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Checking the models about the ongoing Coronavirus Disease 2019 (COVID-19) pandemic 
is an important issue. Some famous ordinary differential equation (ODE) models, such 
as the SIR and SEIR models have been used to describe and predict the epidemic trend. 
Still, in many cases, only part of the equations can be observed. A test is suggested to 
check possibly partially observed ODE models with a fixed design sampling scheme. The 
asymptotic properties of the test under the null, global and local alternative hypotheses 
are presented. Two new propositions about U-statistics with varying kernels based on 
independent but non-identical data are derived as essential tools. Some simulation studies 
are conducted to examine the performances of the test. Based on the available public data, 
it is found that the SEIR model, for modeling the data of COVID-19 infective cases in 
certain periods in Japan and Algeria, respectively, maybe not be appropriate by applying 
the proposed test.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Since December 2019, a new infectious disease called the Coronavirus Disease 2019 (COVID-19) has spread worldwide, 
resulting in an ongoing pandemic. To help understand the characteristic of this epidemic and to act suitably to reduce 
its risk, numerous studies have been done by using several approaches to estimate the sizes of the COVID-19 infected 
populations in different countries and regions and further predict their trends (e.g., Lin et al. (2020); Altieri et al. (2021); 
Yang et al. (2020); Tian et al. (2020)). The modeling methods of ordinary differential equations (ODEs) are popularly used by 
using the mechanisms behind the data, including the Susceptible-Infectious-Removed (SIR) model, the Susceptible-Exposed-
Infectious-Removed (SEIR) model, and several other variants. Note that we may only have part of the model equations 
observed from the public data. This is often the case in practice. Thus, in this paper, we particularly pay attention to such 
models.
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Consider a general d-dimensional ODE model as

X ′(t) =

⎡⎢⎢⎣
dX1(t)

dt
...

dXd(t)
dt

⎤⎥⎥⎦=
⎡⎢⎣ f1(t, X(t); θ)

...

fd(t, X(t); θ)

⎤⎥⎦= f (t, X(t); θ), t ∈ [t0, T ], (1)

with an initial condition X(t0) = x0. Here F = { f (·; θ) : θ ∈ � ⊂ Rq} is a given parametric family of functions. The ODE 
system is commonly observed with noise as

Yij = X j (ti) + εi j, i = 1, . . . ,n, j ∈ O = {d1, . . . ,do},
where d1, . . . , do are chosen from 1, 2, . . . , d and o ≤ d. The measurement error εi satisfying E(εi) = 0 has a nonsingular 
variance-covariance matrix �εi , and is independent with ε j for j �= i. If o = d, the ODE system is fully observed, otherwise 
is a partially observed ODE system, where only a small subset of components can be measured (Dattner (2015)).

Using ODE models to describe dynamic processes can estimate parameters with particular relevance and conduct further 
statistical analysis. However, an important issue is whether the assumed ODE model rightly describes the measurement data. 
For instance, we may want to know whether an SEIR model is good enough to model real COVID-19 infective population 
data for a period of time. If not, we may have to be careful to use the results from the statistical analysis. Thus, a model 
checking for the assumed ODE model should be accompanied. Given a certain parametric family F , the hypotheses we 
consider are formally stated as

H0 : X ′(t) = f (t, X(t); θ0) ∈ F versus H1 : X ′(t) /∈ F, (2)

where θ0 is an unknown parameter vector.
The hypothesis testing problem (2) is a model specification testing problem. Some relevant tests, usually under random 

design, concerning regression model specification are built by using nonparametric estimations, and thus are called the 
local smoothing tests. Some literature, such as Fan and Li (2000), points out that local smoothing methods are sensitive 
to alternative models which are oscillating/highly frequent than global smoothing methods in general. Examples contain 
Härdle and Mammen (1993), Zheng (1996), Koul and Ni (2004) and Lavergne and Patilea (2012). Some others are based 
on residual-marked empirical processes and the average over an index set. Then they are called the global smoothing tests. 
Examples include Stute (1997), Stute et al. (1998a), Stute et al. (1998b), Zhu (2003) and Khmaladze and Koul (2004). These 
tests can better detect smooth alternative models. However, testing for ODE models specification still receives less attention. 
For testing the hypotheses in (2), Hooker (2009) proposed a goodness-of-fit test based on estimated forcing functions. It has 
an exact null distribution under the normality assumption on independent components and the homoscedasticity structure 
on error terms. It may have difficulty controlling the size when the above assumptions do not hold. As known from the 
qualitative theory of differential equations, an ODE model often has a periodic non-constant solution, which is called a 
limit cycle. Thus, the original function X(t) often oscillates. See Hirsch et al. (2013) as a good reference. This phenomenon 
suggests that local smoothing tests for model checking should be more appropriate than global smoothing tests. Liu et al. 
(2021) constructed a local smoothing test under more relaxed assumptions on error terms and gave its asymptotic properties 
with a random design. Their trajectory matching-based test, written as T Mn , takes advantage of the solution trajectory of 
the ODE system. We note that the good theoretical results of T Mn rely on a random design sampling scheme. The sample 
(ti, Yi)’s are independent and identically distributed (i.i.d.), thus the limiting properties can be derived by using the existing 
theory of U-statistics. But for ODE systems such as the epidemic model, the variable t usually represents time, and the 
response is measured at certain time points in practice. Therefore, it is suitable to treat t1, · · · , tn under fixed design rather 
than i.i.d. random design. The test T Mn that is based on this non-i.i.d. sequence of (ti , Yi)’s needs to be investigated to see 
its usability.

In this paper, we give a modification of T Mn with a fixed design and study the respective properties under the null, local 
and global alternatives. Without notational confusion, we still write it as T Mn . We then check the SEIR model for two real 
COVID-19 data sets. Since the sample (ti, Yi) are still independent in the case of fixed design, we also consider U-statistics 
with varying kernels based on independent but not identically distributed random variables by giving two new propositions 
concerning degenerate and non-degenerate U-statistics.

The paper is organized as follows. In Section 2, we will present some general asymptotic properties of U-statistics. 
Section 3 will contain the construction of the test T Mn and its asymptotic properties. Section 4 will include some simulation 
results. In Section 5, we will use the proposed test to check whether a classic SEIR model is tenable for describing the 
tendency of COVID-19 infective cases from 15 January to 29 February, 2020 in Japan and from 25 February to 18 April, 
2020 in Algeria respectively. A summary and a brief discussion will be given in Section 6. The technical proofs will be 
relegated to Appendix.

2. U-statistics with varying kernels

The theory of U-statistics with i.i.d. random variables has been well developed (see Hoeffding (1948); Lee (1990)). For U-
statistics with varying kernels, Powell et al. (1989) established the asymptotic equivalence of a U-statistic and its projection 
2
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when the U-statistic is non-degenerate. In degenerate case, Hall (1984) proved a central limit theorem, showing that a 
second order U-statistic has a limiting normal distribution under some regularity conditions. Fan and Li (1996) and Fan and 
Li (1999) extended Hall’s result to more complicated cases. However, the theory of U-statistics with varying kernels based 
on independent but non-identically distributed data remains unknown. We then study the asymptotic properties of both 
degenerate and non-degenerate U-statistics in the non-i.i.d. scenarios.

Consider a second order U-statistic Un:

Un =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

hn
(
zi, z j

)
,

with the kernel hn
(
zi, z j

)
that varies with the sample size n. Recall that {zi, i = 1, . . . ,n} is an independent but non-identical 

sample. Assuming the expectation of hn
(
zi, z j

)
exists for every zi and z j , we define

rnj (zi) =E
{

hn(zi, z j) | zi
}
, θni j = E

{
rnj (zi)

}= E
{

hn
(
zi, z j

)}
,

rn (zi) =
(

n − 1

1

)−1∑
j �=i

E
{

hn(zi, z j) | zi
}
,

θni =E {rn (zi)} , θn =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

θni j,

Ûn =θn + 2

n

n∑
i=1

{rn (zi) − θni} .

Ûn is the first order projection of Un . If var(Ûn) = 0, the U-statistic is degenerate, otherwise is non-degenerate. The follow-
ing proposition is for the non-degenerate case, which is exactly a generalization of Lemma 3.1 of Powell et al. (1989).

Proposition 2.1. Suppose Un is non-degenerate. If E
∥∥hn

(
zi, z j

)∥∥2 = o(n) for every zi and z j , then 
√

n
(

Un − Ûn

)
= oP (1).

Since Un and Ûn are asymptotically equivalent, we can use this proposition to establish the asymptotic normality of a 
non-degenerate U-statistic by using the central limit theorem.

For a degenerate Un , we assume Un is centered without loss of generality. Denote Gni(z j, zk) = E{h(zi, z j)h(zi, zk) | z j, zk}. 
We state the following result that is a generalization of Theorem 1 of Hall (1984) to the non-i.i.d. case.

Proposition 2.2. For every zi , z j and n, suppose rnj (zi) = E
{

hn(zi, z j) | zi
}= 0 almost surely and E

{
h2

n(zi, z j)
}

< ∞, if as n → ∞∑
2�i1�i2�n

∑
1� j1<k1�i1−1 E

{
Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}+ n
∑n

i=2
∑i−1

j=1 E
{

h4
n

(
zi, z j

)}[∑n
i=2
∑i−1

j=1 E
{

h2
n
(
zi, z j

)}]2

→ 0,

then

n2 · Un/2

⎡⎣ n∑
i=2

i−1∑
j=1

E
{

h2
n

(
zi, z j

)}⎤⎦1/2

is asymptotically standard normal.

3. The test with fixed design

3.1. Test statistic construction

We first define the fixed design sampling scheme.

Condition 1. The sample points t1, · · · , tn are fixed. There exists a distribution P (t) with the corresponding density function p(t) such 
that

sup |Pn(t) − P (t)| = O (n−1),

t

3
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where Pn(t) is the empirical distribution of (t1, · · · , tn). The density function p(t) is bounded away from 0 and ∞. The first derivative 
of p(t) is bounded and continuous.

This condition is used to establish the asymptotic equivalence between the empirical distribution of t1, · · · , tn and a given 
distribution P (t), which is commonly used in fixed design sampling (Xue et al. (2010)). Hereafter we denote Et {g(ti)} =∫

g(t)p(t)dt .
Denote F (t; θ) as the unique solution trajectory of the ODE system X ′(t) = f (t, X(t); θ). By using the trajectory F (t; θ), 

we can convert the hypothesis testing problem (2) to the problem of checking the vector function X(t) = F (t; θ0) for some 
θ0 ∈ � ⊂ Rq .

The following construction is a modification of the test proposed by Liu et al. (2021) that is for the problem with random 
design. Let ηik = Yik − Fk(ti; θ∗) with θ∗ = arg minθ Et[E{∑k∈O |Yik − Fk(ti; θ)|2}] be the residual of the k-th component. 
Under H0, ηik = εik and E(ηik) = 0 leads to Et [E {ηik E(ηik)p(ti)}] = 0, while under H1, E(ηik) = Xk(ti) − Fk(ti; θ) �= 0, and 
Et[E{ηik E(ηik)p(ti)}] = Et[{E(ηik)}2 p(ti)] > 0. At the sample level, we can use eik = Yik − Fk(ti; θ̂ ) as an estimator of ηik

with the nonlinear least-squares estimator θ̂ = arg minθ

∑n
i=1
∑

k∈O {Yik − Fk (ti; θ)}2. Then, for each observed component 
k, we construct a test statistic that is the sample analogue of Et [E {ηik E(ηik)p(ti)}] as follows:

Vnk = 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
eike jk,

where h is the bandwidth parameter and K (·) is the kernel function. Vnk is in spirit similar to the test proposed in Zheng 
(1996). We compose all o tests to form a vector Vn = (Vnd1 , . . . , Vndo

)� . The final test statistic is constructed by aggregating 
all the components of Vn:

T Mn = n2hV �
n (�̂)−1 Vn,

with a normalized symmetric matrix �̂:

�̂ = 2

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K 2
(

ti − t j

h

)
(ei � e j)(ei � e j)

�,

where ei = (eid1 , . . . , eido

)� and � means the element-wise product of two vectors.

3.2. Asymptotic properties

To investigate the asymptotic properties, we first give certain regularity conditions.

1. εi , i = 1, . . . , n satisfy E(εi) = 0. They have nonsingular variance-covariance matrix �εi . εi is independent with ε j for every j �= i.
2. All partial derivatives of X ′(t) up to 2 with respect to X and t are existent and continuous.
3. K (·) is a nonnegative, bounded, continuous and symmetric function with 

∫
K (u)du = 1.

4. For all 1 ≤ k ≤ d, E(y4
ik) is continuously differentiable and bounded by a measurable function b(t) with E(b2(ti)) < ∞.

5. The parameter space � is a convex compact subset of Rq .
6. Fk(t; θ) is a Borel measurable real function on R p for each θ and is twice continuously differentiable with respect to θ for each t .
7. For all k = d1, · · · , do, we have

Et
{

supθ∈� F 2
k (t; θ)

}
< ∞,

Et

{
supθ∈�

∥∥∥ ∂ Fk(t;θ)
∂θ

∂ Fk(t;θ)

∂θ�
∥∥∥}< ∞,

Et

(
E
[

supθ∈�

∥∥∥{Yk − Fk(t; θ)}2 ∂ Fk(t;θ)
∂θ

∂ Fk(t;θ)

∂θ�
∥∥∥])< ∞,

Et

(
E
[

supθ∈�

∥∥∥{Yk − Fk(t; θ)}2 ∂2 Fk(t;θ)

∂θ∂θ�
∥∥∥])< ∞.

8. Et[E{∑do
k∈O |Yik − Fk(ti; θ)|2}] takes a unique minimum at θ∗ ∈ �.

9. The matrix Et

{∑do
k∈O

∂ Fk(ti ;θ0)
∂θ

∂ Fk(ti ;θ0)

∂θ�
}

is nonsingular.

Condition (1) is basic. Condition (2) assumes that the ODE system has a unique solution trajectory. The commonly used 
requirement for the kernel function is put in Condition (3). Conditions (4)-(9) are standard for the nonlinear least squares 
estimation, which is similar to the conditions given in White (1981), and Xue et al. (2010).
4
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It can be shown that Vn and �̂ are asymptotic U-statistics with non-i.i.d. observations. Thus we use Propositions 2.1 and 
2.2 in Section 2 to derive their asymptotic properties. The limiting null distribution of T Mn and its consistency under the 
global alternatives are stated in the following theorem.

Theorem 1. Given Conditions (1)-(9), if h → 0 and nh → ∞, then

1. Under the null hypothesis H0,

T Mn → χ2
o , in distribution,

where T Mn = n2hV �
n �̂−1 Vn, and χ2

o is the chi-square distribution with o degrees of freedom.
2. Define an o × o matrix �′ with the (k1, k2) element, and

�′
k1k2 =2

∫ [
σdk1dk2(t) + {Xdk1 (t) − Fdk1

(
t, θ∗)} {Xdk2 (t) − Fdk2

(
t, θ∗)}]2 p2(t)dt

×
∫

K 2(u)du,

k1, k2 = 1, · · · , o. Then under the global alternative H1,

T Mn/(n
2h) → V ′��′−1 V ′, in probability,

where V ′ is an o-dimensional vector whose k-th component is equal to V ′
k = E

[{
Xdk (t) − Fdk (t; θ∗)

}2
p (t)

]
.

We also study the power performance of T Mn under the following sequence of local alternative hypotheses:

H1n : X(t) = F (t; θ0) + δn L (t) ,

with the bounded multiple response function L(t) and the departure parameter δn → 0. Then we give the following theorem 
which states the asymptotic power performance of T Mn under H1n .

Theorem 2. Given Conditions (1)-(9), if h → 0 and nh → ∞, then under H1n with n1/2h1/4δn → ∞,

T Mn/(n
2hδ4

n ) → μ��−1μ, in probability,

where μ is an o-dimensional vector with the i-th component

μi = E

⎛⎜⎝
⎡⎣Ldi (t) − ∂ Fdi (t; θ0)

∂θ� H−1
Ḟ

E

⎧⎨⎩
do∑

k∈O
Lk (t)

∂ Fk (t; θ0)

∂θ

⎫⎬⎭
⎤⎦2

p(t)

⎞⎟⎠ .

Particularly, if δn = n−1/2h−1/4 ,

T Mn → χ2
o (λ), in distribution,

where χ2
o (λ) is the noncentral chi-squared distribution where the noncentrality parameter λ = μ��−1μ with �k1k2 = 2 

∫
K 2(u)du ×∫ {

σdk1dk2 (t)
}2

p2(t)dt.

The results show that the test has a typical rate n−1/2h−1/4 existing local smoothing tests can achieve to detect local 
alternatives converging to the null model.

4. Simulations

We conduct five simulation examples to evidence the performance of T Mn in finite sample scenarios. In Example 1, the 
null ODE system is linear. Examples 2 - 4 respectively use three nonlinear ODE models as the null models, which have been 
often used in economic, neuroscience and ecology. Example 5 reconsiders the above four models but with partially observed 
ODE systems. In this example, we assume that we only have the data of the second component. Furthermore, we consider 
both independent and highly correlated components of the error terms for each example.

For the ODE models used in the examples, the variable t can be designed time point taking values t1 = 1/n, t2 =
2/n, · · · , tn = 1. With this fixed design, we apply the test T Mn for each cases. As a comparison, the test proposed by 
Hooker (2009) is computed as the competitor.

Given the ODE models, the trajectory F (t; θ0) is obtained by using the 4-stage Runge-Kutta algorithm such that we have 
the respective models Y (t) = X(t) +ε(t). The error terms with independent components εi , i = 1, . . . , n independently follow 
5
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Table 1
Empirical sizes and powers in Example 1.

Model α 0 0.5 0 0.5 1 0 1
β 0 0 0.5 0.5 0 1 1

H11 with ε T Mn 0.043 1.000 0.819 1.000 1.000 1.000 1.000
T H 0.054 1.000 1.000 1.000 1.000 1.000 1.000

H12 with ε T Mn 0.053 1.000 0.990 1.000 1.000 1.000 1.000
T H 0.059 1.000 1.000 1.000 1.000 1.000 1.000

H13 with ε T Mn 0.063 1.000 1.000 1.000 1.000 1.000 1.000
T H 0.056 1.000 1.000 1.000 1.000 1.000 1.000

H11 with ε∗ T Mn 0.051 1.000 0.935 1.000 1.000 1.000 1.000
T H 0.071 1.000 1.000 1.000 1.000 1.000 1.000

H12 with ε∗ T Mn 0.051 1.000 0.998 1.000 1.000 1.000 1.000
T H 0.063 1.000 1.000 1.000 1.000 1.000 1.000

H13 with ε∗ T Mn 0.069 1.000 1.000 1.000 1.000 1.000 1.000
T H 0.072 1.000 1.000 1.000 1.000 1.000 1.000

the normal distribution N(0, σ 2
ε I2), where I2 is the identity matrix of size 2. Then the error terms with highly correlated 

components ε∗
i are made by ε∗

i = Aεi , where A =
[

0.9 0.5
0.5 0.9

]
. The initial values of ODE models are assumed to be known. 

We conduct 1000 experiments for each simulation case. The sample size is 300, and the significance level is 0.05.
To construct the test, we use the Matlab algorithm in OPTI Toolbox (Currie and Wilson (2012)) to get the nonlinear 

least-squares estimator θ̂ . The trajectory F (t; θ̂ ) is also obtained by utilizing the 4-stage Runge-Kutta algorithm. We choose 
the Epanechnikov kernel K (u) = 0.75 × (1 − u2) in the test construction. As for the choice of bandwidth h, we found a small 
h is helpful to ensure the asymptotic properties theoretically and makes the test has better performances in the simulations 
empirically. Thus we recommended a rate of n−2/5, which is faster than the optimal rate of n−1/5 for the kernel estimation. 
By the rule of thumb, the coefficient can be chosen as ν × (T − t0), where (T − t0) is the length of the whole time interval 
of the ODE model [t0, T ] and ν ∈ [0.05, 0.20]. In the following examples, the bandwidth is equal to h = 0.05 × n−2/5. To 
compute Hooker (2009)’s test T H , the demonstration code given in the supplementary materials of that paper was revised 
to make it feasible to handle the cases with unknown parameters.

Example 1. Data sets are generated from the following ODE models:

H11 : X ′(t) =
[ dX1

dt

dX2
dt

]
= τ

[
aX1 + 0.4αcos(aX1)

aX1 + b X2 + 0.08βcos(aX1 + b X2)

]
,

H12 : X ′(t) =
[ dX1

dt

dX2
dt

]
= τ

[
aX1 + 0.1α(aX1)

3

aX1 + b X2 + 0.0002β(aX1 + b X2)
3

]
,

H13 : X ′(t) =
[ dX1

dt

dX2
dt

]
= τ

[
aX1 + 2αexp(aX1)

aX1 + b X2 + 0.5βexp(aX1 + b X2)

]
.

Three cases are considered in this example. In each case, the linear null ODE model is added with one kind of disturbance 
term to form alternative ODE models. From the above ODE models, it can be seen that α = 0 and β = 0 correspond to the 
null hypothesis, otherwise to the alternative hypotheses. To transform the arbitrary length of sample time interval to 1, 
we induce a timescale parameter τ . The true parameter is set to be (a, b) = (−0.06, −0.24) and the initial values are 
(X1(0), X2(0)) = (5, 5). We choose τ = 10 and σε = 0.05. The empirical sizes and powers are reported in Table 1, where ε
and ε∗ denote error terms with independent and highly correlated components, respectively. The rows with T Mn and T H

show the values of our test and Hooker’s test with a fixed design.
With the two kinds of error terms, the results show that the trajectory matching-based test T Mn maintains the signifi-

cance level when both α = 0 and β = 0. It also has very good powers with all of the alternative models. The performances 
of T H are also good with the independent components of error terms. T H has good powers with dependent components of 
error terms, yet its empirical sizes are relatively larger than the significance level consistently under the three null models.

Example 2. Data sets are generated from the following ODE model:

H2 : X ′(t) =
[ dX1

dt

dX2

]
= τ

[
aX1 + 0.04αcos(X1)

b X2/3
1 X1/3

2 + 0.04βcos(X2)

]
.

dt

6
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Table 2
Empirical sizes and powers in Example 2.

Model α 0 0.5 0 0.5 1 0 1
β 0 0 0.5 0.5 0 1 1

H2 with ε T Mn 0.043 0.491 0.776 0.946 1.000 1.000 1.000
T H 0.051 1.000 1.000 1.000 1.000 1.000 1.000

H2 with ε∗ T Mn 0.042 0.609 0.898 0.838 1.000 1.000 1.000
T H 0.100 1.000 1.000 1.000 1.000 1.000 1.000

Table 3
Empirical sizes and powers in Example 3.

Model α 0 0.5 0 0.5 1 0 1
β 0 0 0.5 0.5 0 1 1

H3 with ε T Mn 0.049 0.844 0.301 1.000 1.000 0.999 1.000
T H 0.052 1.000 1.000 1.000 1.000 1.000 1.000

H3 with ε∗ T Mn 0.047 0.645 0.263 0.995 1.000 0.988 1.000
T H 0.108 1.000 1.000 1.000 1.000 1.000 1.000

Under the null hypothesis, the model is called the Solow growth model, which is popular to describe long-run economic 
growth. In this model, X1 and X2 represent the labor and capital respectively. We choose the true parameters (a, b) =
(0.1, 0.3), (X1(0), X2(0)) = (1, 3), τ = 10, σε = 0.05. We report the empirical sizes and powers in Table 2.

For this nonlinear ODE model, it can be seen that T Mn also has good powers and sizes with a fixed design. T H has 
superior performances when the components of the error are independent. It shows larger powers than T Mn . However, in 
the dependent error components case, it cannot maintain the significance level. This is not surprising because T H requires 
the condition of independent components on the derivation of the null distribution.

Example 3. The data sets are generated from the following ODE model:

H3 : X ′(t) =
[ dX1

dt

dX2
dt

]
= τ

⎡⎣ a(X1 + X2 − X3
1

3 ) + 0.2αX1 X2

− X1+b X2−c
a + 0.04β X1 X2

⎤⎦ .

The null model is the famous FitzHugh-Nagumo ODE model (FitzHugh (1961); Nagumo et al. (1962)) in neuroscience, 
which describes the behavior of spike potentials in the giant axon of squid neurons. Following Ding and Wu (2014), the true 
parameter is (a, b, c) = (3, 0.2, 0.34), τ = 10, σε = 0.05, and the initial values are (X1(0), X2(0)) = (1, −1). The empirical 
sizes and powers are reported in Table 3.

T Mn still works very well in all cases. Similar to Example 2, T H performs well in the independent error components 
case, but fails to work in the dependent error components case.

Example 4. Data sets are generated from the following ODE models:

H3 : X ′(t) =
[ dX1

dt

dX2
dt

]
= τ

[
aX1 + b X1 X2 + 0.016αX2
c X2 + dX1 X2 + 0.02β X1

]
.

The null ODE is called the Lotka-Volterra model in ecology, which is designed for modeling the evolution of prey-
predator populations (Lotka (1910); Volterra (1928); Goel et al. (1971)). Following Brunel (2008), we set the true parameters 
(a, b, c, d) = (1, −1.5, −1.5, 2), (X1(0), X2(0)) = (1, 2), τ = 10 and σε = 0.05. The empirical sizes and powers are summa-
rized in Table 4. This model favors T H which can have much higher power than T Mn , where both of them can hold the 
significance level well.

Example 5. The models are the same as in the previous three examples, except that the data of the second component 
Yi2 = X2(t) + εi2 are measured.

The empirical sizes and powers are presented in Table 5. Since we only use the second component data, the independent 
and dependent error components cases are similar. The results show that T Mn can well control the size under all the null 
hypotheses. It also shows good powers under most of the alternatives. The test still has powers when β = 0 and α �= 0, 
meaning that as the unobserved component is correlated with the observed component, the test T Mn could still be sensitive 
in a certain extent. For H11, H12 and H2, the test does not show powers when β = 0 and α �= 0 because the magnitude of 
7
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Table 4
Empirical sizes and powers in Example 4.

Hypothesis α 0 0.5 0 0.5 1 0 1
β 0 0 0.5 0.5 0 1 1

H4 with ε T Mn 0.042 0.194 0.908 1.000 0.951 1.000 1.000
T H 0.040 0.998 1.000 1.000 1.000 1.000 1.000

H4 with ε∗ T Mn 0.051 0.248 0.869 1.000 0.944 1.000 1.000
T H 0.060 1.000 1.000 1.000 1.000 1.000 1.000

Table 5
Empirical sizes and powers in Example 5.

Hypothesis α 0 0.5 0 0.5 1 0 1
β 0 0 0.5 0.5 0 1 1

H11 with ε T Mn 0.042 0.045 0.443 0.395 0.054 1.000 1.000
T H 0.057 0.041 1.000 0.994 0.276 1.000 1.000

H12 with ε T Mn 0.045 0.059 0.896 0.913 0.053 1.000 1.000
T H 0.046 0.088 1.000 1.000 0.339 1.000 1.000

H13 with ε T Mn 0.050 0.078 0.543 0.074 0.214 0.999 0.196
T H 0.047 0.693 1.000 0.689 0.989 1.000 0.989

H2 with ε T Mn 0.048 0.059 0.592 0.645 0.066 1.000 1.000
T H 0.055 0.204 1.000 1.000 0.646 1.000 1.000

H3 with ε T Mn 0.062 0.290 0.173 0.808 0.993 0.965 1.000
T H 0.038 1.000 1.000 1.000 1.000 1.000 1.000

H4 with ε T Mn 0.068 0.136 0.807 0.997 0.940 1.000 1.000
T H 0.047 0.994 1.000 1.000 1.000 1.000 1.000

H11 with ε∗ T Mn 0.064 0.061 0.382 0.338 0.051 1.000 1.000
T H 0.050 0.054 0.999 0.995 0.253 1.000 1.000

H12 with ε∗ T Mn 0.051 0.059 0.855 0.886 0.045 1.000 1.000
T H 0.053 0.093 1.000 1.000 0.305 1.000 1.000

H13 with ε∗ T Mn 0.054 0.072 0.506 0.060 0.196 0.998 0.181
T H 0.046 0.666 1.000 0.676 0.983 1.000 0.990

H2 with ε∗ T Mn 0.044 0.054 0.526 0.808 0.072 1.000 1.000
T H 0.047 0.200 1.000 1.000 0.616 1.000 1.000

H3 with ε∗ T Mn 0.052 0.238 0.176 0.779 0.993 0.946 1.000
T H 0.052 1.000 1.000 1.000 1.000 1.000 1.000

H4 with ε∗ T Mn 0.054 0.136 0.756 0.999 0.918 1.000 1.000
T H 0.049 0.988 1.000 1.000 1.000 1.000 1.000

disturbance is not sufficiently large. In fixed design we set (α, β) = (4, 0), the powers rise up to 0.508 and 0.101 for H11
and H12 with the independent components error respectively. T H also performs well and it has larger powers than T Mn .

We conclude that T Mn has well-controlled sizes and good powers for ODE systems with fixed design. It is suitable for 
fully observed as well as partially observed ODE systems. T H has good performances with independent components error 
terms, showing higher powers than T Mn in some cases. However, as seen in Examples 2 and 3, T H cannot well maintain 
the significance level for some ODE models with dependent components error terms. Some unreported results also show its 
failure to maintain the significance level in heteroscedastic cases, while T Mn still works well in this aspect. This would be 
because T H needs more restrictive prerequisites to use than T Mn needs. Thus, T Mn is more robust against model settings 
than T H . Another advantage of T Mn is its computing stability. It avoids computing the determinants and eigenvalues of 
certain matrices the algorithm of computing T H needs, which could cause computational errors. This has also been shown 
in some unreported numerical studies. This advantage also means lower computing costs. For example, to complete 1000
experiments in case H11 with ε and (α, β) = (0, 0) using MATLAB R2021a, computing T H spends 126.87 s, while computing 
T Mn only needs 17.10 s. Overall, these two tests could be complements to each other, and T Mn is of robustness property 
against model settings.

Remark 1. We have further comment on the test T H . The observation about the significance level maintenance problem 
of T H motivates using an adjusted value 1 + cn in the denominator where cn → 0 as n → ∞ such that T H/(1 + cn) is 
asymptotically equivalent to T H , and can bring down the size in finite sample cases. This is a frequently used approach 
in practice. However, we have tried this method and found that this strategy seems not to work for T H . In some cases 
8



with dependent components error terms or heteroscedasticity, we need a large cn to help maintain the significance level. 
In contrast, in some other cases, a large cn causes the test to be too conservative. Also, it is understandable that a large 
denominator also brings the test power down. It is hard to find a suitable denominator to use in all cases.

5. The application to COVID-19 epidemic models

The classic SEIR ODE model has been used for respectively describing the infected population in Japan and Algeria (see, 
Kuniya (2020), and Bentout et al. (2020)). We apply our test, because of its robustness against different models, to check 
whether the model is plausible.

The form of the mechanical ODE system is as follows:

d

dt
X1 = τ

{−aβ X1 X3
}

d

dt
X2 = τ

{
aβ X1 X3 − aε X2

}
d

dt
X3 = τ

{
aε X2 − aγ X3

}
d

dt
X4 = τ

{
aγ X3

}
.

(3)

Here X1, · · · , X4 represent the susceptible, exposed, infective and removed populations respectively. We also add a timescale 
parameter τ to normalize the sample time interval. The ODE model (3) has been applied to fit reported infective cases data 
during a period starting from the date that the first case was reported. Specifically, we use the data from 15 January to 
29 February in Japan and from 25 February to 18 April, 2020 in Algeria. Note that this is a partially observed ODE system 
since we only observed infective cases corresponding to X3. Following the instruction in Kuniya (2020) and Bentout et al. 
(2020), we fix aε = 0.2 and aγ = 0.1. Further, let X1 + X2 + X3 + X4 = 1, thus each population is actually the proportion 
to the total population. Also transfer the number of reported infective cases NI to the corresponding proportion Y3 by 
using Y3 = NI/(p f r × Np), where Np is the total number of people and p f r is the fraction of infective individuals that 
are identified by diagnosis. We then use the nonlinear least squares method to estimate aβ . According to Kuniya (2020), 
p f r almost does not affect the estimation. Here we suppose p f r = 0.1. As for Np , we have Np = 1.26 ∗ 108 for Japan and 
Np = 43, 411, 571 for Algeria. The initial values are set to be X(0) = (1 − 1/(p f r × Np), 0, 1/(p f r ∗ Np), 0). We use the 
Epanechnikov kernel K (u) = 0.75 × (1 − u2) and the bandwidth h = 0.15 × n−2/5 to ensure it is larger than the interval 
between two consecutive time points.

For the Japan epidemic data, the value of T Mn is 18.65 and the corresponding p-value is about 0. For the Algeria 
epidemic data, these values are 16.49 and 0 respectively. These results suggest that the SEIR model, which is the ODE 
model under the null, may not be plausible (Figs. 1 and 2).

6. Conclusion

This paper studies model checking for ordinary differential equations model with fixed design. The asymptotic properties 
of a test T Mn , under the null, global, and local alternative hypothesis, are presented. We give two new propositions about 
U-statistics with varying kernels for independent but non-identical data to derive these results. These propositions are useful 
to handle many test statistics that are U-statistics with non-i.i.d. data. As an important application, we use T Mn to check 
the SEIR models by using openly accessible data, finding that it may not be suitable for describing the COVID-19 infected 
size in Japan and Algeria in the period we described in the application.

As for checking epidemic ODE models, some critical issues are still unsolved. For instance, the parameters may be es-
timated by a Bayesian method instead of the frequentist method. This is because we may want to estimate them more 
accurately using the past data. This deserves a further study.
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Fig. 1. The data of Japan infective cases: time course of responses and residuals.

Fig. 2. The data of Algeria infective cases: time course of responses and residuals.
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Appendix A. Proof of Proposition 2.1

Proof. This proof is an extension of the proof of Lemma 3.1 of Powell et al. (1989). To prove 
√

n(Un − Ûn) = oP (1), 

it is sufficient to show nE

{∥∥∥Un − Ûn

∥∥∥2
}

= o(1). Recall rn (zi) = (n−1
1

)−1∑
j �=i E

(
hn(zi, z j) | zi

)
, θni = E {rn (zi)} and θni j =

E
{

hn
(
zi, z j

)}
. Define

qn
(
zi, z j

)= {hn
(
zi, z j

)− rn (zi) − rn
(
z j
)+ θni + θnj − θni j

}
,

so that

Un − Ûn =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

qn
(
zi, z j

)
.

The expectation of the squared length of the vector Un − Ûn is

E

{∥∥∥Un − Ûn

∥∥∥2
}

=
(

n

2

)−2 n−1∑
i=1

n∑
j=i+1

n−1∑
l=1

n∑
m=l+1

E
{

qn
(
zi, z j

)′
qn (zl, zm)

}
.

If i �= l and j �= m, we have E
{

qn
(
zi, z j

)′
qn (zl, zm)

}
= 0 since zi, i = 1, · · · , n are independent random vectors. At next 

we consider the case that there is only one same terms in qn
(
zi, z j

)
and qn (zl, zm). Without loss of generality, we assume 

i = m. Then we have

E
{

qn
(
zi, z j

)′
qn (zi, zl)

}
=E
{

hn
(
zi, z j

)− rn (zi) − rn
(
z j
)+ θni + θnj − θni j

}′
× {hn (zi, zl) − rn (zi) − rn (zl) + θni + θnl − θnil}

=E
{

hn
(
zi, z j

)}′ {hn (zi, zl)} − E
{

hn
(
zi, z j

)}′ {rn (zi)} − E
{

hn
(
zi, z j

)}′ {rn (zl)}
+ E

{
hn
(
zi, z j

)}′ {θni + θnl − θnil} − E {rn (zi)}′ {hn (zi, zl)} + E {rn (zi)}′ {rn (zi)}
+ E {rn (zi)}′ {rn (zl)} − E {rn (zi)}′ {θni + θnl − θnil} − E

{
rn
(
z j
)}′ {hn (zi, zl)}

+ E
{

rn
(
z j
)}′ {rn (zi)} + E

{
rn
(
z j
)}′ {rn (zl)} − E

{
rn
(
z j
)}′ {θni + θnl − θnil}

+ E
{
θni + θnj − θni j

}′ {hn (zi, zl)} − E
{
θni + θnj − θni j

}′ {rn (zi)}
− E

{
θni + θnj − θni j

}′ {rn (zl)} + E
{
θni + θnj − θni j

}′ {θni + θnl − θnil}
=E
{

rnj (zi)
}′ {rnl (zi)} − E

{
rnj (zi)

}′ {rn (zi)} − θ ′
ni jθnl + θ ′

ni j {θni + θnl − θnil}
− E {rn (zi)}′ {rnl (zi)} + E {rn (zi)}′ {rn (zi)} + θ ′

niθnl − θ ′
ni {θni + θnl − θnil}

− θ ′
njθnil + θ ′

njθni + θ ′
njθnl − θ ′

nj {θni + θnl − θnil} + {θni + θnj − θni j
}′

θnil

− {θni + θnj − θni j
}′

θni − {θni + θnj − θni j
}′

θnl +
{
θni + θnj − θni j

}′ {θni + θnl − θnil}
=E
{

rnj (zi)
}′ {rnl (zi)} − E

{
rnj (zi)

}′ {rn (zi)} + θ ′
ni jθni − E {rn (zi)}′ {rnl (zi)}

+ E {rn (zi)}′ {rn (zi)} + θ ′
niθnil − θ ′

ni jθnil − θ ′
niθni .

Note θni = 1
n−1

∑
j �=i θni j and rn (zi) = 1

n−1

∑
j �=i rnj(zi). We have

θ ′
ni jθni + θ ′

niθnil − θ ′
ni jθnil − θ ′

niθni

= 1

n − 1

∑
k �=i

θ ′
ni jθnik + 1

n − 1

∑
k �=i

θ ′
nilθnik − 1

(n − 1)2

∑
k1 �=i

∑
k2 �=i

θ ′
nik1

θnik2 − θ ′
ni jθnil,

E
{

rnj (zi)
}′ {rnl (zi)} − E

{
rnj (zi)

}′ {rn (zi)} − E {rn (zi)}′ {rnl (zi)}
+ E {rn (zi)}′ {rn (zi)}

=E
{

rnj (zi)
}′ {rnl (zi)} − E

{
rnj (zi)

}′⎧⎨⎩ 1

n − 1

∑
j �=i

rnj (zi)

⎫⎬⎭
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− E

⎧⎨⎩ 1

n − 1

∑
j �=i

rnj (zi)

⎫⎬⎭
′
{rnl (zi)}

+ E

⎧⎨⎩ 1

n − 1
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j �=i

rnj (zi)

⎫⎬⎭
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n − 1

∑
j �=i

rnj (zi)

⎫⎬⎭ .

Thus it can be shown that

1

n2(n − 1)2

n∑
i=1

∑
j �=i

∑
l �=i
l �= j

E
{

qn
(
zi, z j

)′
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}

= 1

n2(n − 1)2
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∑
j �=i
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l �=i

⎡⎣ 1
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ni jθnik + 1
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nilθnik
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{
rnj (zi)
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− E
{
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∑
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∑
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− 1
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E
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(
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)′
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(
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)}

= 2
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∑
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∑
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[θ ′
ni jθnik + E

{
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− 1
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∑
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∑
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[θ ′
nik1
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{
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}′ {
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}]

− 1

n2(n − 1)2
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∑
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∑
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[θ ′
ni jθnil + E

{
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}′ {rnl (zi)}] − o(
1

n
)

=o(
1

n
).

Then we have

E
∥∥∥Un − Ûn

∥∥∥2 =
(

n
2

)−2 n−1∑
i=1

n∑
j=i+1

E
∥∥qn

(
zi, z j

)∥∥2 + o(
1

n
).

Since each O  
(

E
∥∥qn

(
zi, z j

)∥∥2
)

= O  
(

E
∥∥hn

(
zi, z j

)∥∥2
)

= o(n). We conclude

nE
∥∥∥Un − Ûn

∥∥∥2 = n

(
n
2

)−2

O
(

n2
)

o(n) + o(1)

= o(1). �
Appendix B. Proof of Proposition 2.2

Proof. This proof is an extension of the proof of Theorem 1 of Hall (1984). We apply Brown’s Martingale central limit 
theorem (Brown (1971); Hall and Heyde (2014)) and only need to check the following two conditions:
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s−2
n

n∑
i=2

E
{

Y 2
ni I (|Yni| > ηsn)

}
→ 0, for each η > 0, (B.1)

s−2
n V 2

n → 1, in probability, (B.2)

where Yni =∑i−1
j=1 hn

(
zi, z j

)
and s2

n = E
[
{∑∑1�i< j�n hn

(
zi, z j

)}2
]

.

For every i and j, we have E{hn(zi, z j |zi)} = 0. Then

E
(

Y 2
ni

)
=
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E
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(
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)
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}
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)}
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.

Furthermore, we have
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j=1

E
{

h4
n

(
zi, z j

)}+ 3

2

n∑
i=2

∑
1� j,k�i−1; j �=k

{h4
n(zi, z j) + h4

n(zi, zk)}

≤C1

n∑
i=2

i−1∑
j=1

(i − 1)E
{

h4
n

(
zi, z j

)}

≤C2n
n∑

i=2

i−1∑
j=1

E
{

h4
n

(
zi, z j

)}
, (B.3)

where C1 and C2 are constants.
From equation (B.3) and the condition∑

2�i1�i2�n

∑
1� j1<k1�i1−1 E

{
Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}+ n
∑n

i=2
∑i−1

j=1 E
{

h4
n

(
zi, z j

)}[∑n
i=2
∑i−1

j=1 E
{

h2
n
(
zi, z j

)}]2

→ 0,

it can be shown that

s−4
n

n∑
i=2

E
(

Y 4
ni

)
≤ Cn

∑n
i=2
∑i−1

j=1 E
{

h4
n

(
zi, z j

)}
(
∑n

i=2
∑i−1

j=1 E
{

h2
n
(
zi, z j

)}
)2

→ 0,

which imply the first condition (B.1). On the other hand,
13
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vni = E
(

Y 2
ni | z1, . . . , zi−1

)
=

i−1∑
j=1

i−1∑
k=1

Gni
(
z j, zk

)

= 2
∑

1� j<k�i−1

Gni
(
z j, zk

)+ i−1∑
j=1

Gni
(
z j, z j

)
.

If j1 ≤ k1 and j2 ≤ k2, then

E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j2 , zk2

)}
=E
{

Gni1

(
z j1 , z j1

)
Gni2

(
z j1 , z j1

)}
if j1 = k1 = j2 = k2

= [E {Gni1

(
z j1 , z j1

)}] [
E
{

Gni2

(
z j2 , z j2

)}]
if j1 = k1 �= j2 = k2

=E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}
if j1 = j2,k1 = k2, j1 < k1

=0 otherwise.

Hence if i1 ≤ i2,

E
(

vni1 vni2

)
=4

∑
1� j1<k1�i1−1

E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}

+
i1−1∑
j1=1

i2−1∑
j2=1

E
{

Gni1

(
z j1 , z j1

)}
E
{

Gni2

(
z j2 , z j2

)}

+
i1−1∑
j=1

(
E
{

Gni1

(
z j1 , z j1

)
Gni2

(
z j1 , z j1

)}− E
{

Gni1

(
z j1 , z j1

)}
E
{

Gni2

(
z j1 , z j1

)})
=4

∑
1� j1<k1�i1−1

E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}

+
i1−1∑
j1=1

i2−1∑
j2=1

E
{

Gni1

(
z j1 , z j1

)}
E
{

Gni2

(
z j2 , z j2

)}

+
i1−1∑
j1=1

cov
{

Gni1

(
z j1 , z j1

)
, Gni2

(
z j1 , z j1

)}
.

Then we have

E
(

V 4
n

)
=2

∑
2�i1<i2�n

E
(

vni1 vni2

)+ n∑
i=2

E
(

v2
ni

)
=8

∑
2�i1<i2�n

∑
1� j1<k1�i1−1

E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}

+ 2
∑

2�i1<i2�n

i1−1∑
j1=1

i2−1∑
j2=1

E
{

Gni1

(
z j1 , z j1

)}
E
{

Gni2

(
z j2 , z j2

)}

+ 2
∑

2�i1<i2�n

i1−1∑
j1=1

cov
{

Gni1

(
z j1 , z j1

)
, Gni2

(
z j1 , z j1

)}
+4

∑
2�i�n

∑
1� j1<k1�i−1

E
{

Gni
(
z j1 , zk1

)
Gni
(
z j1 , zk1

)}

+
∑ i−1∑ i−1∑

E
{

Gni
(
z j1 , z j1

)}
E
{

Gni
(
z j2 , z j2

)}

2�i�n j1=1 j2=1

14
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+
∑

2�i�n

i−1∑
j1=1

cov
{

Gni
(
z j1 , z j1

)
, Gni

(
z j1 , z j1

)}
whence

E
(

V 2
n − s2

n

)2 = E
(

V 4
n

)
− s4

n

�C

⎡⎣ ∑
2�i1�i2�n

∑
1� j1<k1�i1−1

E
{

Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}+ n
n∑

i=2

i−1∑
j=1

E
{

h4
n

(
zi, z j

)}⎤⎦ , (B.4)

with C a constant. According to the condition∑
2�i1�i2�n

∑
1� j1<k1�i1−1 E

{
Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}+ n
∑n

i=2
∑i−1

j=1 E
{

h4
n

(
zi, z j

)}
(
∑n

i=2
∑i−1

j=1 E
{

h2
n
(
zi, z j

)}
)2

→ 0,

the above equation (B.4) proves the second condition (B.2) by showing that s−4
n E

(
V 2

n − s2
n

)2 → 0. �
Appendix C. Proof of Theorem 1 (under the null hypothesis and global alternatives)

Proof. The proof is very similar to the proof for Theorem 1 of Liu et al. (2021), except that we use Propositions 1-2 instead 
of the existing theories of U-statistics for i.i.d. data. We then only give a sketch of the proof and focus on the main different 
steps. Without loss of generality, we assume, the ODE system is all observed hereafter.

1. Under the null hypothesis, we first study the limiting property of Vn .
For every component k, we decompose Vnk into three terms:

Vnk = 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
eike jk

=

⎡⎢⎢⎣ 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
ηikη jk

⎤⎥⎥⎦

− 2

⎡⎢⎢⎣ 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
ηik

{
Fk

(
t j, θ̂

)
− Fk

(
t j, θ0

)}⎤⎥⎥⎦

+

⎡⎢⎢⎣ 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)

×
{

Fk

(
t j, θ̂

)
− Fk

(
t j, θ0

)}{
Fk

(
t j, θ̂

)
− Fk

(
t j, θ0

)}]
≡V 1nk − 2V 2nk + V 3nk. (C.1)

Then we can write the vector Vn as V 1n − 2V 2n + V 3n . We now show that nh1/2 V 1n → N(0, �) where � is a symmetric 
matrix with the entries: for any pair (k1, k2) with 1 ≤ k1, k2 ≤ d,

�k1k2 = 2
∫

K 2(u)du ×
∫

{σk1k2(t)}2 p2(t)dt.

According to the Cramér-Wald device, we can prove this result by verifying that for every λ ∈ R p , nh1/2λ�V 1n →
N(0, λ��λ) in distribution. We then write λ�V 1n in a U-statistic form with the kernel:

H̃n
(
zi, z j

)= d∑
k=1

λk

h
K

(
ti − t j

h

)
ηikη jk
15
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where zi = (ti, ηi). Since it is a one-dimensional degenerate U-statistic, we apply Proposition 2 to obtain its asymptotic 
distribution. To this end, we verity the conditions of this proposition. For some (zi, z j) = (z1, z2), we have

E
{

H̃2
n (z1, z2)

}
= E

[
E
{

H̃2
n (z1, z2) | t1, t2

}]
= 1

h2

d∑
k1=1

d∑
k2=1

λk1λk2 K 2
(

t1 − t2

h

)
σk1k2 (t1)σk1k2 (t2) .

Then

n∑
i=2

i−1∑
j=1

E
{

H̃2
n

(
zi, z j

)}

=
n∑

i=2

i−1∑
j=1

1

h2

d∑
k1=1

d∑
k2=1

λk1λk2 K 2
(

t1 − t2

h

)
σk1k2 (t1)σk1k2 (t2)

=n(n − 1)

2h2

d∑
k1=1

d∑
k2=1

n∑
i=2

i−1∑
j=1

2

n(n − 1)
λk1λk2 K 2

(
ti − t j

h

)
σk1k2 (ti)σk1k2

(
t j
)

=n(n − 1)

2h2

d∑
k1=1

d∑
k2=1

∫
λk1λk2 K 2

(
t1 − t2

h

)
σk1k2 (t1)σk1k2 (t2)dPn(t1)dPn(t2)

=n(n − 1)

2h2

d∑
k1=1

d∑
k2=1

λk1λk2

∫
K 2
(

t1 − t2

h

)
σk1k2 (t1)σk1k2 (t2)dP (t1)dP (t2) + O (1/h2)

=n(n − 1)

2h2

d∑
k1=1

d∑
k2=1

λk1λk2

∫
K 2
(

t1 − t2

h

)
σk1k2 (t1)σk1k2 (t2) p(t1)p(t2)dt1dt2 + O (1/h2)

=n(n − 1)

2h

d∑
k1=1

d∑
k2=1

λk1λk2

∫
K 2(u)σk1k2(t1)σk1k2(t1 − hu)p(t)p(t − hu)hdtdu + O (1/h2)

=n(n − 1)

2h

d∑
k1=1

d∑
k2=1

λk1λk2

∫
K 2(u)du

∫ {
σk1k2(t)

}2
p2(t)dt + o

(
n2/h

)
=O
(

n2/h
)

.

The fourth step in the above equation is based on the fixed design sampling condition. Similarly,

E
{

H̃4
n (z1, z2)

}
= 1

h4
K 4
(

t1 − t2

h

) d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

[
E
{
η1k1η1k2η1k3η1k4

}
×E
{
η2k1η2k2η2k3η2k4

}]
= 1

h4

⎡⎣ d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4 K 4(
t1 − t2

h
){σk1k2k3k4(t1)σk1k2k3k4(t2)}

⎤⎦ .

n∑
i=2

i−1∑
j=1

E
{

H̃4
n

(
zi, z j

)}

=
n∑

i=2

i−1∑
j=1

1

h4

⎡⎣ d∑
k =1

d∑
k =1

d∑
k =1

d∑
k =1

λk1λk2λk3λk4 K 4(
t1 − t2

h
){σk1k2k3k4(t1)σk1k2k3k4(t2)}

⎤⎦

1 2 3 4
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=n(n − 1)

2h4

⎡⎣ d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
K 4(

t1 − t2

h
){σk1k2k3k4(t1)σk1k2k3k4(t2)}dt1dt2

⎤⎦
+ O (1/h4)

=n(n − 1)

2h4

⎡⎣ d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
K 4(u){σk1k2k3k4(t1)

×σk1k2k3k4(t1 − hu)}p(t1)p(t1 − hu)hdt1du
]+ O (1/h4)

=O
(

n2/h3
)

.

Also, by writing ( j1, j2, i1, i2) = (1, 2, 3, 4) for simplicity, we have

E
{

Gni1

(
z j1 , z j2

)
Gni2

(
z j1 , z j2

)}
=E
[

E
{

H̃n (z3, z1) H̃n (z3, z2) | z1, z2

}
E
{

H̃n (z4, z1) H̃n (z4, z2) | z1, z2

}]
= 1

h4
E

⎛⎝⎡⎣ d∑
k1=1

d∑
k2=1

λk1λk2η1k1η2k2 K

(
t3 − t1

h

)
K

(
t3 − t2

h

)
σk1k2 (t3)

⎤⎦
×
⎡⎣ d∑

k1=1

d∑
k2=1

λk1λk2η1k1η2k2 K

(
t4 − t1

h

)
K

(
t4 − t2

h

)
σk1k2 (t4)

⎤⎦⎞⎠
= 1

h4

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4σk1k3 (t1)σk2k4 (t2) K

(
t3 − t1

h

)
K

(
t3 − t2

h

)

× K

(
t4 − t1

h

)
K

(
t4 − t2

h

)
σk1k2 (t3)σk3k4 (t4) .∑

2�i1�i2�n

∑
1� j1< j2�i1−1

E
{

Gni1

(
z j1 , z j2

)
Gni2

(
z j1 , z j2

)}

≤ Cn4

h4

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
σk1k3 (t1)σk2k4 (t2) K

(
t3 − t1

h

)
K

(
t3 − t2

h

)

× K

(
t4 − t1

h

)
K

(
t4 − t2

h

)
σk1k2 (t3)σk3k4 (t4) p(t1)p(t2)p(t3)p(t4)dt1dt2dt3dt4

+ O (1/h4)

= Cn4

h2

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
σk1k3 (t1)σk2k4 (t2) K

(
u1 + t1 − t2

h

)
K

(
u2 + t1 − t2

h

)
× K (u1) K (u2)σk1k2 (t1 + hu1)σk3k4 (t1 + hu2) p(t1)p(t2)p(t1 + hu1)p(t1 + hu2)dt1dt2du1du2

+ O (1/h4)

= Cn4

h

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
σk1k3 (t1)σk2k4 (t1 − hu3) K (u1) K (u1 + u3) K (u2 + u3)

× K (u2)σk1k2 (t1 + hu1)σk3k4 (t1 + hu2) p(t1)p(t1 − hu3)p(t1 + hu1)p(t1 + hu2)dt1du1du2du3

+ O (1/h4)

= Cn4

h

d∑
k1=1

d∑
k2=1

d∑
k3=1

d∑
k4=1

λk1λk2λk3λk4

∫
σk1k3 (t1)σk2k4 (t1) K (u1) K (u1 + u3) K (u2 + u3)

× K (u2)σk1k2 (t1)σk3k4 (t1) p4(t1)dt1du1du2du3 + o(n4/h) + O (1/h4)

=O (n4/h),
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where C is a constant.
From these equations, we have∑

2�i1�i2�n

∑
1� j1<k1�i1−1 E

{
Gni1

(
z j1 , zk1

)
Gni2

(
z j1 , zk1

)}+ n
∑n

i=2
∑i−1

j=1 E
{

H̃4
n

(
zi, z j

)}
[∑n

i=2
∑i−1

j=1 E
{

H̃2
n
(
zi, z j

)}]2

= O
(
n4/h

)+ nO
(
n2/h3

)
O
(
n4/h2

)
= O (h) + O (1/(nh)) → 0.

Since the conditions in Proposition 1 are verified, we then have

n2λ�V 1n/2

⎡⎣ n∑
i=2

i−1∑
j=1

E
{

H̃2
n

(
zi, z j

)}⎤⎦1/2

→ N(0,1), in distribution.

This implies that

nh1/2λ�V 1n → N

⎛⎝0,2
d∑

k1=1

d∑
k2=1

λk1λk2

∫
K 2(u)du ×

∫
{σk1k2(t)}2 p2(t)dt

⎞⎠ ,

in distribution.

The asymptotic variance is actually λ��λ. The asymptotic normality of V 1n is derived.
Following the proof of Lemma 1 in Liu et al. (2021), we can easily show that nh1/2 V 2n and nh1/2 V 3n converge to zero in 

probability. Then we have nh1/2 Vn → N(0, �) in distribution.
At next, we show that �̂ is a consistent estimator of �. This can be proven by using similar statements in proof of 

Lemma 2 in Liu et al. (2021).
Having the limiting properties of Vn and �̂, the final result is easily derived by using Slutsky’s theorem and continuous 

mapping theorem.
2. Under the global alternatives, Vn can be decomposed as

Vn = 1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
ei � e j

=

⎧⎪⎪⎨⎪⎪⎩
1

n(n − 1)

n∑
i=1

n∑
j=1
j �=i

1

h
K

(
ti − t j

h

)
ηi � η j

⎫⎪⎪⎬⎪⎪⎭+ oP (1)

≡ Sn + oP (1), (C.2)

where � denotes the element-wise product of two vectors. Sn is a U-statistic with the kernel:

Hn
(
zi, z j

)= 1

h
K

(
ti − t j

h

)
ηi � η j.

Since it is non-degenerate, we then apply Proposition 1. Note

rnj (zi) =E
{

Hn(zi, z j) | zi
}= 1

h
K

(
ti − t j

h

)
ηi � {X

(
t j
)− F

(
t j, θ

∗
1

)}
,

θni j =E
{

rnj (zi)
}= E

{
Hn
(
zi, z j

)}
=1

h
K

(
ti − t j

h

){
X (ti) − F

(
ti, θ

∗
1

)}� {X
(
t j
)− F

(
t j, θ

∗
1

)}
,

rn (zi) =
(

n − 1

1

)−1∑
j �=i

rnj(zi),

θni =E {rn (zi)} ,
18
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θn =
(

n

2

)−1 n−1∑
i=1

n∑
j=i+1

θni j

=1

h

∫
K

(
ti − t j

h

){
X (ti) − F

(
ti, θ

∗
1

)}� {X
(
t j
)− F

(
t j, θ

∗
1

)}
p (ti) p

(
t j
)

dtidt j

=1

h

∫
K (u)

{
X (ti) − F

(
ti, θ

∗
1

)}� {X (ti − hu) − F
(
ti − hu, θ∗

1

)}
× p (ti) p (ti − hu)dtihdu

=
∫ {

X(t) − F
(
t, θ∗

1

)}2 � p2(t)dt + o(1)

=E
[{

X (ti) − F
(
ti, θ

∗
1

)}2 � p (ti)
]
+ o(1),

Ûn =θn + 2

n

n∑
i=1

{rn (zi) − θni} ,

E(Û ) =θn.

The conditions in Proposition 1 can be easily verified, thus we have 
√

n
(

Sn − Ûn

)
= oP (1). Since the projection Ûn is a 

sample average, by applying the law of large numbers, we have

Sn → E
[{

X (ti) − F
(
ti, θ

∗
1

)}2 � p (ti)
]
, in probability.

Vn also converges to E
[{

X (ti) − F
(
ti, θ

∗
1

)}2 � p (ti)
]

in probability by considering equation (C.2). Similarly we can prove �̂
is a consistent estimator of �′ under the global alternatives.

The final result is an easily derived consequence of the limiting results of Vn and �̂. �
Appendix D. Proof of Theorem 2 (under local alternatives)

Proof. The proof is similar to the proof for Theorem 2 of Liu et al. (2021). Thus we omit the details. �
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