test) and SH-SY5Y+ cells subjected

to GD (1 236 %, P ,.01, Bonferroni’s post-comparison test). B:

% [3H]DA levels in the SH-SY5Y+ cell media, cell lysates and

total values (indicative of the sum of [3H]DA levels in media and

lysates) in SH-SY5Y+ and glucose deprived SH-SY5Y cells in

basal conditions and after K+ and TTX treatment. C: [3H]DA

release from SH-SY5Y+ and glucose deprived-SH-SY5Y+ cells in

basal conditions and after K+ and/or TTX treatments. Please

note that basal [3H]DA release from SH-SY5Y+ cells was higher

than that observed in the glucose-deprived cells. Furthermore,

[3H]DA release in the presence of cocaine was unable to induce a

time-dependent increase in [3H]DA release in the glucose

deprived cells.

(TIF)

File S1 Supplementary information concerning the
methods used for immunoprecipitation studies and for
assaying [3H]DA release in the presence of cocaine.
(DOC)
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