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Abstract: It is estimated that 360,000 patients have suffered from heart failure (HF) in Taiwan, mostly
those over the age of 65 years, who need long-term medication and daily healthcare to reduce the
risk of mortality. The left ventricular ejection fraction (LVEF) is an important index to diagnose the
HF. The goal of this study is to estimate the LVEF using the cardiovascular hemodynamic parameters,
morphological characteristics of pulse, and bodily information with two machine learning algorithms.
Twenty patients with HF who have been treated for at least six to nine months participated in this
study. The self-constructing neural fuzzy inference network (SoNFIN) and XGBoost regression
models were used to estimate their LVEF. A total of 193 training samples and 118 test samples were
obtained. The recursive feature elimination algorithm is used to choose the optimal parameter set.
The results show that the estimating root-mean-square errors (ERMS) of SoNFIN and XGBoost are
6.9 ± 2.3% and 6.4 ± 2.4%, by comparing with echocardiography as the ground truth, respectively.
The benefit of this study is that the LVEF could be measured by the non-medical image method
conveniently. Thus, the proposed method may arrive at an application level for clinical practice in
the future.

Keywords: heart failure; left ventricular ejection fraction; cardiovascular hemodynamic parameter;
morphological characteristic of pulse; machine learning

1. Introduction

The body relies on the pumping action of the heart to deliver blood with rich oxygen
and nutrients to the cells to maintain its functions. When the heart cannot supply enough
blood to the cells, the body will feel weak and short of breath. Then, people will have
difficulty performing some daily activities such as climbing stairs, carrying groceries, and
even walking [1]. Heart failure (HF) means that the heart does not pump properly. Most
patients with HF are associated with abnormal heart contraction and relaxation because
their hearts have myocardium hypertrophy and fibrosis. The diagnostic methods for HF
usually use the cardiac biomarker (B-type natriuretic peptide, BNP), and the performance
of heart contraction indicated by the left ventricular ejection fraction (LVEF) [2].

LVEF is defined as the ratio of stroke volume (SV) to end diastolic volume (EDV) of
the left ventricular, which is a measurement of change in the contractility under conditions
of constant load [3]. In the clinical practices for LVEF measurement, the medical image
methods include two or three-dimensional echocardiography, nuclear imaging, cardiac
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computed tomography, and cardiac magnetic resonance imaging [4]. The two-dimensional
echocardiography is the most popular method among them. All of these methods are
expensive and available only in medical settings. If the HF patients are not carefully treated,
their mortality approaches 50% within five years. How to measure the heart contractility
every day conveniently at home will be a challenging topic and beneficial for patients
with HF.

The cardiovascular circulative system could be described by the Windkessel model
that shows the relation between the blood pressure (BP), cardiac output (CO), and sys-
temic vascular resistance (SVR) [5–7]. The BP, SV and CO are fundamental measures of
cardiovascular functions, and are essential for accurate understanding of cardiovascular
pathophysiology, and the guidance of fluid mechanics [8]. Liu et al. used the pulse con-
tour of the brachial artery based on the Windkessel model to estimate the SV values for
55 subjects and compared to the echocardiography. The results showed a high correlation
coefficient of r = 0.693 [9]. Liu et al. also used this method to measure the changes of SV
before and after the passive leg raising test for 24 subjects and compared to the impedance
cardiography. The results showed a higher correlation coefficient of r = 0.842 [10]. More-
over, the pulse contour analysis (PCA) includes the time and pressure parameters of the
heart’s pumping action [11–14], which could be used to evaluate the characteristics of the
cardiovascular system, such as blood pressure, blood flow, left ventricular ejection time,
vascular stiffness, etc. However, some studies showed that the CO measured by PCA could
not be recommended to assess the CO values of HF patients whose heart has a different
load and EDV conditions [15,16].

Machine learning (ML) algorithms have been widely used in physiological measure-
ments for estimating the physiological parameters, such as blood pressure [11,17], muscle
mass [18], calories [19,20], glucose [21], stroke volume [22], classifying the signal qualities
of electrocardiogram [23] and photoplethysmogram [24,25], detecting arrythmia [26] and
risky activities in daily life [27]. When using an ML method to process the regression
or classification problem, searching the major features and finding the appropriate ML
algorithms will depend on the collected data [28,29]. The feature processing is an important
issue, which can directly affect the performance of the ML algorithm. The more accurate the
features, the higher performance of the ML algorithm. Although some traditional statistical
analysis methods have good results for clinical prediction in some cases, ML methods
reignite the interest in exploiting these fields [30,31].

HF patients in the treatment not only need the drug to control their blood pressure,
relax the walls of blood vessels, and reduce the heart rate [32], but also have to change
their life style in prevention and management of hypertension, which include the sodium
restriction, alcohol restriction, body weight reduction, smoking cessation, proper diet,
and exercise adoption [33]. Thus, they need an apparatus to monitor their heart function
every day. However, the blood pressure monitor is the only apparatus for the HF patients
currently. In this study, we propose a novel machine learning-based method to estimate
LVEF using the physiological parameters including cardiovascular, morphological, and
bodily information.

2. Materials and Methods

The goal of this study is to use the ML method for estimating the LVEF of HF patients
with the cardiovascular hemodynamic parameters, morphological characteristics of pulse
and bodily information. There were twenty patients who participated in this study. They
all had chronic HF disease, and had been treated for many years. The LVEF measured
by two-dimension echocardiography was used as the ground truth to evaluate the perfor-
mance of the proposed method. A special blood pressure monitor not only measured the
hemodynamic parameters, but also recorded eight seconds of the blood pressure signal [10].
Thirty-three parameters were acquired. We used the optimal feature selection algorithm to
search the important parameters as the input features to two ML algorithms, XGboost [34]
and self-constructing neural fuzzy inference network (SoNFIN) [35], to estimate the LVEF.
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Figure 1 shows the framework in this study. A blood pressure monitor could measure
ten hemodynamic parameters and record the blood pressure signal [9,10]. A decision rule
for the signal quality was designed to select the pulse waves with good quality. The PCA
was used to extract ten hemodynamic parameters and seventeen morphological parameters
from the high-quality pulses [24]. Six parameters of bodily information were included. The
optimal parameters were determined by the recursive feature elimination (RFE). Finally,
two ML models used these parameters to estimate the LVEF.
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Figure 1. The framework of estimating LVEF in this study includes collecting 33 parameters, extract-
ing optimal features by RFE, and estimating LVEF by ML regression.

2.1. Cardiovascular Hemodynamic Parameters

Liu et al. proposed a pulse contour method to measure the cardiac hemodynamic
parameters, which was implemented in a blood pressure monitor (iBP-130, Biostart, Tai-
wan) [9,10]. This apparatus has two sensors measuring the cuff pressure and pumping
air flow. The digital pressure and flow sensors are FPS 520 and FDF 400 (Formosa Mea-
surement Technology Inc. Ltd., Taipei city, Taiwan). The pressure signal is filtered by two
infinite impulse response filters with the different bandwidth for the oscillometric blood
pressure measurement and pulse contour analysis. The bandwidths of the filters are 0.3 Hz
to 4 Hz for the blood pressure measurement, and 0.3 Hz to 20 Hz for PCA. The sampling
rate was 125 Hz. Figure 2 shows the measurement procedure of this apparatus, including
the building of the cuff model [36], oscillometric measurement [37], and PCA [9]. The signal
of the cuff pressure is shown in Figure 2a, and its filtered signal is shown in Figure 2b. In
the inflating duration (about 10 s), the compliance (C) of the brachial artery is measured. In
the deflating duration, the heart rate (HR), systolic blood pressure (SBP), diastolic blood
pressure (DBP), pulse pressure (PP) and mean artery pressure (MAP) are measured by the
oscillometric method (about 25 s). In the duration of PAC (about 8 s), the SV is measured.
The CO is obtained by multiplying HR and SV. These hemodynamic parameters are also
normalized by the body surface area (BSA), including the stroke volume index (SI), and
cardiac output index (CI). Thus, ten hemodynamic parameters are totally acquired.

2.2. Morphological Parameters of Pulse

In the duration of PCA, the pulse wave is easily coupled with the artificial motion
when the cuff pressure is held at about 55 mmHg. The pulse quality would affect the
accuracy of physiological measurement [24,38,39]. Thus, we proposed a decision rule to
evaluate the quality of each pulse wave in the duration of PCA. Then, the morphological
parameters of the pulse with a good quality were extracted.

2.2.1. Pulse Quality Analysis

Figure 3 shows the flowchart of the pulse quality analysis. In the first phase, each
pulse wave is segmented and four characteristic points are determined, including main
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peak (Tsys), foot (Tdia), dicrotic notch (Tdic), and systolic ending time (Tinst), as shown in
Figure 4a [26,40]. Four parameters, pulse wave amplitude (PWA, Figure 4b), pulse wave
duration (PWD, Figure 4c), systolic duration (SD, Figure 4d), and ratio of systolic and
diastolic durations (SD/DD, Figure 4e), are defined. In the second phase, two decision
rules are used to determine the quality of each pulse by the four parameters. Figure 5
shows the flowchart of decision rule (I) based on the four parameters. If one rule is true,
the quality of this pulse wave is poor. Figure 6 shows the flowchart of decision rule (II) that
finds the change of three parameters of neighbor pulses. n represents the current pulse,
and n-1 represents the previous pulse. If one rule is true, the quality of this pulse wave
is poor. In the third phase, the quality of each pulse is defined. Figure 7 shows a pulse
signal that includes seven heart beats. When the baseline is wandering, the four pulses
are marked as the poor qualities (low level). The other three pulses are marked as the
good qualities (high level). Only the pulses with good qualities were used to detect the SV
and morphological parameters. The same types of pulse parameters were averaged as the
values of this measurement.
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Figure 3. The flowchart of pulse quality analysis. Phase 1 is the pulse segmentation and the four
characteristics determination. Phase 2 is to apply the decision rules for evaluating the pulse quality.
Phase 3 is to mark the quality of each pulse.

2.2.2. Morphological Parameters

The pulse wave was calibrated by the blood pressure as the blood pressure wave.
According to the four characteristics, we defined three different integral areas of the pressure
wave under the three different durations, as shown in Figure 8. The left ventricular ejection
time (LVET) is defined at the systolic ending time (Tinst), the integral area of which is A1,
as shown in Figure 8a. The ejection relaxation time (ER) is defined at the dicrotic notch time
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(Tdic), the integral area of which is A2, as shown in Figure 8b. The total area is defined as
A3, as shown in Figure 8c.
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When the heart contracts, the volume of the left ventricle has an absolute relationship
with these area and time-related parameters [12]. In order to improve the predictive
performance of the models, we extended these parameters through ratios. Table 1 shows
the four different ratios, time to time, time to area, area to time, and area to area. There are
ten parameters. Moreover, Romano’s method proposed a pressure wave profile as changes
of pressure with time along each cardiac cycle [12], P/t,

P/t =
Psys − Pdia2

Tsys
+

Pdic
Tdia2 − Tdic

− Pinst
Tdia2 − Tinst

(1)

Table 1. The ten extended parameters including four different ratios, time to time, time to area, area
to time, and area to area.

Ratio Parameter Ratio Parameter

Time to Time
LVET/HD

Area to Area
A1/A

ER/HD A2/A

Time to Area
LVET/A1

Area to Time
A1/LVET

ER/A2 A2/ER
HD/A A/HD

Thus, the total number of morphological parameters is 17.

2.3. Bodily Information

The BSA has a high relation with the total body water [41], which is usually used to
normalize the CO and SV for reducing the individual difference [42]. Moreover, body mass
index (BMI) describes a normal range of the relation between weight and height. A higher
BMI could reduce the recovery of LVEF for the HF patients [43,44]. In this study, six bodily
parameters, including gender, age, height, weight, BMI and BSA, were used.

2.4. Features Extraction and Regression

In total, 33 parameters were used to estimate the LVEF by two supervised regression
approaches, XGboost and SoNFIN. In order to reduce redundancy of the features. The
RFE was used to search the optimal parameter set as the input feature to estimate the
LVEF [18,45].

2.4.1. Features Extraction

All training samples were used to evaluate the optimal parameters. In order to
reduce the flag problems like overfitting or selection bias, the RFE uses the five-fold
cross validation. The RFE fitted the XGboost model that did not perform the adjustment
of optimal parameters to remove the weakest parameters until reaching the specified
number of parameters. All features were ranked by root-mean-square error (ERMS), and
by recursively eliminating a parameter with the lowest ERMS per loop. The lower the
impact feature, the lower the change of ERMS. Thus, RFE could eliminate the parameters
with the dependencies and collinearity existing in the model. Table 2 shows the ERMS
under the different number of parameters for the lowest three ERMS. We find that the nine
parameters, SBP, CI, CO, C, A1/A, DBP, ER/HD, MAP, BSA, has the lowest ERMS. Thus,
these parameters are the feature to search the optimal parameter of XGBoost and estimate
the LVEF.

2.4.2. XGBoost

XGBoost is a gradient boosting tree model that integrates many tree models to form a
strong classification and regression tree (CART) [46]. The CART assumes that the tree is
a binary tree and divides the features continuously. For example, the current tree node is
split based on the i-th input variable xi, and the samples with the variable less than s are
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divided into the left subtree (R1), and the samples larger than s are divided into the right
subtree (R2),

R1(i, s) = {x|xi ≤ s} and R2(i, s) = {x| xi > s}. (2)

Table 2. The lowest three ERMS under the different number of parameters.

Number Parameter ERMS (%)

9
SBP, CI, CO, C, A1/A, DBP, ER/HD, MAP, BSA 5.80

LVET, Pt, SBP, SV, C, HR, ER/HD, MAP, BSA 6.53
SBP, SV, CI, CO, C, HR, ER/HD, MAP, BSA 6.59

8
Pt, SBP, A2/A, HR, HD, ER/HD, MAP, BSA 6.34

Pt, SBP, SV, C, HR, ER/HD, MAP, BSA 6.42
SBP, SV, C, HR, DBP, ER/HD, MAP, BSA 6.45

7
SBP, SV, C, DBP, ER/HD, MAP, BSA 6.43
SBP, SV, CI, C, ER/HD, MAP, BSA 6.54

Pt, SBP, SV, HR, ER/HD, MAP, BSA 6.70

6
SBP, CI, C, R/HD, MAP, BSA 6.42

SBP, C, DBP, ER/HD, MAP, BSA 6.48
SBP, C, HR, ER/HD, MAP, BSA 6.51

5
SBP, SV, HR, HD, MAP 6.51
Pt, SBP, SV, HR, MAP 6.51

SBP, C, ER/HD, MAP, BSA 6.54

The CART essentially divides the sample space in the feature dimension, and the
optimization of this space division is a NP-complete problem. The objective function
generated by a typical CART is,

∑xi∈Rm
(yi − f (xi)

2), (3)

where f is a nonlinear function, yi is the i-th target output. Therefore, we solve the best
divisive feature i and the best divisive point s by minimizing the objective function,

min
j,s

[min
c1

∑xi∈R1(j,s)(yi − c1)
2 + min

c2
∑xi∈R2(j,s)(yi − c2)

2], (4)

where C1 and C2 are the results of the branch. The theorem of XGBoost is to continuously
add trees and continuously perform feature splitting to grow a tree. Each time a tree is
added, it is actually learning a new function to fit the residual of the last prediction. When
we obtain N trees after training, we need to predict the score of a sample. In fact, according
to the characteristics of this sample, each tree will fall to a corresponding leaf node. One
leaf node corresponds to a score. The total scores corresponding to all trees represent the
predicted value of the sample.

The grid-search method was used to find the optimal parameters of XGBoost. Table 3
shows the range of each parameter and its step. The final results were that the learning
rate is 0.07, maximum depth is 3, minimum child weight is 5, gamma is 0.2, subsample is 1,
subsample ratio is 1, reg_alpha is 0, and reg_lambda is 0.

Table 3. In the grid-search method, the ranges of each XGBoost parameter and their steps.

Parameters Range Step Final Value

Learning rate (0.01, 0.2) 0.01 0.07
Maximum depth (2, 5) 1 3

Minimum child weight (1, 10) 1 5
gamma (0.0, 1.0) 0.1 0.2

subsample (0.0, 1.0) 0.1 1
subsample ratio (0.0, 1.0] 0.1 1

reg_alpha (0.0, 1.0) 0.1 0
reg_lambda (0.0, 1.0) 0.1 0
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2.4.3. Self-Constructing Neural Fuzzy Inference Network

SoNFIN is a 5-layer fuzzy neural network. The fuzzy model of SoNFIN can be
represented by the following expression [25]:

Rule j : If x1 is A1j and · · · and xn is Anj

Then, yj is w0j + ∑n
i=1 wijxi

where Aij is a fuzzy set, and w0j + ∑n
i=1 wijxi is the traditional Takagi–Sugeno–Kang model.

The five layers are described in detail as follows.
Layer 1: Each node in this layer corresponds to one parameter of feature. Thus,

the number of input nodes is nine. The input feature is transmitted forward to the next
layer directly:

u(1)
i = xi (5)

Layer 2: For the fuzzy set Aij, a Gaussian membership function is used to describe the
degree that the input variable xj belongs to the i-th fuzzy set. Its mathematical function is
defined as follows:

u(2)
ij = exp(

−[u(1)
i −mij]

2

σ2
ij

) (6)

where mij and σij are the center and width of the membership function, respectively. This
function is implemented by each node.

Layer 3: A node in this layer represents one fuzzy logic rule and performs precondition
matching of a rule. We employ the multiplication in each Layer 3 node:

u(3)
j = ∏i u(2)

ij (7)

Layer 4: Nodes in this layer are called the consequent nodes. The linear association of
weights in this layer is as follows:

u(4)
j = u(3)

j (w0j + ∑n
i=1 wijxi) (8)

Layer 5: Each node in this layer corresponds to one output variable. The node
integrates all the actions recommended by Layer 5 and acts as a defuzzifier by the equa-
tion below:

u(4)
j = u(3)

j (w0j + ∑n
i=1 wijxi) (9)

In the training phase, SoNFIN performs the structure training and parameter training,
concurrently. Initially, there were no rules in the SoNFIN. For the structure training, a
default value, H, was used as a criterion for the generation of fuzzy rules. When the output
of Layer 3 was below to H for every rule, a new rule was generated. Therefore, more rules
were generated for a smaller value of H. The initial width of each Gaussian fuzzy set was
assigned to a default value, σ. To train the parameters, the objective is to minimize the error
function (Verror),

Verror = (y− o)2 (10)

where y is the target output. The consequent part and the fuzzy-set parameters were tuned
by a recursive least-squares method and a gradient-descent method, respectively. The
details of the training algorithm were found elsewhere [35]. In the study, the default H and
σ were set to 10−15 and 0.008. The learning rate was set to 0.005.

2.5. Statistical Analysis

The root-mean-square error (ERMS) and coefficient of determination (R2) were used to
evaluate the performance of this study. ERMS is an index to find the difference between the
estimated value and target value, which is described below,
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ERMS =

√
1
n ∑n

i=1(yi − ŷi)
2 (11)

where n is sample number, y is the target value, and ŷ is the estimated value. The coefficient
of determination in statistics represents the proportion of the variance in the dependent
variable predicted from the independent variable, which indicates the level of variation in
the given data set.

R2 = 1− ∑i(yi − y)2

∑i(yi − ŷi)
2 (12)

where y is the mean of all samples.

2.6. Data Collection

In this study, there were twenty patients (male: 16, female: 4) with the symptoms of
heart failure who had been measured the LVEF by the 2D echocardiography (Philips IE33,
Philips Healthcare, Netherlands, US) at least three times. The interval between two LVEF
measurements was at least one month apart. In general, these patients were hospitalized,
whose blood pressures were measured by the iBP-130 blood pressure monitor, concurrently.
These data were used as the training samples. Moreover, they also only measured the blood
pressure some other days. These data were used as the testing samples. Their age was
between 39 and 84 years (66.8 ± 13.7 years, mean ± standard deviation), body weight (BW)
was between 41 and 98 Kg (62.4 ± 11.8 Kg), body height (BH) was between 154 and 174 cm
(163.4 ± 5.8 cm), SBP was between 135 and 79 mmHg (110.8 ± 11.8 mmHg), and DBP was
between 38 and 83 mmHg (68.9 ± 10.2 mmHg). Table 4 shows the basic characteristics of
20 patients. The data collection protocol was approved by the Research Ethics Committee
of Chang Gung Medical Foundation Institutional Review Board (No. 201701357B0C602),
Taipei, Taiwan.

The number of training samples was 193 sets. The number of testing samples was
118 sets. In the training samples, the LVEF measured by echocardiography was the target
output. However, in the testing samples, because patients did not measure the LVEF by the
echocardiography, there were not real target outputs. We hypothesized that the change of
LVEF was slow within one year. Therefore, during two inpatient treatments, the testing
target outputs were estimated by linear interpolation of the training target outputs.

Table 4. The basic characteristics of twenty patients.

Patient Gender Age (Years) BH
(cm)

BW
(kg)

SBP
(mmHg)

DBP
(mmHg)

1 M 39 174 72 79 38
2 M 77 164 54 109 61
3 M 62 166 66 116 67
4 M 68 165 98 109 82
5 M 64 160 77 106 83
6 M 78 168 67 135 76
7 M 79 168 59 99 61
8 M 48 175 73 99 67
9 F 84 156 53 121 63
10 M 67 166 61 93 64
11 M 79 167 59 133 72
12 M 82 158 56 115 73
13 M 80 162 59 127 64
14 F 54 155 41 116 73
15 M 79 159 63 115 72
16 M 69 168 66 107 69
17 M 67 161 63 107 70
18 M 66 154 54 103 62
19 F 49 162 51 111 79
20 F 44 160 57 117 82

3. Results

The training model used the five-fold cross validation to evaluate the performances.
The model with the best result was used to estimate LVEF. In testing results, we estimated
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the LVEF values of each patient within six or nine months. The Bland–Altman plots were
used to compare the performance of SoNFIN and XGBoost models.

3.1. Training Models

For SoNFIN, ERMS is 12.79 ± 4.07%, and R2 is −1.77 ± 1.83. The training (blue) and
validation (orange) curves of ERMS and R2 are shown in Figure 9a,b, separately. When the
number of epochs is 125, ERMS and R2 for validation have the lowest value, 7.61% and
−0.28. However, we find that the ERMS and R2 approach to a stable status when the number
of epochs is 300. Therefore, we chose the model at 300 epochs. For XGBoost, ERMS is
17.94 ± 0.99%, and R2 is 0.02 ± 0.11. The training (blue) and validation (orange) curves
of ERMS and R2 are shown in Figure 10a,b, separately. When the number of epochs is 74,
ERMS and R2 for validation have the lowest value, 6.11% and 0.18. However, we find that
the ERMS and R2 approach to a stable status when the number of epochs is 100. Therefore,
we chose the model at 100 epochs.
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3.2. Testing Models

Table 5 shows the estimated LVEF values of 20 patients by the SoNFIN and XGBoost
within three intervals. The numbers of testing samples in the three intervals are 55, 33
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and 30 sets, respectively. Six patients have two intervals only. The ERMS of SoNFIN
and XGBoost are 6.9 ± 2.3% and 6.4 ± 2.4%. For SoNFIN, the ERMS of patient 5 has the
smallest value, 3.15%, and patient 9 has the largest value, 10.10%. For XGBoost, the ERMS
of patient 1 has the smallest value, 2.05%, and patient 10 has the largest value, 11.13%.
Bland–Altman plots for SoNFIN and XGBoost are shown in Figure 11. The mean and
standard deviation (mean ± sd) of the differences were 0.56 ± 7.27% and 0.58 ± 7.24% for
SoNFIN and XGBoost, respectively. We find that the means of two models are close, and all
data are within the limits of agreement, although there are five data for SoNFIN and three
data for XGBoost fall outside of the limitations, as shown in Figure 11.
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Table 5. The ERMS of estimated LVEF for 20 patients by SoNFIN and XGBoost within three intervals.

Patient Interval I
(N)

Interval II
(N)

Interval III
(N)

SoNFIN XGBoost

ERMS (%)

1 2 1 6.60 2.05
2 0 3 1 4.12 6.09
3 3 3 5.07 6.06
4 7 1 2 4.24 3.93
5 1 0 2 3.15 2.5
6 3 1 2 6.63 6.88
7 1 1 2 9.21 10.58
8 3 0 2 8.36 6.71
9 1 3 10.10 7.07
10 6 1 2 9.44 11.13
11 0 2 5 4.81 4.65
12 3 2 7.40 7.57
13 3 1 2 8.85 8.2
14 5 2 2 7.04 6.95
15 3 1 2 9.38 8.94
16 2 0 2 10.08 6.33
17 4 1 2 6.41 7.13
18 2 5 2 8.88 9.67
19 4 3 3.74 4.9
20 2 2 4.56 5.37

Sum
mean ± sd 55 33 30 6.9 ± 2.3 6.4 ± 2.4

Note: N indicates number of samples.

4. Discussion

In this study, we used the hemodynamic parameters, morphological parameters of
pulse and bodily information to estimate the LVEF with the machine learning algorithms.
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In Table 2, the nine parameters, SBP, CI, CO, C, A1/A, DBP, ER/HD, MAP, and BSA, have
the best performance. In these parameters, six parameters belong to the cardiovascular
hemodynamics, two parameters are the characteristics of pulse contour, and the body
information has one. The area (A1) under the systolic duration of the blood pressure
wave is proportional to SV, and the total area (A) is proportional to EDV [47]. Moreover,
the ED is the time of heart ejection, and HD is the time of heart beat. The A1/A and
ED/HD parameters are considered proportional to the ratio of SV and EDV under the
pressure and time scales. The pressure parameters including the SBP, DBP, and MAP
have the high relation with LVEF [48]. The SBP lower than 120 mmHg is associated with
reduced cardiac ejection fraction (HFrEF) in coronary arteries. In this study, the statistical
analysis for the SBP and DBP of patients were 110.8 ± 11.8 mmHg and 68.9 ± 10.2 mmHg,
respectively. Thus, the blood pressure parameters were the important feature to estimate
the LVEF. Moreover, the CO and CI represent the function of heart blood flow. The lower
CI, the lower LVEF [33]. We found that the compliance (C) of peripheral artery was also
an important parameter for estimation of LVEF. An increase in inflammatory markers is
found in HF patients, which is a condition characterized by chronic low-level inflammation,
and would sustainably affect the cardiovascular function [49,50]. The patients in this study
were the chronic HF, so the compliances of their peripheral arteries would be stiff. BSA
is a more accurate indicator of a metabolic mass that is estimated as a fat-free mass [51].
Thus, BSA usually is used as the normalization of hemodynamic parameters. Thus, the
nine parameters are in line with the LVEF pathophysiology.

The reduced LVEF is a good characteristic of HF, which is also an index for the effective
therapies for HF patients [52]. In ESC HF guidelines in 2016, the mid-range LVEF (HFmrEF)
of HF is defined as LVEF 40–49% [53]. Then, according the ranges of LVEF, there are four
HFrEF categories, LVEF < 20%, 20–25%, 26–34% and 35–39%. Thus, a categorical range
of HFrEF is decreasing by about 5% to 10%. The ERMS values of SoNFIN and XGBoost
for the LVEF estimation were 6.9 ± 2.3% and 6.4 ± 2.4%, which just were on the range
boundary. We thought that three reasons could be discussed. Firstly, the target outputs of
testing data were not measured by the echocardiography, which also were estimated by
the interpolation method between two LVEF values by the echocardiography. Secondly,
the patients in this study not only had the chronic HP, but also had the other chronic
diseases, like as diabetes, kidney disease, or atherosclerosis, etc. These diseases would
affect the changes of the nine parameters. Thus, the estimated model would have a better
performance if the model is made by the personal data. Thirdly, the number of samples is
too few. The numbers of training and testing samples were only 193 and 118. If there are
more samples, the performance of our proposed method will be better.

The coefficients of determination (R2) for the SoNFIN and XGBoost were −0.77 ± 1.83
and 0.02 ± 0.11, which is close to 0. This meaning is the estimated value closing to the
average value of samples. We examined the all data, and found that variability of LVEF is
low because the patients had the chronic HF and were treated for a long time. Their heart
functions were controlled well by the drug and diet. Figure 12 shows the estimated LVEF
for the lowest (patient 5, Figure 12a) and highest (patient 9, Figure 12b) ERMS values by
SoNFIN. The blue points are the LVEF measured by the echocardiography, green points are
the estimated LVEF of training model, and red points are the estimated LVEF of the testing
model. The variability of LVEF for patient 9 is larger than patient 5. Figure 13 shows the
predicted LVEF for the lowest (patient 1, Figure 13a) and highest (patient 10, Figure 13b)
ERMS values by XGBoost. The variability of LVEF for patient 10 is larger than patient 1.

As LVEF is assumed to be a measure of myocardial contractility for the long-standing,
it could be used to evaluate the heart function of HF patients [3]. However, the widespread
classification of patients with HF is based on whether LVEF is preserved (HFpEF) or
reduced (HFrEF). For the HFpEF, patients have the HF signs and symptoms, but LVEF
would be larger than 45% or 50% [52]. In this study, the participated patients all belonged
to HFrEF, whose LVEF values were not larger than 50%. Thus, the first limitation was the
proposed method only for patients with reduced HF. Moreover, we did not recruit healthy
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subjects without the signs and symptoms of HF and whose LVEF values were greater than
50%. Therefore, we could not distinguish the measurement deviation between healthy and
unhealthy groups. That is the second limitation for this study.
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5. Conclusions

The LVEF is an important index to evaluate the heart function of HF patients, and is
usually measured by the medical image method. This study proposed a cheaper method
using the cardiovascular hemodynamic parameters, morphological parameters of pulse,
and bodily information to estimate LVEF with the machine learning algorithms. Based
on the RFE, the optimal nine parameters, SBP, CI, CO, C, A1/A, DBP, ER/HD, MAP, and
BSA, were explored, which all conform the LVEF pathophysiology. Although the ERMS
of estimated LVEF was satisfactory enough, the number of samples does not support the
performance of our method arriving to an application level for clinical practice. In the
future, we will collect more data to improve our method.
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