
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Hughes AE, Griffiths D,
Troscianko J, Kelley LA. 2021 The evolution of

patterning during movement in a large-scale

citizen science game. Proc. R. Soc. B 288:
20202823.

https://doi.org/10.1098/rspb.2020.2823
Received: 11 November 2020

Accepted: 8 December 2020
Subject Category:
Behaviour

Subject Areas:
behaviour, evolution

Keywords:
motion dazzle, evolution, motion perception,

citizen science, genetic algorithms
Authors for correspondence:
Anna E. Hughes

e-mail: anna.hughes@essex.ac.uk

Laura A. Kelley

e-mail: l.a.kelley@exeter.ac.uk
†Previous address: Department of Physiology,

Development and Neuroscience, University of

Cambridge CB2 3EB, UK.
‡Previous address: Department of Psychology,

University of Cambridge, Cambridge

CB2 3EB, UK.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5251442.

© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
The evolution of patterning during
movement in a large-scale citizen
science game

Anna E. Hughes1,†, David Griffiths3, Jolyon Troscianko2 and Laura A. Kelley2,‡

1Department of Psychology, University of Essex, Wivenhoe House, Colchester CO4 3SQ, UK
2Centre for Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
3FoAM Kernow, Penryn TR10 8AE, UK

AEH, 0000-0003-2677-1965; LAK, 0000-0003-0700-1471

The motion dazzle hypothesis posits that high contrast geometric patterns
can cause difficulties in tracking a moving target and has been argued to
explain the patterning of animals such as zebras. Research to date has
only tested a small number of patterns, offering equivocal support for the
hypothesis. Here, we take a genetic programming approach to allow
patterns to evolve based on their fitness (time taken to capture) and thus
find the optimal strategy for providing protection when moving. Our
‘Dazzle Bug’ citizen science game tested over 1.5 million targets in a touch
screen game at a popular visitor attraction. Surprisingly, we found that
targets lost pattern elements during evolution and became closely back-
ground matching. Modelling results suggested that targets with lower
motion energy were harder to catch. Our results indicate that low contrast,
featureless targets offer the greatest protection against capture when in
motion, challenging the motion dazzle hypothesis.
1. Introduction
The high contrast, conspicuous patterns seen on animals such as zebras have
attracted a range of evolutionary explanations, including camouflage, thermore-
gulation, communication, and the avoidance of biting flies [1–7]. One hypothesis
that has received attention in recent years is the ‘motion dazzle’ hypothesis,
which proposes that these patterns may act to cause confusion when the
animal is in motion, causing illusions in the visual system of the viewer that
may lead to misjudgements of speed and direction [8].

There have been a number of studies that have provided support for the
motion dazzle hypothesis. For example, it has been shown that putative
dazzle patterns are relatively difficult for humans to ‘catch’ in a computer-
based touch screen game [9–11], and may also interfere with speed [12–14]
and direction [15] perception. There is also evidence that some orientations of
stripes can interfere with the ability to track one target within a larger group
[16–18]. Finally, modelling work has suggested that striped patterns may be
particularly prone to creating erroneous motion signals in the visual system,
which may underlie these types of behavioural effects [19].

Despite these findings, not all research has supported the motion dazzle
hypothesis. Some studies on humans have found that striped targets are easier
to capture than non-patterned targets [20,21], and moving cuttlefish have been
shown to preferentially display low contrast patterns [22]. Similarly, a recent
study using natural predators hunting patterned prey found no evidence for a
benefit of motion dazzle patterning compared to uniform colouration [23].
Some studies that have argued for an effect of motion dazzle patterning have
shown that there is no benefit in terms of capture success of striped patterning
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can you catch the camouflage try to catch the dazzlebugs as quickly as you can. These bugs
evolve over time to be harder to catch!

A game by

Figure 1. Figure showing screenshots from the game. Left: title screen. Middle: instructions presented to the participant. Right: the game in progress. Participants
could see the time remaining on the trial via the countdown clock in the top left-hand corner.
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over a luminance matched non-patterned target, suggesting
that the benefit of stripes may not be unique [9,11,12,21].

One potential limitation of previous studies is that they have
tested a relatively small range of patterns, often chosen arbitra-
rily. This means that it is not yet clear whether we have truly
discovered the optimal patterning type to provide protection
when in motion; it may be that there are more effective options
than those tested so far. However, the small-scale psycho-
physics-style experiments used to date make it difficult to test
large numbers of patterns. Even for striped targets, included in
all previous studies on motion dazzle, only a limited range
of spatial frequencies, contrasts, and orientations have been
tested. We, therefore, took a novel approach, using genetic pro-
gramming to allow the patterning of targets to ‘evolve’ across
generations in response to capture success [24–26]. In this way,
we can ask which patterning strategy is optimal, given the
almost infinite numberofpossiblepatternsthat canbegenerated.
Toobtain the large amount of data required for this approach,we
ran our experiment as a citizen science game (Dazzle Bug) in a
popular visitor attraction. Participants played the game by tap-
ping on the moving targets (bugs) with their finger as quickly
as possible in order to ‘catch’ them (figure 1). We ran a number
of replicates of the evolutionary process for three populations
of different speeds, to assess whether the optimal patterning
changes as a function of the target movement speed.

Our first aim was to demonstrate a fitness increase in our
experimental populations, which we defined as an increase in
the average capture time across generations. We did this by
comparing to a simulation run of the evolutionary algorithm,
using randomized capture times. We then investigated how
the target patterning changed across generations for different
speed populations, using image analysis to measure contrast
and the presence of stripes at different orientations. We also
looked at whether selection rates differed for the different
speed populations, using the Lande, Arnold, and Wade
framework [27–29], allowing us to consider how selection
pressure might vary across the generations. Finally, we
asked whether motion perception modelling can help to
explain our experimental results.
2. Methods
(a) Subjects
We did not collect any demographic data from participants. This
was to streamline participation in the study (which was con-
ducted in a busy exhibition space) and also because it would
be difficult to verify the accuracy of the information presented.
To overcome the limitations of being unable to account for par-
ticipant age, handedness, and gender, we collected a large
sample size of participants over many generations (1 554 935
targets were caught in total across the whole experiment,
involving approx. 75 000 participants).

(b) Experimental methods
The Dazzle Bug game was installed at the Eden Project
(St. Austell, UK) on a touch screen computer as part of an interac-
tive exhibition, and the data used were collected between May
2018 and January 2019. The game was coded in HTML5 canvas
(source code and images are available at https://github.com/fo-
am/dazzlebug/, DOI: 10.5281/zenodo.2560935) and is playable
online at dazzle-bug.co.uk/exhib.html (the online data are not
analysed in this paper). The screen had an area of 478 × 269 mm
and the screen resolution of the game was 1237 × 820 pixels. The
viewing distance of participants to the screen was approximately
60 cm (based on observing visitors playing the game). However,
we did not attempt to control this strictly because of the nature
of the event space, and because viewing distances would not be
standardized in a more naturalistic situation.

Thegamehada similar format tomanyprevious studies testing
motion dazzle effects [10,11,21] in that participants were presented
with a small rectangular target (75 × 100 pixels, or 29.0 × 38.6 mm;
visual angle 2.8 × 3.7°) which they had to try to ‘catch’ as quickly as
possible after it had appeared by touching it with their finger
(figure 1). Targets began their movement at a random position
on the screen and moved immediately upon presentation with a
linear trajectory. The angle of movement changed throughout a
trial, both at the edge of the target arena via reflection (to ensure
that the target remained visible to the participant) and randomly
throughout the movement (once every half a second, and when
an unsuccessful capture attemptwasmade; the newanglewas ran-
domly chosen to bewithin 90° of its previous angle). Targets could
be presented at one of three speeds, fast,medium, or slow (600, 450,
or 300 pixels per second, respectively, which equated to 231.8,
173.8, and 115.9 mm s−1 or 23.4, 17.6, and 11.7 deg s−1). These
speeds were similar to those used in previous studies [11,13–
15,20,21]. Eachparticipantwaspresentedwith a randommixof tar-
gets of all three speeds. Participants had 5 s to catch each target.
After the target had been caught, or the time-out limit had been
reached, the game would move automatically onto the next
target. A game consisted of 20 trials in total, with the targets
presented randomly selected from the current generation.

(i) Background photos
Targets were presented against one of 40 naturalistic background
photographs (e.g. grass, tree bark, or leaf litter). The background
was randomly selected on each trial (previous work using
similar images has shown that the effect of background type
on capture rates is small [21]). The photos were converted to
greyscale (with an average pixel value of 127).

(ii) Pattern generation
The patterns throughout the game were generated through a gen-
etic programming approach [24–26]. This does not attempt to
directly mimic biological evolution but is instead a method
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allowing the exploration of an unbounded parameter space in an
efficient manner, using algorithms inspired by natural selection
processes. The key principle is that the evolutionary process acts
to modify small ‘computer programs’ that specify the patterning
presented on each target, thus generating targets with patterns
based on complex manipulations of a set of starting images.
This allows a great deal of flexibility in the complexity of target
patterning and reduces artificial bounds on the evolutionary
space that can be introduced in more traditional genetic algorithm
methods [25]. For full details of the pattern generation process, see
the electronic supplementary material (S1).

(iii) Evolutionary process
Four replicates of the gamewere run, with each replicate containing
three separate populations for each speed (fast, medium, and slow)
that each evolved separately. The first generation of each population
contained 128 individuals thatwere completely randomlygenerated
in accordance with the pattern generation process detailed above.
These were then presented to players randomly until they had all
been played five times. At this point, each one was scored by aver-
aging the time taken to catch them, and this was used as a
measure of fitness (i.e. targets that took longer to catch had higher
fitness). Normalization of participant times or removing censored
data (i.e. trials on which the target had not been caught) was not
possible due to the design of the evolutionary algorithm. The
bottom half of the generation based on this measure of fitness was
removed from the population. The top 64 targets were copied with
no mutation to form one half of the new generation, and then
copied again with a small probability of mutation to form the
other half (see electronic supplementary material, S2 for full details
of the mutation process). This type of ‘overlapping replacement’ is
thought to perform best, and allows the best bugs from each
generation to be tested against newly introduced individuals [30].

The exact number of generations tested varied between repli-
cates because each participant was randomly assigned to one
replicate, and because not all replicates were run simultaneously.
Replicate 1 had 89 generations, replicate 2 had 87 generations,
replicate 3 had 45 generations, and replicate 4 had 46 generations
(each replicate was started and ended manually, leading to
different numbers of generations.)

(iv) Control model
We ran a control model to confirm that any systematic patterning
changes seen during the real gamewere due to directional selection,
rather than drift or biases within the genetic programming algor-
ithm. This was set-up identically to the real experiment, except that
instead of participants playing the game, the computer randomly
selected a ‘capture time’ for each target in each generation, based
on a lognormal distribution using the mean and standard deviation
of each population in the real experiment (as individual clicks were
not recorded in our experimental data, we estimated the variance of
each individual trialbymultiplying thevarianceof the ‘bug-level’ fit-
ness by the number of plays of each bug, e.g. by 5, reflecting the fact
that the ‘group-level’ variance was calculated by dividing by the
sample size). The null model was run for 40 generations.

(c) Pattern quantification
We analysed the patterning of the targets using custom-written
scripts in ImageJ (v. 1.51 k) [31]. This script first calculated the
mean, minimum, and maximum luminance of each target, and
the standard deviation of the luminance. We also calculated the
contrast of the target as the coefficient of variance in luminance
(the standarddeviationdividedby themean).We thenusedconvo-
lutional Gabor filtering methods that allow the measurement of
different angles at different spatial frequencies to determine the
strength of these signals on the targets in a biologically plausible
way [32–35]. We analysed four angles (vertical, horizontal, and
two diagonal stripes) each at four different spatial frequencies
(sigma values of 2, 4, 8, and 16 pixels, or 5.6, 2.7, 1.4, and
0.7 cycles/deg). The spatial frequencies were chosen to align well
with the peak of the human contrast sensitivity function [36–38].
Fourangleswere selected for theGabor filteras this is theminimum
number required to capture all relevant angle information [39]. For
each of these conditions, we calculated the standard deviation of
Gabor-convolved pixel values as a measure of the ‘energy’ at that
particular angle and spatial frequency. Finally, we also measured
the standard deviation of Gabor-convolved pixel values for a rec-
tangle covering the edge (with a width equal to sigma) at an
angle orthogonal to the edge for all four edges of the target (top,
bottom, left, and right). This allowed us to investigate whether
the placement of patterning has an effect on fitness; for example,
it has been suggested that stripes on the leading edge of a target
may redirect capture attempts posteriorly [13].

(d) Statistical analysis
Data analysis was run in R (v. 4.0.3) [40] and linear mixed models
were fittedusing lme4 (v. 1.1–25) [41].Weused onlydata frombugs
that were attempted at least five times, and we also removed any
impossible reaction times (e.g. those above the time-out threshold;
thesewere rare, and including them in the analysis didnot alter any
of the main conclusions). We expected many of the patterning
measures to be autocorrelated and therefore we reduced the
numberof variables bydeterminingwhichwere the best predictors
of capture time using a model selection approach via linear mixed
modelling. This gave us a total of five pattern metrics (one each for
luminance, vertical stripes, diagonal stripes, and an ‘edge’metric).

Based on residual plots, we used the natural logarithm of fit-
ness as our dependent variable in our statistical models. First, we
generated a linear model of fitness across generations (with popu-
lation, i.e. target speed as a fixed effect and replicate as a random
intercept) to test whether there was a change in fitness across
generations. For this model, we used all the experimental data.

For the remaining analyses, we used the first 40 experimental
generations in each replicate only. We compared the change in fit-
ness of our targets across generations for both the Eden project data
and the null data, allowing us to test whether fitness improved in
our experimental population compared to a null baseline. This
was done by extending the previous model to include a variable
which coded whether the data point belonged to an experimental
or a control population. We next tested whether there were differ-
ences in how our five patterning measures had changed in the
experimental and the null populations using cumulative link
models with generation as an ordinal dependent variable and the
patterning measure, the ‘control/experimental’ variable, and the
interaction between them as the independent variables.

Finally, we analysed whether there were any differences in
selection rates for thedifferent speedpopulations in the experimen-
tal population. To do this, we used the Lande, Arnold, and Wade
framework [27–29] to calculate linear selection rates (β) for each
of the five patterning measures within each population. β gives a
measure of selection pressure across the generations, allowing us
to determine which phenotypic characteristics were experiencing
strong selection pressure andwhen.Weused these to test for differ-
ences in linear selection rates between different speed populations
and over evolutionary time (generations). Full details of all statisti-
cal analysis (including tables of unstandardized effect sizes for all
models) are available in the electronic supplementarymaterial (S3).

(e) Motion modelling methods
Motion modelling was carried out using a MATLAB imple-
mentation of a motion model using a two-dimensional array of
correlation-type elementary motion detectors (as described in
[42] and available at https://github.com/AdamPallus/2dmd)
[19,43,44]. For each ‘fast’ bug in generation 0 (512 bugs in total)
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we generated a short movie where the bug initially moved on an
upwards trajectory and then rotated to move on a trajectory 15°
to the right (see electronic supplementary material for an
example). We used the generation 0 bugs as these should display
a wide range of randomly selected pattern types, and the ‘fast’
population as selection seemed to be strongest on these targets,
suggesting that we should see the largest differences in fitness
for this population. Details of the model parameters and set-up
are provided in the electronic supplementary material (S4).

The model outputs were a measure of motion direction (theta)
and magnitudes (radius) for each pixel in each frame of each
video. For each video, several circular statisticsmetrics were calcu-
lated from these outputs (after removing zeros, corresponding to
places in the imagewhere nomotion signal was observed). Firstly,
the mean resultant length of the circular direction data (theta) was
calculated. This is a statistic between 0 and 1 that gives infor-
mation of the spread of a circular variable, and thus gives a
measure of motion coherence [45]. Secondly, the average vector
length was calculated as a measure of motion energy. Finally,
the bias was calculated by taking the difference between the circu-
lar mean (i.e. the average direction) and the ‘veridical’ trajectory of
the target (assumed to be the average of the two directions the
target moved in during the trial). All circular statistics were calcu-
lated using CircStat [46]. Details of the statistical analyses are
provided in the electronic supplementary material (S4).
3. Results
(a) Is there a fitness increase for the experimental

populations, and does this differ from the null
population?

Figure 2 shows there were clearly large differences in fitness
(capture speed) among populations, with the fast bugs being
hardest to catch, followed by the medium bugs, and then
finally the slow bugs (χ2 = 50892.85, p < 0.001). There was a
considerable level of noise in the data, which is to be expected
given the wide range of participants and fast reactions
required. Nevertheless, there was also a significant increase
in fitness across generations (χ2 = 208.72, p < 0.001). Increases
were often particularly obvious in the early generations of
the game. The experimental data also show a significant
difference in fitness change compared to the null data (inter-
action between dataset and second-order effect of generation:
χ2 = 118.959, p < 0.001). The experimental data shows an
initial increase that flattens off (electronic supplementary
material, figure S4); using predictions from the model, there
is an approximately 170 ms increase in fitness in the
experimental fast population in the first 10 generations, com-
pared to a 30 ms increase in the control fast population.
We, therefore, have evidence for a small fitness increase in
our experimental population, suggesting that selection is
occurring to optimize patterning types.
(b) How does bug patterning change in the
experimental and null populations?

All four populations of evolving bugs demonstrated a loss of
pattern information over the generations—converging on
uniform background-matching colours (figure 3, top)—while
the control populations maintained their pattern diversity
(figure 3, bottom). Quantifying this using our five most infor-
mative patternmeasures (figure 4) shows that there are always
clear differences between how the pattern measures change in
the experimental condition compared to the control condition
(interaction between experimental/control condition and
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pattern measure for cumulative link models—standard
deviation of bug luminance: χ2 = 36283.7, p < 0.001; verti-
cal stripes: χ2 = 36460.1, p < 0.001; horizontal stripes: χ2 =
36909.5, p < 0.001; diagonal stripes: χ2 = 36395.6, p < 0.001;
right edge: χ2 = 36857.6, p < 0.001). Broadly, there always
seems to be an overall decrease in pattern complexity in the
experimental case, whereas there is much more variability in
the control condition.
(c) Are there differences in selection rate for each speed
population?

The data allow us to determine the main selection pressures
operating on each population of bugs within each genera-
tion (normalized linear selection rates (β)), so that we can
assess whether pressures change over evolutionary time.
Differences in selection rates across generations (i.e. the poly-
nomial term for generation was significant) were seen for
luminance (F = 6.336, p = 0.002), vertical stripes (χ2 = 13.516,
p = 0.001), and for diagonal stripes (F = 3.472, p = 0.032).
There was no evidence for difference in selection rates for
both the horizontal stripe (χ2 = 1.628, p = 0.443) and the
right edge measures (χ2 = 5.703, p = 0.058).

The standard deviation of the luminance of the bugs
appears to be particularly important for the ‘fast’ population;
there is strong selection pressure particularly in early gener-
ations, and this differs from the selection rate seen in the
‘medium’ and ‘slow’ populations (figure 5; fast-medium
comparison: t =−3.189, p = 0.004; fast-slow comparison:
t =−3.504, p = 0.001; medium-slow comparison: t =−0.315,
p = 0.947). For vertical stripes, there is some evidence for
stronger selection pressure for medium compared to slow
bugs (t =−2.482, p = 0.036), and for horizontal stripes, there
is evidence for stronger selection pressure for fast compared
to slow bugs (t =−2.456, p = 0.038). For all other patterning
parameters, there were no significant differences between
the different speed populations (diagonal stripes—F = 0.954,
p = 0.386, right edge—χ2 = 5.687, p = 0.058).
(d) Can motion modelling help to explain the
experimental findings?

According to previous modelling work [19], we would expect
targets to produce strong motion illusions if they are both
highly coherent (the motion vectors produced tend to be in a
highly similar direction) and biased (the average trajectory of
the motion vectors is quite different from the ‘veridical’ direc-
tion of the target). In our model, we found a significant
interaction between coherence and bias in predicting the fit-
ness of targets (F = 5.985, p = 0.015). When visualizing the
most coherent targets there appears to be an increase in fitness
as the bias increases, in line with previous predictions [19]. In
addition, the targets with the highest bias also tended to be
relatively stripy and high contrast (bugs with higher bias
had both higher standard deviations of luminance F =
10.844, p = 0.001, and levels of vertical stripes F = 35.688, p <
0.001) again suggesting that these ‘motion dazzle’ type
patterns might be expected to create illusory motion signals.

However, these results do not seem to explain our
evolutionary findings, where we saw a strong tendency for
targets to become lower contrast and non-patterned. A
second metric from our motion modelling is the motion
energy, which can be conceptualized as how salient or visible
the motion is. Here, there is a very different relationship with
fitness, as can be seen in figure 6 (bottom), with low motion
energy targets (that tend to be low contrast and have little pat-
terning) having higher fitness than those with higher motion
energy (that tend to have high contrast and strong patterning)
(F = 4.939, p = 0.027; F = 4.988, p = 0.026 if datawere not filtered
to exclude cases with a circular mean difference of greater than
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6°). Bugs with higher mean vector lengths had both higher
standard deviations of luminance (F = 1171.8, p < 0.001) and
levels of vertical striping (F = 545, p < 0.001).
4. Discussion
Using a large-scale evolutionary citizen science game, we
found no evidence that putative ‘motion dazzle’ patterning
can offer protection when in motion. Despite predictions
that high contrast, geometric patterning should cause visual
illusions that make targets harder to catch, we found that the
targets consistently evolved to become less patterned and
lower contrast. This happened for all speeds tested and all
replicates of the experiment, although these changes seemed
to occur more quickly in populations with faster speeds.
While the increase in fitness was small in absolute terms, it
reflected an approximately 10-fold increase in capture time
compared to a null model. In addition, fast reactions are
often seen in the context of predator–prey reactions (e.g. cuttle-
fish prey seizure time is approx. 60 ms [47], and praying
mantis show escape responses to bat predators in approx.
114 ms [48]), highlighting that our findings are biologically
plausible. Motion modelling suggested that these results
could be a consequence of the motion energy of the stimulus,
as this was correlated with capture time, with lower motion
energy targets being more difficult to catch. Our results have
important consequences for our understanding of the evol-
ution of stripes, and for how animals should best protect
themselves from capture when in motion.

Our results are perhaps surprising in the context of most
literature on motion dazzle to date, which has suggested that
stripes seem to be relatively difficult to catch or can cause illu-
sions of speed or direction perception [9–12,14–18]. However,
we note that there has indeed been plenty of evidence in the
literature for uniform grey patterns also being relatively diffi-
cult to catch, and in some cases perhaps even harder than
striped targets. For example, grey targets seem to survive
similarly or better than striped targets in capture studies
[9,11,12,21]. Similarly, in tracking tasks, low contrast parallel
stripes were found to be more difficult to track than high
contrast parallel stripes [18], arguing against a motion
dazzle explanation. Recent work has also suggested that in
some cases striped patterns are only difficult to catch when
the targets are moving sufficiently quickly to blend via the
‘flicker-fusion’ effect into uniform grey [49]. An average
striped target in our game would have had a temporal fre-
quency of approximately 30 Hz, below the range of human
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achromatic flicker-fusion thresholds, which are thought to be
between 35 and 60 Hz [50,51], suggesting they would not
have benefited from a flicker-fusion effect. Our results, there-
fore, suggest that uniform grey targets had a survival
advantage over other types of target patterning, leading
them to become fixed as the optimal strategy in all our
populations, regardless of speed or replicate number.

Motion modelling has previously suggested that stripes
should create erroneous motion signals that are both highly
coherent and biased [19], implying striped prey should be
more difficult to catch. However, to our knowledge, modelling
results have not previously been compared to behavioural
data. Our large dataset, therefore, offers a perfect opportunity
to study whether the motion modelling results do indeed cor-
relate with capture times. In support of the motion dazzle
hypothesis [19], we do indeed find that highly coherent and
biased targets tend to be more difficult to catch than less
biased coherent targets, and that the most biased and coherent
targets are often stripy. However, this clearly does not explain
the results we see in the evolutionary game. We thus con-
sidered another metric that can be calculated from motion
models, namely the motion energy, and found that this also
correlated with capture success. Targets with low motion
energy (that tended to be uniform grey) were harder to catch
than targets with high motion energy (that were much more
high contrast and patterned).

Why does reducing motion energy seem to be a better
predictor of the outcomes in our evolutionary games com-
pared to motion dazzle strategies which maximize the bias/
coherence metric? We speculate that motion energy is a very
consistent signal; regardless of the trajectory of the bug or
the speed, the targets with low visibility will be harder to
catch than those that are highly visible. This is likely due to
both increased difficulty in tracking, and also increased diffi-
culty in detecting the target, and may reflect the fact that
these targets are often low contrast and may ‘blur’ into the
background.We suggest that stripes may reduce tracking abil-
ity more than detection and thus any effects may be much
more dependent on the particular orientation of the stripes,
given that the most effective striped targets appeared to
have relatively similar dominant orientations (figure 6, top),
and previous studies have shown orientation dependence
for the effects of striped targets [16–18,21]. Small mutations
affecting the rotation of striped patterns could, therefore,
potentially cause large changes in fitness, potentially making
striped patterns a relatively unstable evolutionary strategy
compared to uniform grey in our experiment. For this
reason, the randommovement of the targets in our experiment
may have further reduced the fitness of striped patterning.
Given that real striped animals, such as zebras, are unable to
change course so rapidly, it would be interesting for future
experiments to explore whether targets moving with a more
consistent trajectory are more likely to evolve striped patterns.

We used three different speed populations in order to
assess whether there were differences in the patterns that
evolved. As expected, we found that there were strong differ-
ences in capture difficulty for different speed populations,
with fast targets being the hardest to capture, but we did not
find evidence for there being differences in the target pattern-
ing that evolved, with all populations becoming uniform grey.
This is in agreement with previous work suggesting that there
is no interaction between target speed and prey patterning
[11], at least for speeds below that needed to create a ‘flicker-
fusion’ effect. However, we did find increased selection in
‘fast’ populations, particularly early on in the evolutionary
process for the contrast measure and later on for the vertical
stripe measure. This may simply reflect the higher difficulty
of these targets, which is likely to give awider range of capture
times and thus offer more variation for selection to operate on,
potentially exaggerating the selection process.
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Genetic algorithms are complex and there are many differ-
entways to implement them [24–26].We, therefore, carried out
control experiments using simulated reaction time data with
similar average distributions to the real data, helping us to
rule out explanations of our results based on algorithmic
biases or genetic drift. Our results show clearly that selection
pressures do indeed operate in our game and that the
change towards grey targets does not simply reflect drift.
However, while our set-up allowed us to explore a very
wide range of pattern types, it is possible that different algor-
ithms could produce different targets and thus perhaps
different results. For example, our targets were rarely highly
asymmetric (although this was possible). Recent research has
suggested that stripes may be particularly effective at misdir-
ecting capture attempts when they are placed on the anterior
of a target [13], suggesting that an interesting direction
for future work could be to allow the algorithm to specify
different genes (and thus different patterning) for different
parts of the target. Further speed manipulations could also
be of interest; in particular, it would be instructive to compare
the patterns that evolve on moving targets to those that evolve
on stationary ones [10,52]. It is also possible that other aspects
of the visual environment that we did not test in the current
experiment could influence the relative efficacy of different
strategies, such as the level of target occlusion. Finally, future
studies could test the possibility of stripes serving multiple
functions (such as distance-dependent protective colouration
for aposematism and camouflage [53]).

Our experiment used human participants, in line with
the majority of studies in this area. Of course, in the natural
world, the viewing animals might have very different visual
systems to humans, and the viewing conditions would also
likely be quite different from the current experimental set-
up. We removed colour cues from our experiment, as it is
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well known that different species have very different colour
perception [54,55], although motion vision is generally
thought to be predominantly achromatic [56–58]. However,
there is also large variability in the perception of temporal
changes across different species [59] which we could not ade-
quately compensate for in this experimental set-up. Despite
this, ourmain conclusions broadly agreewith previous studies
carried out on non-human predators and prey [22,23]. How-
ever, it would of course be highly instructive to carry out
similar experiments with non-human animal participants to
determine whether the results we report here are more
widely generalizable.

Overall, we find limited evidence for motion dazzle effects
in a citizen science evolutionary game, which we believe is the
most comprehensive test of this hypothesis to date. Stripes
were able to cause motion illusions and reduce capture times
in some scenarios, meaning that there may still be specific
cases where motion dazzle can be at least part of an expla-
nation for the evolution of striped patterns. However, our
results suggest that uniform grey targets appear to be a
more stable optimal solution.
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