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Zinc lactate (ZnLA) is a new organic zinc salt which has antioxidant properties in mammals and can improve intestinal function.
This study explored the effects of ZnLA and ZnSO4 on cell proliferation, Zn transport, antioxidant capacity, mitochondrial
function, and their underlying molecular mechanisms in intestinal porcine epithelial cells (IPEC-J2). The results showed that
addition of ZnLA promoted cell proliferation, inhibited cell apoptosis and IL-6 secretion, and upregulated the mRNA expression
and concentration of MT-2B, ZNT-1, and CRIP, as well as affected the gene expression and activity of oxidation or antioxidant
enzymes (e.g., CuZnSOD, CAT, and Gpx1, GSH-PX, LDH, and MDA), compared to ZnSO4 or control. Compared with the
control, ZnLA treatment had no significant effect on mitochondrial membrane potential, whereas it markedly increased the
mitochondrial basal OCR, nonmitochondrial respiratory capacity, and mitochondrial proton leakage and reduced spare
respiratory capacity and mitochondrial reactive oxygen (ROS) production in IPEC-J2 cells. Furthermore, ZnLA treatment
increased the protein expression of Nrf2 and phosphorylated AMPK, but reduced Keap1 and p62 protein expression and
autophagy-related genes LC3B-1 and Beclin mRNA abundance. Under H2O2-induced oxidative stress conditions, ZnLA
supplementation markedly reduced cell apoptosis and mitochondrial ROS levels in IPEC-J2 cells. Moreover, ZnLA
administration increased the protein expression of Nrf2 and decreased the protein expression of caspase-3, Keap1, and p62 in
H2O2-induced IPEC-J2 cells. In addition, when the activity of AMPK was inhibited by Compound C, ZnLA supplementation
did not increase the protein expression of nuclear Nrf2, but when Compound C was removed, the activities of AMPK and Nfr2
were both increased by ZnLA treatment. Our results indicated that ZnLA could improve the antioxidant capacity and
mitochondrial function in IPEC-J2 cells by activating the AMPK-Nrf2-p62 pathway under normal or oxidative stress
conditions. Our novel finding also suggested that ZnLA, as a new feed additive for piglets, has the potential to be an alternative
for ZnSO4.

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2020, Article ID 8815383, 15 pages
https://doi.org/10.1155/2020/8815383

https://orcid.org/0000-0002-0768-421X
https://orcid.org/0000-0003-1184-6944
https://orcid.org/0000-0001-9096-1304
https://orcid.org/0000-0001-6112-6975
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8815383


1. Introduction

Zinc (Zn), one of the most important trace elements in mam-
mals, has been reported to reduce the incidence of diarrhea
and improve the structure and function of the intestinal bar-
rier in postweaning piglets [1–4]. Extracellular and intracellu-
lar Zn2+ in mammalian cells play a key role in physiological or
pathological processes, including growth, immunity, and
nutrient metabolism [5]. Previous reports have confirmed that
Zn deficiency in animals led to a decrease in the number of T
cells [6], oxidative stress, intestinal dysfunction, and inflam-
matory cell infiltration [4, 7, 8]. Traditionally, inorganic Zn
(oxides and sulfates) has served as a feed additive to promote
growth performance in livestock. To date, Zn additives in
the market are in various types, such as zinc oxide, zinc sulfate,
and nanozinc, all of which have a benefit in Zn absorption and
combating diarrhea [9–13]. However, the excessive use and
low absorption efficiency of inorganic Zn in livestock and
poultry breeding resulted in the deposition of heavy metals
in animal products and the high production of excrement,
which inevitably caused concerns in meat safety and environ-
mental pollution [14, 15].

Zinc lactate (ZnLA) is chemically synthesized from feed-
grade zinc oxide and DL-lactic acid and can easily bind with
ligands or metal carriers in enterocytes, which plays a key
role in antioxidant function and immune response in ani-
mals. Previous studies have reported that the relative bio-
availability of ZnLA in animal production is higher than
that of inorganic Zn and can improve the growth perfor-
mance of animals [16]. For example, the addition of ZnLA
to animal feed improved the utilization of serum free amino
acids and meat quality (e.g., average shell strength and shell
thickness) and reduced the shell-breaking rate in chickens
[17, 18]. Dietary ZnLA supplementation could also increase
the birth weight and weaning survival rate in rabbits, as well
as enhance fur elasticity and brightness [19]. Recent reports
have indicated that organic Zn in pigs is more helpful in
adjusting the adaptive response to piglets’ oxidative stress
compared with inorganic Zn [20]. However, the effect mech-
anisms of ZnLA on the antioxidant and anti-inflammatory
ability in pigs have not been well-studied.

It is known that nuclear factor erythroid 2-related factor
2 (Nrf2), a principal key transcription factor, has been con-
sidered as the main stress regulator that activates the antiox-
idant system. Upon exposure to various stressors, the release
of Nrf2 from Kelch-like ECH-associated protein 1 (Keap1)
translocates into the nucleus, resulting in the expression of
various cytoprotective genes [21]. Recent studies have
reported that Nrf2 could be activated by AMP-activated pro-
tein kinase (AMPK) and modulate autophagy-related genes
(e.g., p62, Beclin, and LC3B-1/2) to participate in the allevia-
tion of oxidative stress in mammalian cells [22]. Autophagy-
related protein p62 can inhibit Nrf2 degradation and pro-
mote Nrf2 stability and nuclear translocation by interfering
with Keap1-Nrf2 interaction to participate in the cellular
antioxidative stress response [23]. However, whether ZnLA
could protect against oxidative stress by modulating
AMPK-Nrf2 activation and autophagy signals is still poorly
understood. Moreover, mitochondria are the main energy
source of cells, where they play an important role in cell pro-

cesses such as apoptosis, reactive oxygen species (ROS) gen-
eration, cell cycle, and thermogenesis. Oxidative damage
leads to ROS production and mitochondrial dysfunction
[24]. A previous study showed that the combination of Zn
and selenium improved mitochondrial function and allevi-
ated oxidative stress caused by Alzheimer’s disease [24].
Therefore, the purpose of this study was to compare the
effects of ZnLA and ZnSO4 on cell proliferation and autoph-
agy, Zn transport, antioxidant capacity, and mitochondrial
function in intestinal porcine epithelial cells (IPEC-J2) and
to reveal the associated regulatory mechanism of ZnLA in
H2O2-induced oxidative stress in IPEC-J2 cells.

2. Materials and Methods

2.1. Cell Culture. The IPEC-J2 cells derived from the jejunal
epithelia of the neonatal piglets were used in all studies to
assess the related mechanisms in vitro. IPEC-J2 cells were
grown in uncoated plastic culture flasks in Dulbecco’s Mod-
ified Eagle Medium (DMEM), 10% fetal calf serum (FBS;
Hyclone, UT, USA), 5mM L-glutamine, and 1% antibiotics
(100U/mL penicillin and 100U/mL streptomycin) and cul-
tured at 37°C with 5% CO2. The media was changed every
two days, and the pH of all cell culture media was maintained
at 7.4. The cells covered the bottom of the culture bottle and
were trypsinized into a six-well plate and cultured at 37°C
with 5% CO2. When cells were grown to 70-80% confluence,
the cells were cultured in treatment mediums. The cells were
then collected to determine the relevant indicators.

2.2. Cell Viability Assays. IPEC-J2 cells were seeded in a 96-
well plate at a density of 8 × 103 cells/well and grown to
80% confluence. Cells were treated with DMEM containing
ZnLA (99%; Sichuan Zoology Feed Co. Ltd.) and ZnSO4 with
final Zn concentrations of 0, 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 15, and
20mg/L. After incubation for 6, 12, 24, 36, 48, and 60 h, cell
viability was evaluated by cell counting kits (CKK-8)
(Dojindo, Kumamoto, Japan) using a microplate reader at
450 nm according to the manufacturer’s instructions.

2.3. Cell Treatment. At ~70-80% confluence, ZnLA or ZnSO4
was added to fresh medium without FBS, which contained
the same amount of Zn (7.5mg/L). In order to eliminate
the interference of lactic acid, equal amounts of lactic acid
and Zn compared with the ZnLA group were used. To induce
oxidative stress, 200μM H2O2 (Sigma-Aldrich, MO, USA)
was used as previously reported [25]. Compound C (5μM)
(Selleck, Shanghai, China), an AMPK inhibitor, was added
to the medium to inhibit AMPK activity.

2.4. Intracellular Enzymes and Inflammatory Cytokines.Har-
vested cells were extracted total proteins; then, cellular mal-
ondialdehyde (MDA), superoxide dismutase (SOD), lactic
dehydrogenase (LDH), glutathione peroxidase (GSH-PX),
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α),
cysteine-rich intestinal protein 1 (CRIP1), cysteine-rich
intestinal protein 2 (CRIP2), and metallothionein 1A
(MT1A) activities or levels were determined using ELISA kits
(Wuhan Huamei Biotechnology Co. LTD) in accordance
with the manufacturer’s protocols.
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2.5. Cell Apoptosis Assay. Apoptosis analysis was performed
with the Annexin V-FITC/PI (propidium iodide) flow
cytometry kit. IPEC-J2 cells were seeded into 6-well plates
at a density of 1 × 106 cells/well. After treatment, 5μL
Annexin V-FITC for 15min and 5μL PI for 5min at room
according to the manufacturer’s instructions [26].

2.6. Cell Cycle Assay. Cell cycle progression was examined
with a flow cytometer using propidium iodide (PI) staining.
Briefly, IPEC-J2 cells were seeded into 6-well culture plates.
After treatment, the cells were trypsinized and fixed with cold
70% ethanol at 4°C overnight. The cells were then rehydrated,
washed twice with ice-cold PBS, and analyzed by PI staining.
PI absorbance was determined by fluorescence-activated cell
sorting on a flow cytometer (Beckman Coulter Inc., USA).

2.7. Mitochondrial ROS Measurement. Intracellular mito-
chondrial reactive oxygen (ROS) generation was evaluated
using MitoSOX Red reagent (Invitrogen, Shanghai, China).
IPEC-J2 cells were seeded into 6-well plates and then cul-
tured in different treatments. Cells were treated with 5μM
MitoSOX Red reagent at 37°C for 10min in the dark. Then,
the fluorescence intensity of 12,000 cells was assayed using
a Beckman MoFlo XDP flow cytometer (Beckman Coulter
Inc., CA, USA).

2.8. Mitochondrial Membrane Potential (MMP)
Measurement. Mitochondrial depolarization in the early
stages of apoptosis was evaluated using JC-1 reagent (Invitro-
gen) by double fluorescence staining. The loss of MMP was
indicated by a decrease in the red/green mean fluorescence
intensity ratio. IPEC-J2 cells were seeded into confocal dishes
and then treated under different conditions. JC-1 (10μg/mL)
was added to the medium for 30min in the dark and then the
cells were washed twice with PBS. Cells in the confocal dishes
were treated with an antifluorescence quenching agent and
observed using a Zeiss LSM880 confocal microscope as
previously described [26].

2.9. Mitochondrial Respiration Metabolism Assays. Mito-
chondrial respiration was measured using the XF-24 Extra-
cellular Flux Analyzer and a Cell Mito Stress Test Kit
(Agilent Technologies, Inc., CA, USA) in accordance with
the manufacturer’s instructions. Non-ATP-linked oxygen
consumption (proton leak), ATP-linked mitochondrial oxy-
gen consumption (ATP production), and maximal respira-
tion capacity were estimated. Baseline oxygen consumption
rate (OCR) minus the maximal respiratory capacity repre-
sented the spare respiratory capacity. Residual oxygen con-
sumption after the addition of rotenone and antimycin A
was due to nonmitochondrial respiration and was subtracted
from all measured values in the analysis. Total cellular
protein concentration was determined with a BCA assay kit
to normalize mitochondrial respiration rates [27].

2.10. Real-Time Quantitative Polymerase Chain Reaction.
The expression of mRNA was measured by real-time quanti-
tative PCR. Total RNA was extracted from samples of IPEC-
J2 cells using TRIzol reagent (Invitrogen) and reverse tran-
scribed into cDNA using the Prime Script RT reagent kit

(TaKaRa Bio, Otsu, Japan). Quantitative PCR was performed
using SYBR Premix Ex Taq (TaKaRa Bio, Japan). The reac-
tion was performed at a total volume of 10μL, with the assay
solution containing 5μL SYBR Green mix (TaKaRa Bio,
Japan), 0.2μL ROX internal reference dye, 3.4μL deionized
H2O, 1μL cDNA template, and 0.2μL each of the forward
and reverse primers. The expression of the housekeeping
gene β-actin was used to normalize the expression levels.
The primers were designed to flank introns using the Primer
5 software. The primer sequences are listed in the supple-
mental Table 1.

2.11. Protein Qualification by the Wes Simple Western System
and Western Blot. The process of protein quantification was
performed using the Wes Simple Western System (Protein-
Simple, San Jose, CA, USA) or the Western Blot technique
as previous described [25, 26]. The antibodies used in the
study included nuclear factor erythroid 2-related factor 2
(Nrf2) (Abcam, Cambridge, MA, USA), β-actin (Abcam),
Kelch-like ECH-associated protein 1 (Keap1) (Abcam),
AMP-activated protein kinase (AMPK) (Abcam), phosphor-
ylated AMPK (Abcam), lamin B (Abcam), and p62 (Abcam).
The mouse β-actin antibody was used as a loading control for
total protein, while nuclear Nrf2 protein expression was nor-
malized to lamin B. All protein concentrations were deter-
mined using a standard BCA protein assay. Results of Wes
Simple Western System were obtained using the “gel view”
function of the Protein Simple software (ProteinSimple).
Western blot data were quantified using the ImageJ software.

2.12. Immunofluorescence Assay. IPEC-J2 cells (1 × 105 cells
per well) were seeded into confocal dishes and treated with
different conditions. Cells were fixed with 4% paraformalde-
hyde for 20min and permeabilized with Triton X-100 (0.3%)
for 10min. Then, cells were blocked with bovine serum albu-
min (1%) for 30min and were incubated overnight with
Nrf2, caspase-3, or Keap1 antibodies diluted at 1 : 100 at
4°C. Cells were washed with cold PBS three times, and then
incubated with secondary antibody for 1 h. Nuclear DNA
was labeled with 4′,6-diamidino-2-phenylindole (DAPI) for
2 minutes. The fluorescence images were captured using a
Zeiss LSM880 confocal microscope and analyzed with the
ZEN software.

2.13. Statistical Analysis. Statistical analysis was analyzed
through one-way ANOVA or t-test using the SPSS 19.0 soft-
ware. All the data were presented as means ± standard error
of themean (SEM). P values below 0.05 were considered sta-
tistically significant.

3. Results

3.1. Effects of ZnLA Supplementation on Cell Viability, Cell
Cycle, and Apoptosis. To determine the effects of different
Zn sources on cell proliferation in IPEC-J2 cells, we exposed
IPEC-J2 cells to increasing concentrations of ZnLA or ZnSO4
for 6, 12, 24, 36 48, or 60h, respectively (Figures 1(a) and
1(b)). We found that exposure to 7.5mg/L Zn for 12h signif-
icantly increased cell viability compared with other treat-
ments (P < 0:05). Thus, the concentrations of 7.5mg/L Zn
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Figure 1: Continued.
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from ZnLA or ZnSO4 for 12 h were selected as suitable con-
ditions for the subsequent experiments. As shown in
Figures 1(c) and 1(d), the G1 phase of the cell cycle was
markedly decreased in the ZnLA group compared with the
control group (P < 0:05). However, ZnLA administration
was increased in the S phase (P < 0:05) and G2/M phase
(P < 0:05). In addition, we found that the proportion of early
and late apoptotic cells treated with ZnLA was the lowest
compared to the other three groups (Figure 1(e)). These
results suggested that ZnLA could reduce cell apoptosis and
promote cell proliferation.

3.2. Effects of ZnLA Supplementation on Mitochondrial ROS,
MMP, and Mitochondrial Respiration Metabolism. Our
results showed that Zn treatment decreased the levels of
mitochondrial ROS production (P < 0:05) but did not differ
between the ZnLA and ZnSO4 groups (Figures 2(a) and
2(b)). There was no difference in the ratio of JC-1 red fluores-
cence to green fluorescence (P > 0:05) (Figure 2(n)). Com-
pared with the control group, ZnLA treatment remarkably
increased the mitochondrial basal OCR, nonmitochondrial
respiratory capacity, and proton leak (P < 0:05)
(Figures 2(c)–2(i)). Compared with the ZnSO4 group, ZnLA
administration increased the mitochondrial basal OCR, non-
mitochondrial respiratory capacity, and maximal respiration
in IPEC-J2 cells (P < 0:05). ZnSO4+LA administration
increased the basal OCR rate, ATP production, and maximal
respiration compared with the ZnSO4 group (P < 0:05). As

for mitochondrial-related gene expression, ZnLA supple-
mentation increased the mRNA expression of uncoupling
protein 2 (UCP2) and pyruvate dehydrogenase A1 (PDHA1)
(Figures 2(j) and 2(m)) compared with the control group, but
the mRNA expression of mitochondrial transcription factor
A (Tfam) and cytochrome c oxidase (Cycs) was not affected
by ZnLA administration (Figures 2(k) and 2(l)). Meanwhile,
ZnSO4 treatment increased UCP2 mRNA abundance but did
not affect the expression of Tfam, Cycs, and PDHA1.

3.3. Effects of ZnLA Supplementation on Antioxidant
Function, Inflammation, and Zn Transport. For critical vali-
dation of the in vitro experiment demonstrating the effects
of ZnLA on intestinal Zn transport, inflammation, and anti-
oxidant function, we determined the levels or activities of
intracellular antioxidant enzymes, inflammatory cytokines,
and zinc transporter proteins (Figures 3(a)–3(i)). Compared
with the control group, LDH activity was decreased with
ZnLA or ZnSO4 treatment (P < 0:05), and the activity of
LDH in the ZnLA treatment was lower than that in ZnSO4
treatment. Compared with the control group, ZnLA treat-
ment significantly increased the activity of GSH-PX
(P < 0:05), while decreasing the MDA concentration
(P > 0:05). SOD activity in the ZnSO4+LA group was the
lowest (P < 0:05). Compared with the control group, the con-
centration of intracellular IL-6 in the other three treatments
was significantly decreased (P < 0:05), but there was no dif-
ference in TNF-α concentration among these groups. ZnLA
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Figure 1: Effects of zinc lactate on cell viability, cell cycle, and apoptosis in IPEC-J2 cells. Values are expressed asmeans ± SEM (n = 4). (a, b)
Cell viability under different levels of Zn sources; (c, d) cell cycle in each phase; (e) cell apoptosis ratio. a,b,cMeans of bars with different letters
were significantly different (P < 0:05).
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Figure 2: Continued.
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supplementation increased the levels of Zn transporter pro-
teins CRIP1 and CRIP2 (P < 0:05), but had no effect on
MT1A levels compared with that in the CON group. Further-
more, we also determined the mRNA expression levels of Zn
transporters and antioxidant-related genes (Figures 3(j)–
3(q)). Compared with the control group, ZnLA or ZnSO4
supplementation markedly increased the mRNA expression
of ZNT-1 andMT-2B in IPEC-J2 cells (P < 0:05). The mRNA
expression of CRIP2 and MT1A in the ZnSO4 group was also
increased in comparison with the other three groups
(P < 0:05), while there was no difference in the expression
of CRIP1 among the four groups. The mRNA expression
levels of CAT and CuZnSOD in the ZnLA group were higher
than those in the other groups, but there was no difference in
the expression of Gpx1 among these groups.

3.4. Effects of ZnLA Supplementation on the Expression of
Nrf2/Keap1, AMPK, and Autophagy-Related Pathways. To
further validate whether ZnLA supplementation could allevi-
ate oxidative stress in IPEC-J2 cells via Nrf2/Keap1, AMPK,
and autophagy-related pathways, we determined the expres-
sion of the key target molecules using Western blotting and
immunofluorescence techniques. We found that Nrf2 pro-
tein was mostly located in the cytoplasm of IPEC-J2 cells,
but ZnLA administration could increase the amount of

Nrf2 transferred to the nucleus (Figures 4(a) and 4(c)). Com-
pared with the control group, the expression of Keap1 was
reduced by ZnLA treatment (P < 0:05). Furthermore, the
protein expression of AMPK in ZnSO4+LA group was high-
est (P < 0:05), and ZnLA treatment remarkably increased
(P < 0:05) the protein expression of phosphorylated AMPK
(Figures 4(c) and 4(d)). Compared with the ZnSO4 group,
the expression of p62 in the ZnLA group was decreased,
but there was no significant difference (Figure 4(e)). Our
results also showed that ZnLA treatment markedly reduced
the mRNA expression of autophagy-related genes LC3B-1
and Beclin (P < 0:05), but it had no effect on the mRNA
expression of p62 and LC3B-2 (P > 0:05) (Figure 4(f)).

3.5. Effects of ZnLA Supplementation on Mitochondrial ROS,
Apoptosis, and the AMPK-Nrf2-p62-Mediated Pathway
under Oxidative Stress Conditions. To further define the
effect of ZnLA on the alleviation of oxidative stress in enter-
ocytes, we built an oxidative stress model of H2O2-induced
IPEC-J2 cells. The levels of mitochondrial ROS and apoptosis
were determined in the presence or absence of 7.5mg/L
ZnLA. As shown in Figure 5(a), H2O2 exposure markedly
increased cell apoptosis in IPEC-J2 cells, while ZnLA supple-
mentation decreased the proportion of apoptotic cells (the
proportion of early apoptotic cells and late apoptotic cells,
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Figure 3: Continued.
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6.84%) compared with the H2O2 treatment groups (12.24%)
(P < 0:05). The results of the immunofluorescence assay
showed that caspase-3 was located in the cytoplasm of
IPEC-J2 cells, and compared with the control group, H2O2
exposure significantly increased caspase-3 protein expression
(P < 0:05) (Figure 5(d)), while ZnLA or ZnSO4 administra-
tion decreased the protein expression of caspase-3.

To test whether ZnLA could protect IPEC-J2 cells from
oxidative damage by scavenging intracellular ROS, flow
cytometry was used to detect mitochondrial ROS. The results
showed that compared with the H2O2 group, ZnLA treat-
ment significantly decreased mitochondrial ROS production
in the H2O2-induced IPEC-J2 cells (P < 0:05) (Figures 5(b)
and 5(c)). However, ZnSO4 treatment had no effect on the
levels of mitochondrial ROS in H2O2-induced IPEC-J2 cells
(P > 0:05). As shown in Figures 5(e) and 5(f), the protein
expression of nuclear Nrf2 in the ZnLA+H2O2 group was sig-
nificantly increased while Keap1 protein expression was
decreased compared with the H2O2 group. H2O2 treatment
increased the expression of autophagy-related protein p62,
while ZnLA supplementation markedly decreased the
expression of p62 in H2O2-induced IPEC-J2 cells (P < 0:05)
(Figure 5(g)). To further explore whether AMPK-Nrf2 sig-
naling could be activated by ZnLA supplementation under
oxidative stress conditions, we treated cells with an AMPK
inhibitor (Compound C) to inhibit AMPK activity [28].
When AMPK activity was inhibited by Compound C, ZnLA
supplementation did not promote the nuclear translocation
of Nrf2 and did not decrease the protein expression of Nrf2
and Keap1 in the cytoplasm of IPEC-J2 cells (P > 0:05)
(Figures 5(h) and 5(i)).

4. Discussion

Dietary Zn supplementation could promote cell proliferation
and protect intestinal barrier function in postweaning piglets
against diarrhea [29]. In the present study, we found that the
addition of ZnLA was more effective in promoting cell prolif-
eration and suppressing cell apoptosis than ZnSO4, at the
same concentration. This is consistent with many reports
that Zn supplementation plays an important role in improv-

ing cell proliferation and differentiation [30, 31]. For exam-
ple, a recent study has reported that ZnLA supplementation
improved the growth performance of young grass carp by
maintaining intestinal immune and physical barrier func-
tions [32]. The small intestine, as a major site of Zn absorp-
tion, can maintain Zn homeostasis by regulating the
expression of Zn transport proteins [33]. A number of pro-
teins involved in Zn absorption and transport have also been
identified, including metallothionein (MT), SLC30 (ZNT),
SLC39 (ZIP), and CRIP [34]. Previous studies reported that
downregulation of ZNT-1 protein could cause the release of
LDH and the activation of caspase protein following
ischemia-reperfusion [35]. MT participates in the storage,
transport, and bioutilization of Zn, so a decreased expression
of MT reduces the absorption efficiency of Zn in the body
[36]. Moreover, MT2 is rich in reduced thiol groups (SH),
which have a free radical scavenging capacity 100 times that
of GSH, and can inhibit the release of mitochondrial cyto-
chrome c and activate caspase-3 to reduce cell apoptosis
and myocardial injury [37, 38]. These were further confirmed
by the present study where it was found that ZnLA adminis-
tration increased the mRNA expression of ZNT-1, MT1A,
and MT-2B and intracellular GSH-PX activity, but decreased
LDH activity, cell apoptosis, and caspase-3 protein expres-
sion levels in IPEC-J2 cells. Further, CRIP and MT regulate
physiological balance by competitive transport of Zn [39].
In the current study, we found that ZnLA supplementation
promoted the protein expression of CRIP1/2 in IPEC-J2 cells,
suggesting the improvement of Zn transport capacity follow-
ing ZnLA treatment. The results of cell apoptosis and caspase
protein expression also indicated that the antiapoptosis effect
of ZnLA was better than that of ZnSO4 in IPEC-J2 cells.

Mitochondria, a site for the major source of intracellular
ATP, plays a crucial role in scavenging ROS and is tightly
linked to apoptosis and proliferation [40, 41]. Our results
showed that ZnLA treatment increased the mRNA expres-
sion of PDHA1 and UCP2 in IPEC-J2 cells. PDHA1 can reg-
ulate mitochondrial ATP production and control the
generation of ROS [42]. This is consistent with the results
of present study that ZnLA treatment increased mitochon-
drial ATP production and decreased the production of
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Figure 3: Effect of zinc lactate on Zn transport, inflammatory cytokines, and antioxidant enzymes in IPEC-J2 cells. Values are expressed as
means ± SEM (n = 4). (a) The activity of GSH-PX; (b) the concentration of LDH; (c) the concentration of MDA; (d) the activity of SOD; (e, f)
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mitochondrial ROS. UCP2, a protein on the inner membrane
of mitochondria, can inhibit mitochondrial membrane trans-
port pore opening, prevent mitochondrial Ca2+ overload, and
reduce the formation of ROS, thereby inhibiting cell apopto-
sis [43]. Diano and Horvath reported that UCP2 activation

could increase proton leak and then decreased ROS produc-
tion to defend against oxidative stress [44]. Based on the
detection of cell respiration, we also observed that ZnLA
administration increased mitochondrial proton leakage,
mitochondrial basal OCR, and nonmitochondrial respiratory
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Figure 4: Effects of zinc lactate on the AMPK-Nrf2-p62 signaling pathway in IPEC-J2 cells. Values are expressed asmeans ± SEM (n = 4). (a)
Localization of Nrf2 (×63 magnification): red, Nrf2; blue, DAPI; (b) localization of Keap1 (×63 magnification): red, Keap1; blue, DAPI; (c, d)
protein expression of AMPK-Nrf2 pathway; (e) p62 protein expression; (f) the mRNA expression of Beclin, p62, LC3B-1, and LC3B-2.
a,b,cMeans of bars with different letters were significantly different (P < 0:05).
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capacity, suggesting that ZnLA could improve mitochondrial
respiratory metabolism and maintain energy equilibrium in
IPEC-J2 cells. Our current results showed that ZnLA had
no effect on MMP. It is known that decreased MMP pro-
moted mitochondrial membrane permeability transition
pore opening, activated the caspase-mediated apoptosis
pathway, and led to cell apoptosis [45]. Increased MMP
inhibited oxidative phosphorylation, resulting in an imbal-
ance of energy metabolism [46]. Our results indicated that
ZnLA administration could maintain the homeostasis of
MMP. In addition, our results also showed that ZnSO4+LA
supplementation increased mitochondrial basal OCR, ATP
production, and proton leak. This may be because lactic acid
forms pyruvate in the presence of LDH, which then enters
the mitochondria to participate in energy metabolism,
thereby increasing the production of ATP. These results sug-
gest that ZnLA administration plays important roles in mito-
chondrial function.

Previous studies reported that dietary Zn deficiency
resulted in an increased sensitivity to oxidative stress and
increased ROS production in animals [47]. This was evi-
denced by our findings that treatment with ZnLA improved
antioxidant capacity in IPEC-J2 cells by regulating
antioxidant-related gene expression and antioxidant enzyme
concentrations, as well as reducing mitochondrial ROS levels.
GSH-PX, CAT, and SOD are important members of the anti-
oxidant enzyme system [48]. In the present study, ZnLA
treatment significantly increased the CAT and CuZnSOD
mRNA abundance and the activity of GSH-PX in IPEC-J2
cells, indicating that ZnLA administration may enhance their
antioxidant ability by improving the expression and activity
of antioxidant-related enzymes. Due to alterations in Zn dis-
position during the inflammatory response, this makes it

even easier to interpret the relationship between Zn metabo-
lism and immune function in animals [49]. Our results
showed that ZnLA administration decreased the secretion
of proinflammatory cytokines such as IL-6 and TNF-ɑ in
IPEC-J2 cells. This is consistent with a previous study as
reported that addition of ZnLA could decrease serum IL-6
concentration of grass carp to improve immunity. Recent
reports have proved that Zn plays a role in maintaining the
integrity of the intestinal mucosa through its function in T
cell generation and regulating inflammatory cytokines [50].

It has been reported that antioxidant enzyme activities
were partly related to the gene transcription, which were reg-
ulated by Nrf2/Keap1 signaling molecules [51]. In the pres-
ent study, ZnLA administration promoted Nrf2 nuclear
translocation and prevented the formation of the Nrf2/Keap1
complex, which resulted in the upregulation of antioxidant
gene expression. Bartolini et al. reported that the aggregation
of p62 enhanced its interaction with Keap1 and blocked the
degradation of Keap1 by autophagosomes, thus activating
the translocation of Nrf2 to the nucleus [52]. However, our
results showed that under H2O2 induction conditions, ZnLA
supplementation decreased the expression of p62 and Keap1,
while increasing the expression of Nrf2. It is possible that the
activated Nrf2 signaling pathway inhibited cell autophagy by
scavenging ROS, thereby forming an antioxidative stress
feedback pathway. Furthermore, there is another evidence
showing that activation of AMPK could alleviate oxidative
stress via the crosstalk between Nrf2 and AMPK signals
[28]. In our current study, Compound C, an AMPK inhibi-
tor, was used to inhibit the activity of AMPK and to investi-
gate the interaction between Nrf2 and AMPK. Our results
showed that under normal conditions, the protein expression
of phosphorylated AMPK was increased by ZnLA
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Figure 5: Effects of zinc lactate on cell apoptosis, mitochondrial ROS, and AMPK-Nrf2-p62 signaling pathway in H2O2-induced IPEC-J2
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administration, and when the activity of AMPK was inhib-
ited by Compound C, ZnLA treatment still led to a decreased
expression of nuclear Nrf2 protein. However, when Com-
pound C was removed, ZnLA administration could signifi-
cantly increase the expression of Nrf2 and decrease p62
protein expression in H2O2-induced IPEC-J2 cells. These
suggest that ZnLA might activate the AMPK-Nrf2-p62 sig-
naling pathway to alleviate oxidative stress in IPEC-J2 cells.
Zimmermann et al. showed that the activation of AMPK
could facilitate the nuclear translocation of Nrf2 and improve
mitochondrial respiratory metabolism in response to oxida-
tive stress [53]. This is consistent with our current results as
showed that ZnLA administration increased the Nrf2 nuclear
translocation and AMPK activity as well as cell respiration,
thereby promoting the expression of antioxidant-related
genes to eliminate excess mitochondrial ROS. These results
indicate that exogenous ZnLA may maintain redox balance
and mitochondrial function by activating the AMPK-Nrf2-
p62 signaling pathway in enterocytes.

5. Conclusions

This study provided evidence that the administration of
ZnLA has a better effect on promoting mitochondrial ROS
against oxidative stress, compared to ZnSO4 treatment. Fur-
thermore, ZnLA supplementation enhanced the activities
and expression of antioxidant enzymes, decreased proinflam-
matory cytokine secretion, and modulated mitochondrial
function by activating the AMPK-Nrf2-p62 pathway under
normal or oxidative stress conditions. The AMPK-Nrf2-p62
pathway activated by ZnLA could further regulate the resto-
ration of redox balance. The in vitro efficacy of ZnLA indi-
cated that it may be used in animal trials for the prevention
of oxidative stress. Our novel findings also suggested that
ZnLA, as a new feed additive for weaned piglets, has the
potential to be an alternative for an equivalent amount of
inorganic Zn.
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