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A B S T R A C T   

Chest X-ray images are used in deep convolutional neural networks for the detection of COVID-19, the greatest 
human challenge of the 21st century. Robustness to noise and improvement of generalization are the major 
challenges in designing these networks. In this paper, we introduce a strategy for data augmentation using the 
determination of the type and value of noise density to improve the robustness and generalization of deep CNNs 
for COVID-19 detection. Firstly, we present a learning-to-augment approach that generates new noisy variants of 
the original image data with optimized noise density. We apply a Bayesian optimization technique to control and 
choose the optimal noise type and its parameters. Secondly, we propose a novel data augmentation strategy, 
based on denoised X-ray images, that uses the distance between denoised and original pixels to generate new 
data. We develop an autoencoder model to create new data using denoised images corrupted by the Gaussian and 
impulse noise. A database of chest X-ray images, containing COVID-19 positive, healthy, and non-COVID 
pneumonia cases, is used to fine-tune the pre-trained networks (AlexNet, ShuffleNet, ResNet18, and Google-
Net). The proposed method performs better results compared to the state-of-the-art learning to augment stra-
tegies in terms of sensitivity (0.808), specificity (0.915), and F-Measure (0.737). The source code of the proposed 
method is available at https://github.com/mohamadmomeny/Learning-to-augment-strategy.   

1. Introduction 

1.1. COVID-19 

As a worldwide pandemic, Coronavirus disease 2019 (COVID-19) has 
brought about a health crisis affecting all aspects of human life, and 
much effort has been being made to contain the virus since its inception. 
In the beginning, there were not many people who had contracted the 
disease, and it was not considered a great threat as most cases were 
treated in a short time. After a while, the World Health Organization 
(WHO) declared that the virus had an extreme potential to affect mil-
lions of individuals all around the world, especially in countries that had 
weaker healthcare systems. The disease is easily transmitted through 

direct or indirect contact to the affected person [1]. The coronavirus 
statistics are horrifying [2]. 

The United States (US) has recorded one of the largest numbers of 
COVID-19 victims, though it is one of the leading countries in healthcare 
facilities. Brazil, India, Russia, South Africa, and 215 other countries 
around the world follow the US on the list. Many governments and 
administrative authorities across the globe are still imposing non- 
compromising lockdown restriction to ensure social distancing for the 
containment of the disease due to the ever-increasing number of new 
cases every single day [2,3]. According to the WHO and the US Center 
for Disease Control (CDC), fever, dry cough, vomiting, diarrhea, and 
myalgia are the most common symptoms of COVID-19 infection. To 
reduce morbidity rates, the general population in all countries has been 
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made conscious of the symptoms so that they can seek treatment as soon 
as possible. Governments have begun to invest in COVID-19 vaccines 
and related research, and thus many studies and development activities 
are being conducted about the COVID-19 pandemic. 

1.2. Detection of COVID-19 via X-ray images 

Chest X-ray imaging has been playing a vital role in the rapid diag-
nosis and early management of COVID-19 [4,5]. It is reportedly used for 
COVID-19 detection in countries with a shortage of testing kits [6–8]. 
Recent studies [9–14] using machine learning (ML) and deep learning 
(DL) have shown promising results in the diagnosis of COVID-19. For 
example, convolutional neural networks (CNNs) have been applied for 
the classification of X-ray images [9–11] among COVID-19, non-COVID 
pneumonia (e.g., bacterial and viral pneumonia) and healthy cases. 

1.3. Data augmentation using noise 

The quality of a chest X-ray image may be deteriorated due to 
different types of noise generated by a malfunction in X-ray receiver 
sensors, bit errors in transmission, and faulty memory locations in the 
hardware [15]. Typically, noise-based data augmentation in DL is per-
formed when there is a possibility of image data being corrupted by 
noise [16]. Data augmentation by noise addition is a strategy that im-
proves the robustness and generalization of CNNs [17–24]. 
Moreno-Barea et al. [21] tested the noise injection to images from a 
Gaussian distribution, and showed it to be useful for improving 
CNN-based classification performance [23,24]. Sezer and Sezer [25] 
proposed a data augmentation approach, where CNN-based speck-
le-noise reduction is used in the neonatal hip ultrasound image classi-
fication task. Their work introduced a method employing an optimized 
Bayesian non-local mean filter to reduce speckle noise for data 
augmentation. This data augmentation strategy improved the perfor-
mance of the CNN from 92.29% to 97.70%. Ofori-Oduro and Amer [20] 
proposed a noise-robust CNN via data augmentation using Artificial 
Immune System. Their noise-robust model was tested under noise and 
shown to be useful for improving the performance of a CNN. In our 
previous work [23], we proposed a noise-based adaptive data 
augmentation method to increase the CNN accuracy. 

1.4. Current learning-to-augment strategies 

Unlike conventional data augmentation approaches that use pre- 
defined rules and procedures for a specific target task, learning-to- 
augment strategies dynamically refine augmentation rules based on 
feedback network [26–28]. For example, Wang et al. [26] introduced an 
end-to-end compositional generative adversarial network architecture 
to generate natural and accurate face images. This model generates 
images of desired expressions, and edits the poses of faces. A recon-
struction learning process was employed to re-generate the input data. 
The generators of the model encourage for preserving the important 
features of face. The augmented face images were used to train a robust 

expression recognition model. Cai et al. [27] introduced a fully 
data-driven and learnable framework to change the data distribution 
near reliable samples. This data augmentation method selects efficient 
learning samples and reduces the Impact of ineffective samples. Feng 
et al. [28] introduced an approach that generates new data obtained 
from a stationary distribution near the target data and implements a 
reinforced selector to automatically improve the augmentation strategy. 
However, these state-of-the-art methods [24–26] lack weak general-
ization ability under noisy conditions, which can cause overfitting. 

1.5. Proposed data augmentation strategy 

This paper focuses on the generation of noisy and denoised chest X- 
ray images as augmented images to improve the generalization of deep 
CNNs for COVID-19 detection. We propose a noise-based novel data 
augmentation approach, where our method optimizes parameters of 
different noise types to generate new data. We summarize the contri-
butions of this paper below:  

1. We introduce (i) noising- and (ii) denoising-based data augmenters 
to improve the generalization of a deep CNN. The denoising-based 
approach further uses an autoencoder to generate new augmented 
data. 

2. We propose a “learning-to-augment” strategy to generate noisy im-
ages. The learning-to-augment approach employs a Bayesian opti-
mizer to determine the optimal noise parameters for new augmented 
images. 

3. We show the effectiveness of our proposed approach on a chal-
lenging task of COVID-19 detection in chest X-ray images and 
outperform state-of-the-art data augmentation methods. 

2. Data 

We accumulated a dataset of 1248 chest X-ray images of posteri-
or–anterior view (666 images) and anterior–posterior view (582 images) 
from two public repositories [29–31]. The first repository contains chest 
X-ray images of 215 COVID-19 patients and 33 non-COVID pneumonia 
patients [30]. The second repository contains chest X-ray images of 500 
healthy subjects and 500 non-COVID pneumonia patients [31]. We 
carefully eliminated the X-ray images of lateral view and CT images 
from the data cohort of first repository [28]. Table 1 summarizes the 
patients’ demographics (age and sex). All the X-ray images were either 
in Portable Network Graphics (PNG) or Joint Photographic Experts 
Group (JPEG) file format. All the X-ray images were resized to a com-
mon input size for the pre-trained CNNs (i.e., AlexNet, GoogleNet, 
ResNet18, and ShuffleNet). This is a standard practice of preprocessing 
computer vision data for CNN training, and similar preprocessing for 
X-ray data resizing is also widely used in recent literature (e.g. Refs. 
[12–14]). On the other hand, X-ray images are stored and transmitted in 
the form of compressed data [32]. If a deep network is trained only using 
original images, the image distortion caused by lossy compression could 
deteriorate the test results. We therefore used lossless (i.e., PNG) and 
lossy (i.e., JPG) image compression as the inputs to deep convolutional 
neural networks. 

Also note that we accumulated our dataset from public repositories, 
and the data do not contain the exposure time parameter associated with 
those. However, as the radiopacity variation is the key to visualize 
COVID-19 infection in a chest X-ray image and its quality is dependent 
on the exposure time, we assume that these X-ray images are acquired 
with an exposure more than 6 mA-seconds (mAs) to ensure good quality 
of image. 

3. Methods 

X-ray images often get degraded by impulse noise [15], Gaussian 
noise [33–35], speckle noise [36–38] and Poisson noise [39–42] at the 

Table 1 
Summary of patients’ age, sex, and diagnosis.  

Items Value 

Number of images 1248 

Sex Male 512 
Female 702 
Not available 34 

Age Available 1205 
Not available 43 
Years (Mean ± Standard deviation) 48.1 ± 17.5 

Diagnosis COVID-19 215 
Non-COVID pneumonia 533 
Healthy 500  
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time of acquisition, transmission, or storage. Noisy images can be used 
as inputs to a CNN in two ways [39]: (i) using unprocessed noisy images 
as inputs to the networks, (ii) using denoised images as inputs to the 
network. When the noisy images are fed as inputs to the network, data 
augmentation using noise may improve the robustness of the classifier. 
On the other hand, if preprocessing is used to denoise images, then data 
augmentation using restored (denoised) images in training can improve 
the generalizability of the network. Fig. 1 illustrates the pipeline of the 

Fig. 1. Schematic pipeline of the proposed learning-to-augment strategy using noisy and denoised data.  

Table 2 
Parameters of different noise types.  

Notation Definition 
μ  The mean of Gaussian and speckle noise 
v  The variance of Gaussian and speckle noise 
d  The noise density of impulse noise  

Fig. 2. Flowchart of our noise-based image data augmentation approach.  
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Fig. 3. Flowchart of the autoencoder-restored image-based data augmentation approach.  

Fig. 4. The proposed convolutional autoencoder learns to denoise images.  
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proposed learning-to-augment strategy using noisy and denoised data. 

3.1. Data augmentation with noisy images 

Adding noise to data is one approach to data augmentation [18]. We 
present a method for learning-to-augment via noisy input images. The 
learning-to-augment finds optimal noise parameters to generate the new 
data. The mean and variance are parameters of the Gaussian and speckle 
noise types [35,43]. The impulse (salt-and-pepper) noise is, on the other 
hand, specified with density parameter [44–46]. The parameters of 
different noise models are shown in Table 2. 

As shown in Fig. 2, the proposed noisy image-based augmenter is 
composed of a noisy data generator, a controller, an augmenter, and 
child models. The steps of the noise-based data augmentation strategy 
are following: 

Step 1. Noisy data generator adds noise to the original images with 
specific noise parameters. In the first iteration, the parameters of noise 
(i.e., μ, v, and d) are set randomly. Then, the controller determines the 
parameters of each noise type as a new policy. 

Step 2. The augmenter produces new data by applying the noise to the 
images. 

Step 3. The child CNN models are trained using new augmented data 
to evaluate the performance of data augmentation policies. 

Step 4. The controller, a Bayesian optimizer-based search algorithm 
[47,48], substitutes existing weak policies with new data augmentation 
policies by exploring the search space of the parameters for each noise 
type. 

Step 5. The above steps are repeated until the best policies, i.e., the 
parameters of each noise type, are found. 

As shown in Fig. 1, to augment the data, the input data pool is first 
divided into N equal folds. Then a noisy data generator adds noise (e.g., 
impulse, Gaussian, speckle, and Poisson noise) to each fold separately. 
The raw samples of the dataset were randomly split into N-folds to 
accelerate finding the best policies. Decreasing the number of samples 
using the N-fold split reduces the CNN training time for each fold [49]. 

The augmenters create new data based on new parameters that the 
Bayesian optimizer has found. In the next step, each fold is processed by 
the child CNN model. Use of child networks, instead of very deep CNN, 
in policy evaluation speeds up the execution of the proposed method. 
Based on the results of child CNNs, the controller improves weak policies 
and maintains strong policies. The controller uses the Bayesian opti-
mizer to find the optimum set of augmentation policies (the parameters 
of each noise type) in a search space. Let G be the search space and f be 
the loss function of a classifier, then the Bayesian optimizer can be 
represented as: 

y = arg minGf (G). G ∈ G (1) 

The optimization problem in Eq. (1) aims to find y that minimizes 
f(G) for G in a bounded domain G . The loss values of the child CNNs are 
used to calculate the loss function for the Bayesian optimizer. This 
process continues until the maximum iteration number is reached. 

3.2. Data augmentation approach with denoised data 

The proposed method provides an automatic augmentation policy 
search method using the generation of restored images that had been 
corrupted by noise. Noisy images can be restored by enhancement al-
gorithms such as autoencoder networks [50]. However, depending on 
the noise type and density, the pixel values in the restored image and the 
original noise-free image are not exactly equal [51]. We aim to leverage 
the dissimilarity between restored and original pixels as a data 
augmentation strategy. First, noise of specific type and density is added 
to the image. Then, the noise is partially removed from the image by 
using the proposed autoencoder. The denoising autoencoder aims to 
produce the output from the noisy input, where the target is set as the 
original images. Finally, the restored images are used as augmented 
data. In the proposed noise-based data augmentation algorithm, the type 

Table 3 
The configuration of the proposed autoencoder.  

Type Layer Output Shape # of Parameters Padding 

Input Input Layer (28, 28, 1) 0 – 
Encoder Convolution layer (28, 28, 256) 2560 Same 
Encoder ReLU – – – 
Encoder Max pooling (14, 14, 256) 0 – 
Encoder Convolution layer (14, 14, 512) 1,180,160 Same 
Encoder ReLU – – – 
Encoder Max pooling (7, 7, 512) 0 – 
Encoder Convolution layer (7, 7, 512) 2,359,808 Same 
Encoder ReLU – – – 
Decoder Upsampling (14, 14, 512) 0 – 
Decoder Convolution layer (14, 14, 256) 1,179,904 Same 
Decoder ReLU – – – 
Decoder Upsampling (28, 28, 256) 0 – 
Decoder Convolution layer (28, 28, 1) 2305 Same 
Decoder Sigmoid – – –  

Fig. 5. Sample chest X-ray images for (a) COVID-19, (b) healthy, and (c) non-COVID pneumonia cases [56].  

Table 4 
Characteristics of pre-trained models.  

Networks Depth Size # of Parameters 
(millions) 

Input Image Size 
(pixels) 

AlexNet 8 227 
MB 

61 227× 227  

GoogleNet 22 27 MB 7 224× 224  
ResNet18 18 44 MB 11.7 224× 224  
ShuffleNet 50 5.4 MB 1.4 224× 224   
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and density of noise are important. Depending on the accuracy of the 
noise removal algorithm, the restored image could be very similar to the 
original image, especially when the noise magnitude is low, which could 
thus result in an ineffective augmented image. On the other hand, if the 
noise magnitude is high and the denoising is imperfect (as expected), the 
pixel values of the restored images would be more dissimilar from the 
original ones. As shown in Fig. 3, noise of specific parameters is added to 
the original images by the noise generator (section 3.1). The noisy 

samples are then fed as inputs to the proposed autoencoder-based 
denoising model. 

The decoding weights of the trained autoencoder can be compared to 
a conventional image denoising filter parameter. Once the autoencoder 
is trained, it produces new augmented image data from the noisy input 
data during inference. Like our noisy image-based augmentation 
approach (section 3.1), here also, we feed the new augmented data as 
input to the child CNN models. The Bayesian optimizer finds optimal 

Fig. 6. Noise added to the chest X-ray images.  

Fig. 7. Noise-added and restored COVID-19 positive chest X-ray images.  

Fig. 8. Noise-added and restored healthy chest X-ray images.  
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noise parameters. After finding the optimal policies, we use the whole 
dataset and deep convolutional autoencoder for the noise-based data 
augmentation (Fig. 4). 

4. Implementation details 

4.1. Computational platform and training details 

The proposed algorithm is trained using the deep learning toolbox of 
MATLAB 2020b in an Intel(R) Core(TM) i7-7700HQ CPU 2.81 GHz with 
32 GB of RAM, and Nvidia GTX 1070 GPU with 8 GB VRAM. We used 
stochastic gradient descent with learning rate of 0.001 to train our 
networks (except for the autoencoder module) and used cross-entropy as 
the loss function. To train the autoencoder, we used Adam optimizer 
with learning rate of 0.001 and used mean squared error (MSE) as the 
loss function. We show the configuration of the autoencoder in Table 3. 
To cope with the limitation of our computation power, we split each 
original image of size 224× 224 pixels into 64 patches of size 28× 28 
pixels. After training the autoencoder with 250 epochs, we combined the 
64 patches as the restored image. We also used N = 2 in this study. We 
used 80% of the data (998 X-ray images) for training, 10% (125 X-ray 
images) of the data for validation, and 10% of the data (125 X-ray im-
ages) for testing. Fig. 5 shows sample chest X-ray images for COVID-19 

positive, healthy, and non-COVID pneumonia cases. 
We used pre-trained CNNs and finetuned them on the COVID-19 data 

for the classification task. We evaluated the performance of four pre- 
trained models, AlexNet [52], ShuffleNet [53], ResNet18 [54], and 
GoogleNet [55]. All of these networks were pre-trained on samples from 
the ImageNet Challenge database. Finetuning all these models on the 
COVID-19 dataset converge faster than training from scratch. Table 4 
summarizes the ImageNet pre-trained networks used in the proposed 
framework. 

4.2. Adding noise to images and denoising 

The noisy data generators separately add impulse noise and Gaussian 
noise to the chest X-ray images of COVID-19 positive, healthy, and non- 
COVID pneumonia cases in each fold (Fig. 2). Since chest X-ray images 
are often corrupted by noise that is like the impulse and Gaussian noise, 
we used these two types of noise for simulation (Fig. 6). 

Learning-to-augment with the restored or denoised images starts 
with dividing the dataset into N-folds (Fig. 3). The controllers initialize 
the noise parameters randomly. The noisy data generators create noisy 
images. The input to the proposed convolutional autoencoder is the 
noisy chest X-ray images and the target is set to the original images. 

Fig. 9. Noise-added and restored chest X-ray images of non-COVID pneumonia types.  

Fig. 10. The Bayesian optimizer evaluated the data augmentation policies for restored images, initially corrupted by impulse noise (impulse noisy density d = 17%, 
MSE = 0.288). 

M. Momeny et al.                                                                                                                                                                                                                               
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5. Results and discussion 

We first present qualitative results after adding noise and denoising 
the images (section 5.1). We then quantify the proposed learning-to- 
augment strategy after finding the optimal data augmentation policies 
(section 5.2.1), and training with selected policies (section 5.2.2). 
Finally, we present our discussion on the results (section 5.2.3). It is 
worth noting that the proposed learning-to-augment strategy using 

noisy and denoised data significantly increases the diversity in the 
training data. Unlike conventional data augmentation approaches that 
use predefined rules and procedures for a specific target task, the pro-
posed learning-to-augment strategy dynamically refines augmentation 
rules based on feedback networks, and thus, reduces the negative effect 
of the small size of the training dataset. 

5.1. Qualitative results 

The denoised output images by the proposed convolutional autoen-
coder for impulse and Gaussian noise-corrupted X-ray images of healthy 
cases are shown in Fig. 7. We show the noisy and restored chest X-ray 
images of the COVID-19 cases in Fig. 8 and Fig. 9, respectively. The 
augmenters use the outputs of the proposed convolutional autoencoder 
(restored images) to create new data. 

5.2. Quantitative results 

5.2.1. Optimal data augmentation policies 
The data augmentation policies, i.e., the optimal parameters of noise, 

are determined by the Bayesian optimization algorithm. Fig. 10 shows 
the results of the Bayesian optimizer to evaluate the data augmentation 
policies using the restored images, which were initially corrupted by the 
impulse noise. 

Learning-to-augment strategies using changing brightness, contrast, 
hue, saturation, and rotation of images are used to compare to the 
proposed approach. The optimal values of the parameters of the 
mentioned methods were chosen by the Bayesian optimizer for a fair 
comparison. The pre-trained networks (AlexNet, ShuffleNet, GoogleNet, 
and ResNet18) typically take input images of 3 channels (red, green, 
blue). Therefore, we use the same X-ray image and stack them three 
times to make the input image 3-channel. Then we use the augmentation 
operations, e.g., change of hue and saturation. As shown in Table 5, the 

Table 5 
The optimal values of the data augmentation policies.  

Data 
augmentation 
method 

Parameters of 
the method 

Range of 
parameters 

Optimal 
value of 
parameters 

Error by 
AlexNet 
(%) 

Changing 
brightness of the 
image 

Value of 
brightness 

[0,1] 0.215 0.256 

Changing contrast 
of the image 

Value of 
contrast 

[0,255] 1.184 0.280 

Adjusting hue of 
the image 

Value of hue [0,1] 0.164 0.264 

Changing 
saturation of the 
image 

Value of 
saturation 

[0,1] 0.777 0.264 

Rotation of image Angle 0◦–360◦ 21◦ 0.256 
Adding Impulse 

noise to the 
image 

Noise density [0,1] 0.025 0.288 

Adding Gaussian 
noise to the 
image 

Variance [0,1] 0.714 0.256 

Denoising image 
corrupted by 
impulse noise 

Noise density [0,1] 0.170 0.288 

Denoising image 
corrupted by 
Gaussian noise 

Variance [0,1] 0.280 0.256  

Fig. 11. Training and validation accuracy curves of ResNet18 in the X-ray image classification task.  

Fig. 12. Training and validation loss curves of ResNet18 in the X-ray image classification task.  
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optimal values of the parameters of data augmentation methods were 
chosen by the Bayesian optimizer for the AlexNet classifier. 

5.2.2. Training with the selected policies 
ShuffleNet with 50 layers, ResNet18 with 18 layers, and GoogleNet 

with 22 layers were used for the classification of X-ray images. The 
COVID-19 classification accuracy curves during ResNet18 training and 
validation with the Gaussian noise corrupted and restored images are 
shown in Fig. 11. We also illustrate the ResNet18 training and validation 
loss curves in Fig. 12. The confusion matrices of COVID-19 classification 

Fig. 13. Confusion matrices for X-ray image classification by the proposed learning-to-augment approach using restored images corrupted by noise. Here, ‘Normal’ 
represents the ‘Healthy’ subjects and ‘Other_Pneumonia’ represents the ‘non-COVID pneumonia’ patients. 

Fig. 14. Bar plot showing the accuracies of COVID-19 classification for different augmentation approaches.  
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by the proposed data augmentation approach using restored images are 
shown in Fig. 13. The results show that the generalization of ResNet18 
has been improved using the proposed data augmentation method based 
on restored images from the Gaussian noise corruption. The results, 
shown in Fig. 12, indicate that the data augmentation using the pro-
posed noising- and denoising-based data augmenter performs overall 
better than other approaches. The ResNet18, trained with the restored 
images from the Gaussian noise corruption, performed the best among 
all the techniques. 

5.2.3. Test results and discussion 
To evaluate the pre-trained deep CNN models, four metrics are 

employed for verifying the quality of the COVID-19 classification 

results, including accuracy, sensitivity, specificity, and F-Measure 
criteria [20,21]. We show the quantitative comparison of different 
augmentation strategies in Fig. 14, including changing brightness of the 
image, changing the contrast of the image, adjusting the hue of the 
image, changing the saturation of the image, rotation of the image, 
adding the impulse noise to the image, adding the Gaussian noise to the 
image, restoring the image corrupted by the impulse noise, and restoring 
image corrupted by the Gaussian noise. The pre-trained models were 
finetuned separately using optimal parameters of data augmentation 
methods (Table 5). 

In Fig. 15, we show our 3-steps strategy to evaluate the X-ray image 
classification task in terms of sensitivity, specificity, and F-Measure. At 
each step of the evaluation, one class is considered positive and the 
others are considered negative classes. At first, we considered ‘COVID- 
19’ as the positive class and the other two (i.e., healthy and non-COVID 
pneumonia) as negatives. Table 6 demonstrates the efficacy of the pro-
posed data augmentation strategy using noisy and denoised images with 
respect to the best performance by the state-of-the-art learning-to- 
augment method that uses the modification of the brightness, hue, 
contrast, saturation, and rotation. As shown in Table 6, ShuffleNet 
performance for restored images (our approach) is improved by 5.7% in 
terms of sensitivity from 54.3% to 60%, compared to saturation-based 
augmentation. Similarly, specificity of the ResNet18 method for the 
restored images is improved, from 89% to 90.9%, over the hue-based 
augmentation. Similarly, F-Measure is improved from 54.8% to 62.0% 
for the restored images compared to contrast-based augmentation. Also 

Fig. 15. Evaluation of the classification performance by identifying the positive 
and negative classes in three steps. 

Table 6 
Comparing sensitivity, specificity, and F-measure of X-ray image classification with the learning-to-augment strategies.  

Augmentation 
Method 

Positive class GoogleNet ShuffleNet ResNet18 

Sensitivity Specificity F- 
Measure 

Sensitivity Specificity F- 
Measure 

Sensitivity Specificity F- 
Measure 

Without data augmentation COVID-19 0.410 0.767 0.427 0.500 0.793 0.507 0.441 0.824 0.462 
Healthy 0.625 0.681 0.619 0.698 0.708 0.667 0.667 0.765 0.685 
Non-COVID 
pneumonia 

0.574 0.718 0.590 0.604 0.778 0.634 0.725 0.716 0.679 

Brightness COVID-19 0.500 0.763 0.457 0.390 0.833 0.451 0.410 0.837 0.464 
Healthy 0.607 0.768 0.642 0.741 0.648 0.672 0.709 0.700 0.678 
Non-COVID 
pneumonia 

0.685 0.704 0.661 0.566 0.778 0.606 0.647 0.743 0.641 

Hue COVID-19 0.459 0.773 0.459 0.486 0.830 0.514 0.471 0.890 0.533 
Healthy 0.636 0.714 0.636 0.722 0.732 0.696 0.741 0.806 0.754 
Non-COVID 
pneumonia 

0.611 0.732 0.623 0.642 0.792 0.667 0.745 0.797 0.731 

Contrast COVID-19 0.364 0.815 0.427 0.371 0.767 0.377 0.515 0.870 0.548 
Healthy 0.679 0.638 0.639 0.542 0.758 0.598 0.732 0.812 0.745 
Non-COVID 
pneumonia 

0.519 0.761 0.566 0.712 0.616 0.632 0.765 0.784 0.736 

Saturation COVID-19 0.436 0.826 0.479 0.543 0.756 0.500 0.485 0.804 0.478 
Healthy 0.732 0.681 0.689 0.589 0.783 0.635 0.625 0.797 0.667 
Non-COVID 
pneumonia 

0.566 0.806 0.619 0.648 0.732 0.648 0.750 0.699 0.690 

Rotation COVID-19 0.375 0.812 0.423 0.500 0.793 0.507 0.421 0.839 0.471 
Healthy 0.667 0.676 0.650 0.704 0.704 0.673 0.709 0.714 0.684 
Non-COVID 
pneumonia 

0.574 0.746 0.602 0.574 0.803 0.626 0.667 0.743 0.654 

Impulse noise COVID-19 0.457 0.789 0.457 0.469 0.817 0.469 0.500 0.839 0.535 
Healthy 0.643 0.739 0.655 0.673 0.771 0.685 0.722 0.746 0.703 
Non-COVID 
pneumonia 

0.660 0.722 0.648 0.750 0.712 0.696 0.618 0.829 0.673 

Gaussian noise COVID-19 0.432 0.795 0.451 0.500 0.802 0.493 0.529 0.868 0.563 
Healthy 0.679 0.696 0.661 0.667 0.761 0.673 0.778 0.775 0.750 
Non-COVID 
pneumonia 

0.615 0.740 0.621 0.685 0.746 0.679 0.698 0.833 0.725 

Restored images corrupted by 
the impulse noise 

COVID-19 0.425 0.835 0.479 0.410 0.849 0.471 0.459 0.909 0.548 
Healthy 0.778 0.648 0.694 0.774 0.667 0.695 0.804 0.754 0.763 
Non-COVID 
pneumonia 

0.547 0.819 0.611 0.582 0.814 0.640 0.686 0.838 0.714 

Restored images corrupted by 
the Gaussian noise 

COVID-19 0.486 0.773 0.480 0.600 0.811 0.545 0.579 0.874 0.620 
Healthy 0.636 0.729 0.642 0.636 0.857 0.700 0.811 0.764 0.761 
Non-COVID 
pneumonia 

0.600 0.757 0.629 0.808 0.726 0.737 0.611 0.915 0.710  
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considering ‘healthy’ as the positive class, in ResNet18, the proposed 
strategy using restored images corrupted by Gaussian noise out-
performed the results of hue-based augmentation in terms of sensitivity 
(from 74.1% to 81.1%). The performance of ShuffleNet increased in 
terms of specificity from 78.3% to 85.7%, when Gaussian noise- 
corrupted were restored, compared to saturation-based augmentation, 
and with ResNet18, F-Measure improved from 75.4% to 76.3% when 
images corrupted by impulse noise were restored rather than hue-based 
augmentation. Similar performance trends for the methods can be seen 
in Table 6 when the ‘non-COVID pneumonia’ cases are considered as the 
positive class in the third step. The proposed learning-to-augment 
strategy using denoised images corrupted by Gaussian noise yields the 
best results compared to contrast-based augmentation, for ShuffleNet 
the sensitivity was improved from 71.2% to 80.8%. Similarly, 
comparing with hue-based augmentation, the specificity of ResNet18 
went from 79.7% to 91.5%, and the F-Measure of ShuffleNet was 
improved from 66.7% to 73.7%. 

We show the evaluation results in terms of sensitivity, specificity, 
and F-Measure metrics in Fig. 16. The sensitivity and specificity values 

for the classification of COVID-19 by the proposed approach are better 
than those by other augmentation techniques. Thus, the noising- and 
denoising-based data augmenter is applicable to improve the general-
ization of deep CNNs for image classification. The performance of the 
COVID-19 classification task was improved by our methods capability to 
choose noise parameters. In addition, using restored images by the 
proposed autoencoder model helps to generalize CNNs. 

In a state-of-the-art method [29], Nishio et al. applied six data 
augmentation strategies on image data, consisting of ±15◦ rotation, 
±15% x-axis shift, ±15% y-axis shift, horizontal flipping, and 85–115% 
scaling and shear transformation. They employed DenseNet201 (201 
layers deep, 77 MB size, and 20.0 million parameters) and ResNet50 (50 
layers deep, 96 MB size, and 25.6 million parameters) for the detection 
of COVID-19 in chest X-ray images. The accuracy on the test set for 
DenseNet201 and ResNet50 were 78.24 ± 2.23% and 77.76 ± 1.18%, 
respectively. On the other hand, according to results shown in Table 7, 
using the proposed data augmentation approach, ResNet18 (18 layers 
deep, 44 MB size, and 11.7 million parameters) showed an accuracy of 
77.6 ± 1.20%. With a shallower network and less “augmented” data, the 

Fig. 16. Comparison of the sensitivity, specificity, and F-Measure of COVID-19 classification for different augmentation strategies.  

Table 7 
Comparison of proposed data augmentation strategy using restored images corrupted by the Gaussian noise to the state-of-the-art method in term of accuracy.  

Strategy Networks’ architecture Output of data augmentation Accuracy 

Depth (layer) Size (MB) # of parameters (million) # of data augmentation 
methods 

# of augmented data (%) 

Nishio et al. [29] (DenseNet201) 201 77 20.0 6 5998 78.24 ± 2.23 
Nishio et al. [29] (ResNet50) 50 96 25.6 6 5998 77.76 ± 1.18 
Proposed (ResNet18) 19 44 11.7 1 998 77.60 ± 1.20  
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proposed data augmentation strategy using restored image is almost as 
accurate as the state-of-the-art method. 

6. Conclusion 

In this paper, we proposed a learning-to-augment strategy using 
noisy and restored images to improve the generalizability of deep CNNs. 
Using a novel noise-based data augmentation approach, we tackled the 
overfitting problem of deep CNNs for automatic identification of COVID- 
19 in the chest X-ray images. A noisy data generator, a Bayesian 
optimizer-based controller, an autoencoder network, child augmenters, 
and child CNN models are key components of our proposed noising- and 
denoising-based data augmenter that increase the accuracy of the image 
classification task. Learning-to-augment strategies, including changing 
brightness of the image, changing the contrast of the image, adjusting 
the hue of the image, changing the saturation of the image, and the 
rotation of the image have been compared to the proposed method 
(adding impulse noise to an image, adding Gaussian noise to an image, 
restoring image corrupted by impulse noise, and restoring image cor-
rupted by Gaussian noise). The proposed data augmenter also achieved 
the best performance in COVID-19, healthy, and non-COVID pneumonia 
classification in terms of sensitivity, specificity, and F-Measure. The 
learning-to-augment strategy on the restored Gaussian noise-corrupted 
images in a pretrained ResNet18 adapts properly on the new and pre-
viously unseen data (test set) and showed better classification accuracy 
compared to the state-of-the-art data augmentation approach. So, we 
can conclude that the proposed strategy improves the generalization of 
deep CNN. 
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[13] A.M. Ismael, A. Şengür, Deep learning approaches for COVID-19 detection based 
on chest X-ray images," Expert Systems with Applications,, 164, p. 114054, 2021/ 
02/01, https://doi.org/10.1016/j.eswa.2020.114054, 2021. 

[14] S. Thakur, A. Kumar, X-ray and CT-scan-based automated detection and 
classification of covid-19 using convolutional neural networks (CNN)," Biomedical 
Signal Processing and Control,, 69, p. 102920, 2021/08/01, https://doi.org/10.10 
16/j.bspc.2021.102920, 2021. 

[15] C.-T. Lu, M.-Y. Chen, J.-H. Shen, L.-L. Wang, C.-C. Hsu, Removal of salt-and-pepper 
noise for X-ray bio-images using pixel-variation gain factors," Computers & 
Electrical Engineering,, 71, pp. 862–876, 2018/10/01, https://doi.org/10.1016/j. 
compeleceng.2017.08.012, 2018. 

[16] M.D. Bloice, P.M. Roth, A. Holzinger, Biomedical image augmentation using 
Augmentor," Bioinformatics, vol 21 (35) (2019) 4522–4524, https://doi.org/ 
10.1093/bioinformatics/btz259. 

[17] P. Panda, K. Roy, Implicit adversarial data augmentation and robustness with 
noise-based learning neural networks,, 141, pp. 120–132, 2021/09/01, https 
://doi.org/10.1016/j.neunet.2021.04.008, 2021. 

[18] H.-J. Bae, C.W. Kim, N. Kim, B. Park, N. Kim, J.B. Seo, S.M. Lee, "A perlin noise- 
based augmentation strategy for deep learning with small data samples of HRCT 
images, Scientific reports 1 (8) (2018) 17687, https://doi.org/10.1038/s41598- 
018-36047-2, 12/06 2018. 

[19] M. Momeny, M.A. Sarram, A.M. Latif, R. Sheikhpour, Y.D. Zhang, "A noise robust 
convolutional neural network for image classification results in engineering, 
100225, 2021/05/17, https://doi.org/10.1016/j.rineng.2021.100225, 2021. 

[20] M. Ofori-Oduro, M.A. Amer, Data augmentation using artificial Immune systems 
for noise-robust CNN models,, IEEE.Int.Conf.Image Process. (2020) 833–837, 
https://doi.org/10.1109/ICIP40778.2020.9191116, 25-28 Oct. 2020 2020. 

[21] A.E. Bilali, A. Taleb, M.A. Bahlaoui, Y. Brouziyne, "An integrated approach based 
on Gaussian noises-based data augmentation method and AdaBoost model to 
predict faecal coliforms in rivers with small dataset," Journal of Hydrology, p. 
126510, 2021/05/29, https://doi.org/10.1016/j.jhydrol.2021.126510, 2021. 
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