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Abstract

To conserve habitat for disturbance specialist species, ecologists must identify

where individuals will likely settle in newly disturbed areas. Habitat suitability

models can predict which sites at new disturbances will most likely attract special-

ists. Without validation data from newly disturbed areas, however, the best

approach for maximizing predictive accuracy can be unclear (Northwestern

U.S.A.). We predicted habitat suitability for nesting Black-backed Woodpeckers

(Picoides arcticus; a burned-forest specialist) at 20 recently (≤6 years postwildfire)

burned locations in Montana using models calibrated with data from three loca-

tions in Washington, Oregon, and Idaho. We developed 8 models using three

techniques (weighted logistic regression, Maxent, and Mahalanobis D2 models)

and various combinations of four environmental variables describing burn sever-

ity, the north–south orientation of topographic slope, and prefire canopy cover.

After translating model predictions into binary classifications (0 = low suitability

to unsuitable, 1 = high to moderate suitability), we compiled “ensemble predic-

tions,” consisting of the number of models (0–8) predicting any given site as

highly suitable. The suitability status for 40% of the area burned by eastside Mon-

tana wildfires was consistent across models and therefore robust to uncertainty in

the relative accuracy of particular models and in alternative ecological hypotheses

they described. Ensemble predictions exhibited two desirable properties: (1) a

positive relationship with apparent rates of nest occurrence at calibration loca-

tions and (2) declining model agreement outside surveyed environments consis-

tent with our reduced confidence in novel (i.e., “no-analogue”) environments.

Areas of disagreement among models suggested where future surveys could help

validate and refine models for an improved understanding of Black-backed

Woodpecker nesting habitat relationships. Ensemble predictions presented here

can help guide managers attempting to balance salvage logging with habitat

conservation in burned-forest landscapes where black-backed woodpecker nest

location data are not immediately available. Ensemble modeling represents a

promising tool for guiding conservation of large-scale disturbance specialists.

Introduction

Ecologists use habitat suitability models to inform man-

agement activities aimed at species conservation (Barrows

et al. 2008; Keenan et al. 2011; reviewed by Elith and

Leathwick 2009). Most models use site-use data to quantify

the environmental distribution of a species, based upon

which sites (usually pixels) are assigned ranks according

to their relative suitability (hereafter, habitat suitability

indices; HSIs). To the extent that a model reflects

environmental requisites shaping species’ occurrence, HSIs

will estimate the species’ geographic distribution (Hirzel

et al. 2006; Barrows et al. 2008). Habitat models are often

used to predict distributions outside sampled areas (Wil-

son et al. 2005; Elith et al. 2011; except see Zurell et al.

2012), but are typically less accurate when used for this

purpose (Heikkinen et al. 2012). Nevertheless, model-

based predictions may provide the best available informa-

tion for guiding management activities in areas where data

are not immediately available (the alternative being expert

4348 ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



knowledge). By ignoring potentially important complexi-

ties of ecological systems, such as biotic interactions or

behavioral dynamics, habitat suitability models are typi-

cally limited in the information they provide (Zurell et al.

2009; Aarts et al. 2013). Nevertheless, these models can

provide a useful first approximation of habitat relation-

ships underlying a species’ distribution (Pearson and Daw-

son 2003).

Predictive accuracy of habitat suitability models depends

largely on the data analyzed, the habitat variables used for

modeling, and underlying model structure (Austin 2007).

Available data used for model development may sample a

restricted environmental range, preventing complete

description of ecological relationships shaping habitat use

(Thuiller et al. 2004). Additionally, without complete

knowledge of processes underlying habitat selection, the

environmental variables best used for modeling may be

unclear. Finally, models often emphasize linear relationships

within a resource selection framework (i.e., comparison of

habitat use vs. availability), which may not adequately

describe relevant ecological relationships (Austin 2007). To

deal with these uncertainties, some researchers combine

predictions from multiple models using an “ensemble”

approach (Ara�ujo and New 2007). By combining models

differing in structure, explanatory variables, and data

sources, ensemble predictions allow inferences that are

robust to uncertainties associated with any individual model.

Ensemble modeling has been used to predict responses to

climate change, for which data for validating predictions are

not immediately available (Ara�ujo and New 2007).

Ensemble modeling requires development of multiple

habitat models, a useful exercise in itself. Models that

describe observed data equally well but differ in structure

can suggest alternative hypotheses regarding underlying

species ecology. For example, models describing linear ver-

sus nonlinear relationships with a particular habitat feature

could fit available data equally well, in which case either

could represent the species’ true relationship with that fea-

ture. Furthermore, differences among models may be most

apparent when applied to novel environments (Heikkinen

et al. 2012; Wenger and Olden 2012). Application of

ensemble predictions may therefore suggest where future

data collection efforts could facilitate evaluation of alterna-

tive ecological hypotheses, namely where models disagree.

Thus, ensemble predictions can help guide future research.

Prediction of habitat suitability is especially necessary

to guide conservation of species that specialize on habitats

created by large-scale natural disturbance, such as wild-

fire. Recently disturbed areas provide suitable habitat for

specialists for a limited period following disturbance

events (e.g., Saab et al. 2007). If during this period,

resource extraction opportunities also arise, managers

must quickly identify suitable habitat to balance the needs

of wildlife and humans. Depending upon phenology and

how a species locates new disturbances, colonization of

new disturbances may be delayed, impeding timely collec-

tion of data for informing management decisions. Data

from previous disturbances may therefore provide the

only objective information for conservation planning,

making model-based prediction a natural approach.

We developed model-based predictions of habitat suit-

ability for the Black-backed Woodpecker (Picoides arcti-

cus; Fig. 1) in Montana east of the Rocky Mountains at

20 recently burned (≤ 6 years postwildfire), dry, mixed-

conifer forests. Black-backed woodpeckers specialize on

burned-forest habitats (Dixon and Saab 2000). They are

almost exclusively restricted to disturbed forests, relatively

restricted to burned-forest conditions (Saab et al. 2007,

2011; but see Bonnot et al. 2009), and well-adapted for

extracting wood-boring beetle (Cerambycidae and Bupres-

tidae; Beal 1911) larvae from the cambium of burned

insect-infested trees (Dixon and Saab 2000). Snags gener-

ated by wildfire are often removed by salvage logging to

reduce increased risk of recurring wildfire and to provide

an economically valuable resource, so forest managers

must balance socioeconomic needs with legal require-

ments to maintain wildlife habitat.

We developed habitat suitability models using three

techniques and nest-site data from Washington, Oregon,

and Idaho. Models varied in the spatial extent to which

they were calibrated, in the environmental variables

included, and in the assumed form of relationships with

these variables. We used an “ensemble” approach (Ara�ujo

and New 2007) to combine predictions from multiple top-

performing models that varied in structure and parameter-

ization. We looked for agreement and disagreement among

models to consider where habitat suitability inferences

were robust to model-specific uncertainties and suggest

where future surveys could further our understanding of

Black-backed Woodpecker habitat relationships. Given the

nature of model-based prediction, we expected predictions

to differ among models and agreement to decline when

applied to environments differing from the inferential

space where models were developed, that is, “no-analogue”

environments (Williams and Jackson 2007; Roberts and

Hamann 2012; Veloz et al. 2012). We analyzed model pre-

dictions to corroborate this expectation and considered its

implications for the use of ensemble predictions to guide

future research and conservation planning.

Methods

Study area

We surveyed wildfires in three western states (U.S.A.) for

Black-backed Woodpecker nests: the Tripod Fire in
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Washington, the Silver and Toolbox fires in Oregon, and

the Star Gulch Fire in Idaho (Table 1, Fig. 2). These fires

burned in dry, mixed-conifer forest dominated by pon-

derosa pine (Pinus ponderosa) (cf. Schoennagel et al.

2004). Because of the proximity between the Silver and

Toolbox fires (ca. 3000 m apart) and concurrent timing

(Table 1), we treated them as one location (hereafter the

Silver-Toolbox fires). We informed models with nest-site

data from these fires and applied the models to predict

habitat suitability in similar dry conifer forests at 20 wild-

fire locations in Montana national forests east of the

North American continental divide (2006–2011; Appendix
S1).

Field surveys for nests

We conducted rectangular belt-transect surveys (averaged

0.2 km 9 1 km) within a priori established survey units to

identify occupied nest cavities (Dudley and Saab 2003)

during early May until late June in multiple years (Table 1),

the nesting period for most Black-backed Woodpeckers.

Salvage logging impacted increasingly greater portions of

the Silver-Toolbox fires over the years (2003–2007). To

focus models on prelogging habitat suitability, we excluded

data from areas and years impacted by logging (2003–2004
data within 1 km of logged units and all data after 2004

were excluded). We placed the center of belt transects

200 m apart and surveyed 100 m on either side of the cen-

ter line. Transects began and ended at opposing unit

boundaries, so surveys covered each unit. Additionally,

nests were opportunistically found just outside originally

delineated boundaries, so for this study, we considered sur-

veyed units to include all areas within 250 m of originally

established boundaries (Table 1, Fig. 2). We used GPS

units (Trimble GeoExplorer 3, Trimble Navigation Limited

1999–2001, Sunnyvale, CA 94085) to determine the

geographic coordinates of each nest cavity.

Environmental variables

We exclusively used remotely sensed variables to maxi-

mize applicability to new locations without the need for

field measurements. We divided the extent of each fire

into 30 9 30-m pixels, and for each pixel, we compiled

Figure 1. Male (left) and female (right) black-

backed woodpeckers (taken from Dixon and

Saab 2000).

Table 1. Wildfires where Black-backed Woodpecker nests were found and used to develop habitat suitability models.

National Forest Fire Name Ignition Year Years surveyed Full Extent (ha) Survey Unit Extent (ha) No. pixels with nests

Okanogan-Wenatchee,

Washington

Tripod 2006 2008–2009 99,349 2912 28

Fremont-Winema,

Oregon

Silver and Tool Box 2002 2003–2004 33,427 802 44

Boise, Idaho Star Gulch 1994 1995–1998 12,358 1520 36
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(A) (B) (C)

Figure 2. The top map depicts the range for black-backed woodpeckers (taken from Dixon and Saab 2000). The subsequent map illustrates fire

locations within state boundaries (Washington, Oregon, Idaho, and Montana; U.S.A.). Bottom maps show nest locations, survey unit boundaries,

and burn perimeters at Tripod (A), Silver-Toolbox (B; Silver is west, Toolbox is east), and Star Gulch (C) wildfire locations.
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values for four variables: burn severity (delta normalized

burn ratio [DNBR]; Key 2006), the north–south orienta-

tion of the slope (cosine aspect [COSASP]), and two pre-

fire canopy cover variables compiled at different spatial

scales (LocCC and LandCC; Table 2; using ArcGIS 10,

ESRI 2010); the latter provided an index of tree or snag

density (Russell et al. 2007; Saab et al. 2009; Dudley et al.

2012). The north–south slope orientation relates to a

moisture gradient (moist–dry) and thus overall primary

productivity. None of the four variables were statistically

redundant (LocCC vs. LandCC r = 0.635; remaining in-

tercorrelations ≤0.3; Appendix S2). Burn severity and pre-

fire canopy cover variables were averaged across either 1-

ha (9 pixels) or 314-ha (1-km radius; 3409 pixels) moving

windows centered on each pixel. We considered prefire

canopy cover at these two different spatial scales because

we suspected snag density could influence suitability of the

local area for nesting by affecting nest predation pressure

or suitability of a larger area for territory establishment by

affecting food resources. Data sources were USGS National

Elevation Dataset (1 arc-second; USGS 2012) for cosine

aspect and Monitoring Trends in Burn Severity (MTBS

2012) for delta normalized burn ratio. Prefire canopy

cover data were originally derived from Landsat Thematic

Mapper (TM) images (30 9 30-m resolution), which were

further processed by LEMMA (2012; for Tripod and Sil-

ver-Toolbox locations), the U.S. Forest Service Remote

Sensing Application Center (Johnson et al. 2000; for Star

Gulch), or U.S. Forest Service Region 1 Vegetation Map-

ping Program (VMap v. 11, mid-level data [Berglund et al.

2008]; for eastside Montana locations). Elevation, sine

aspect, and slope were also initially considered, but the

ecological significance of these variables was less apparent.

We therefore restricted our modeling to the above four

variables to minimize the potential for over-fitting models.

Development and selection of habitat
suitability models

Habitat models assumed various relationships with pre-

dictor variables: (1) logistic regression models and the

simpler of two Maxent models assumed linear relation-

ships (via a model-specific link function), (2) Mahalan-

obis D2 models assumed relationships describing optimal

suitability at locations matching the average environmen-

tal conditions at nest sites, and (3) the more complex

Maxent model assumed a mix of linear and nonlinear

relationships with key habitat features as supported by

data comparing habitat use versus availability. To the

extent that models describing different statistical relation-

ships fitted the data reasonably well, they suggested alter-

native hypotheses regarding ecological relationships

determining habitat suitability.

We fitted weighted logistic regression models (hereafter

WLR models) to data from each of three locations: Star

Gulch, Silver-Toolbox, and Tripod. WLR models analyzed

environmental differences between nest and non-nest sites.

Non-nest sites were pixels within unit boundaries where

nests were never observed during surveys (see Table 1).

WLRs employ a weighted distribution to remove the influ-

ence of sample size differences between nest and non-nest

random sites (Lele and Keim 2006). We used samples of 68

non-nest random sites at the Tripod Fire, 100 at Silver-

Toolbox fires, and 47 at the Star Gulch Fire for model

development. We constructed models with all possible sub-

sets of the four environmental variables (cf. Russell et al.

2007). For each dataset, we selected the model with the

smallest AICc (Akaike’s Information Criterion corrected for

small sample size; Burnham and Anderson 2002) to

develop ensemble predictions.

Additionally, we constructed Mahalanobis D2 models

(Rotenberry et al. 2006; chronological list of steps pro-

vided in Appendix S3). The D2 statistic described the dis-

tance from the multivariate mean of nest sites and was

rescaled to provide a habitat suitability index (HSI) with

0–1 range. We derived HSIs from variance partitions

derived from principal components analysis applied to

nest data (Rotenberry et al. 2006). The kth partition is

the sum of a sequential subset of k principal components.

Partition kmax is the sum of all components and yields a

model equivalent to an un-partitioned D2 model. We

derived models from partitions 1–kmax of all combina-

tions of burn severity, cosine aspect, and prefire canopy

cover variables constrained to include burn severity

(10 models). We iteratively subsampled the data to equal-

ize representation of the three surveyed wildfire locations

in the calibration data. For each of 100 iterations, we

sampled 28 nest pixels without replacement from each

calibration location (n = 84 during each iteration). We

used two performance metrics to select models: the med-

ian nest HSI (Preston et al. 2008) and AUC (a metric of

classification accuracy; Fielding and Bell 1997). A large

median nest HSI indicated a restricted environmental dis-

tribution of nest sites (Preston et al. 2008), whereas AUC

evaluated discrimination of nest pixels from available

pixels (represented by 10,000 pixels drawn from within

survey unit boundaries, a third from each calibration

location). We applied five-fold cross-validation during

each iteration, resulting in 500 replicates for each model.

We calculated mean performance metrics for the 500 vali-

dation datasets (data withheld from each replicate

model). When selecting models, we looked for model(s)

that achieved both a relatively high median nest HSI and

a high AUC. For predicting and mapping habitat suitabil-

ity, we averaged HSIs across 100 model replicates fitted to

subsampled data without cross-validation.
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Finally, we developed Maxent (maximum entropy)

models (Phillips et al. 2006; Elith et al. 2011). Maxent

HSIs describe a probability of species presence (0–1 range,

the HSI) conditioned upon the environmental distribu-

tion of available pixels and a prevalence of 0.5. To repre-

sent available pixels, we drew 10,000 pixels from within

study unit boundaries. Following nest-site sample sizes

obtained from each location, we drew 2593, 4074, and

3333 pixels from the Tripod, Silver-Toolbox, and Star

Gulch locations, respectively (Table 2). We used default

regularization settings provided by the Maxent software.

Regularization relaxes the need for formal model selec-

tion, but exclusion of extraneous or redundant predictor

variables is nevertheless recommended (Elith et al. 2011;

Merow et al. 2013). We therefore excluded variables that

contributed minimally to initial models while monitoring

AUC (mean for five validation datasets generated by five-

fold cross-validation) to ensure variable exclusion did not

cause inordinate losses of explanatory power. When esti-

mating habitat suitability for generating ensemble predic-

tions and maps, we used versions of selected Maxent

models fitted to all data without cross-validation.

Model performance and selection of
classification thresholds

We used several performance metrics to assess habitat

suitability estimates within surveyed units at the three cal-

ibration locations (Tripod, Silver-Toolbox, and Star

Gulch). We translated continuous HSI values into a bin-

ary classification for each pixel (1 = moderate-to-high

suitability habitat [hereafter highly suitable habitat];

0 = low suitability to unsuitable habitat [hereafter low

suitability habitat]) using HSI thresholds that maximized

predictive gain across all three calibration locations; pre-

dictive gain = sensitivity � (1 � specificity), where sensi-

tivity = the proportion of nest-site pixels classified highly

suitable and specificity = the proportion of available pix-

els classified as low suitability (Browning et al. 2005; Hol-

lenbeck et al. 2011). We then used sensitivity and

specificity at selected thresholds and AUCs at each loca-

tion to evaluate HSIs. We considered AUC > 0.6 to

indicate a useful model (Fielding and Bell 1997). AUC is

expected to be lower when evaluating discrimination of

used versus available sites but can nevertheless be infor-

mative (Phillips et al. 2006). We considered reasonable

performance indicated by AUCs, sensitivities, and speci-

ficities within surveyed units to be necessary for model

application outside surveyed areas.

Ensemble predictions, model agreement,
and habitat relationships

We combined predictions into an “ensemble” by calculat-

ing the number of models predicting each pixel as highly

suitable using selected classification thresholds (see

“bounding-box” approach described by Ara�ujo and New

2007). We compared liberal versus conservative ensemble

predictions of suitability: the proportion of pixels classified

highly suitable by at least one model versus all 8 models at

each wildfire location. To quantify model agreement, we

examined the proportion of pixels consistently classified

highly suitable or low suitability by all models. Where

agreement was found, we considered suitability robust to

uncertainties in the relative predictive value of particular

models. Model predictions that relate positively and line-

arly with the proportion of pixels used by the species are

considered desirable (Jim�enez-Valverde et al. 2013). By

analogy, we considered such a relationship between ensem-

ble predictions and the proportion of pixels containing

nests to be desirable. We used Pearson’s correlation coeffi-

cient and simple linear regression (cor and lm functions, R

v. 2.15.1; R Core Team 2013) to analyze this relationship.

For insight into the ecological hypotheses represented

by individual models and the behavior of ensemble pre-

dictions, we compared model predictions and analyzed

patterns in model agreement. We compared habitat rela-

tionships represented by different models by plotting

mean � SD HSI values against environmental variables

(Hanser 2011). We also compared the proportion of pix-

els classified highly suitable by each model at individual

locations (n = 23). We expected predictions to differ

among models and model agreement to decline with

increasing environmental distance from survey units. Our

Table 2. Remotely sensed habitat variables used to develop nesting habitat suitability models for Black-backed Woodpeckers.

Variable name (abbrev.) Description

Cosine Aspect (COSASP) Pixel cosine-transformed orientation of slope (unitless)

Differenced (delta) normalized burn ratio (dNBR) Median index of burn severity using Landsat TM satellite imagery for

1-ha moving window (unitless)

Percent moderate-to-high canopy cover at local-scale (LocCC) Proportion of 1-ha moving window with >40% canopy cover

Percent moderate-to-high canopy cover

at landscape-scale (LandCC)

Proportion of 314-ha moving window with > 40% canopy cover
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models represented two distinct types. WLRs and Maxent

models represented resource selection models, which

emphasize differences in used versus available sites (Lele

and Keim 2006; Phillips et al. 2006; Elith et al. 2011).

Strictly speaking, WLRs analyzed presence–absence data,

which are expected to yield maximally informative models

(Royle et al. 2012). At the resolution of our data

(30 9 30 m), however, “absences” could arise from low

prevalence of nests rather than poor habitat quality (in

sensu Lobo et al. 2010). We therefore expected data ana-

lyzed by WLRs and Maxent models to provide similar

information regarding resource selection in this study. In

contrast, distance models (Mahalanobis D2) strictly refer-

ence environmental dissimilarity from used habitat with-

out reference to availability (Browning et al. 2005;

Rotenberry et al. 2006). Distance models will always pre-

dict declining suitability with increasing environmental

dissimilarity from known species-use locations and, con-

sequently, from sampled environments (Knick and Roten-

berry 1998). In contrast, if resource selection favors a

particular direction along an environmental gradient

within sampled environments, resource selection models

will predict increasing suitability outside sampled envi-

ronments in the favored direction (Fig. 3). Given these

tendencies, we expected agreement between resource

selection and distance models to decline outside sampled

environments, that is, in no-analogue environments. Dif-

ferences in complexity (number of parameters) can fur-

ther drive divergence among models because complex

models fit calibration data more tightly, potentially reduc-

ing predicted suitability by complex models faster outside

sampled environments. Resource selection models also

differed in underlying structure (Maxent vs. logistic

regression) in other ways that can result in somewhat dif-

ferent suitability estimates (Royle et al. 2012). Finally,

because calibration locations differed environmentally

from each other (Appendix S4), parameter estimates and

thus predictions could also differ among models fitted to

different datasets.

We related environmental distance from sampled envi-

ronments (i.e., survey units) with model agreement. We

calculated multivariate distances from mean values scaled

by the covariance matrix for survey unit pixels (square

root of values from “mahalanobis” function in R 2.15.1;

R Core Team 2013). We calculated distances from a sam-

ple of 15,000 pixels drawn from within survey unit

boundaries (5000 each from Tripod, Silver-Toolbox, and

Star Gulch locations) based on all environmental variables

(Table 2) to individual wildfire locations (represented by

a maximum of 5000 pixels drawn from each location).

We used Pearson’s correlation and linear regression (cor

and lm functions, R v. 2.15.1; R Core Team 2013) to

analyze the relationship between location-wide model

agreement and median environmental distance from sur-

vey units (n = 23).

Results

Habitat models and their performance at
calibration locations

Field surveyors found nests within 108 pixels at the three

surveyed locations (Table 1). Top-ranked WLR models

for Tripod, Silver-Toolbox, and Star Gulch fires all

described relationships with burn severity (DNBR; Appen-
dices S5, S6). WLR parameters describing relationships

with burn severity were consistently positive. Star Gulch

Fire model HSIs also related positively with landscape-

scale canopy cover (LandCC), suggesting an affinity for

moderate–high postfire snag densities.

We selected three Mahalanobis D2 models. The model

derived from partition 1 of cosine aspect and burn sever-

ity variables achieved the highest median nest HSI

(0.475), but a low AUC (0.577). The remaining models

achieved similar median nest HSIs (0.41–0.44), but three

Figure 3. Three hypothetical species–habitat relationships (A, B, C)

and use-availability data potentially generated given any of the

depicted relationships. Suggested relationships (A, B, C) are purely

descriptive and do not assume particular mathematical relationships.

The modeling technique best suited for prediction may depend on the

form of the true relationship (A, B, or C) governing a species

distribution. A distance model reflecting environmental distance from

used habitat would be best for predicting a distribution governed by

relationship A, whereas a resource selection model, which compares

use to availability, would more likely reflect relationship B. Neither

model would reflect relationship C. Both types of models would

correctly estimate higher suitability at the positive end of this gradient

within the sampled range, but model predictions would differ widely

outside sampled environments.
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achieved higher AUCs (0.70–0.72): models derived from

(1) partition 2 of cosine aspect and burn severity vari-

ables, (2) partition 3 of burn severity and prefire canopy

cover variables, and (3) partition 4 of all four variables

(Appendix S7). All three models arose from the kmax

partition and were therefore equivalent to unpartitioned

models. These models reflected average conditions at nest

sites (Table 3).

We retained two Maxent models for ensemble predic-

tions. A maximally parameterized model (allowing linear,

quadratic, product, threshold, and hinge relationships

with all four variables) achieved a validation AUC =
0.725. Excluding LandCC, which contributed minimally

(7%) to this initial model, and allowing only linear,

quadratic, and product features did not compromise

discriminatory power (AUC = 0.726). Burn severity was

the predominant contributor to this 3-variable model

(66%; LocCC contributed 18% and COSASP 16%). A

model allowing only a linear relationship with burn sever-

ity, however, also did not compromise explanatory power

(AUC = 0.730). We retained the 3-variable and the

ΔNBR-only model for ensemble predictions.

Within survey unit boundaries, all eight selected mod-

els were at least moderately informative for discriminating

nest from landscape pixels (all site-specific AUCs ≥ 0.65;

Table 4). Furthermore, all models classified most nest

pixels as highly suitable (all sensitivities ≥ 0.56; all except

two ≥ 0.70) while also classifying a substantial portion of

the landscape as low suitability (specificities ≥ 0.34; for

classification thresholds, see Appendix S8). Most models

classified the great majority of nest pixels as highly suit-

able, so limitations to discriminative power were mainly

attributable to limited specificity, which is less of a con-

cern when discriminating used from available habitat

(Phillips et al. 2006).

All models described relationships with burn severity,

but distance models (Mahalanobis D2) described peaked

relationships with DNBR, whereas resource selection

models described relatively monotonic and positive rela-

tionships (Fig. 4). Four models described relationships

with prefire canopy cover variables (Appendix S8), assign-

ing lower HSIs to pixels with minimal prefire canopy

cover (Appendix S9). Of these four models, however, the

WLR model described a strong positive relationship,

whereas the two distance models and the 3-variable Max-

ent model described weaker plateauing relationships.

Three models lacking prefire canopy cover variables

(Tripod Fire WLR, 2-variable Mahalanobis D2, and

DNBR-only Maxent models) nevertheless also described

somewhat positive albeit weak relationships with prefire

canopy cover. Three models (2- and 4-variable Mahalan-

obis D2 and 3-variable Maxent models) described rela-

tively weak relationships with cosine aspect that varied

among models (Appendix S9).

Ensemble predictions and model agreement

The proportion of pixels predicted highly suitable varied

among models and locations (Table 5). Despite differ-

ences among models, we found complete agreement

among all 8 models at 52.8% of pixels outside survey

units at Tripod, Silver-Toolbox, and Star Gulch locations,

including 40.0% of pixels at eastside Montana fires.

Within survey units, the number of models predicting

pixels as highly suitable related strongly and linearly with

the proportion of pixels in which nests were located

(R2 = 0.92, P < 0.0001; Fig. 5). Environments outside

survey units at Tripod, Silver-Toolbox, and Star Gulch

locations were similar to environments within survey

units, whereas some eastside Montana locations were

quite different (Appendix S4). Model agreement declined

with environmental distance from surveyed units (Fig. 6).

Environmental distance scores indicated the sampled

environmental range (median D and 95th percen-

tiles = 1.90 [0.97–3.01]; n = 15,000 pixels sampled from

within surveyed units) was narrower than the entire range

across which models were applied (2.35 [1.13–3.81];
n = 128,687 pixels from all locations). Models mainly

agreed on their identification of low suitability habitat.

Only 19.7% of the area outside survey units was classified

highly suitable by all 8 models, whereas 27.7% of this area

was consistently classified low suitability.

Discussion

Ensemble predictions at eastside Montana locations

acknowledged uncertainties in our knowledge of Black-

backed Woodpecker ecological relationships. Ideally, data

from locations of management interest would be used to

develop or validate particular models for use at those

locations. In situations requiring habitat conservation for

disturbance specialists, however, such data may be unat-

tainable within the necessary time frame needed to guide

Table 3. Descriptive statistics (mean � SD) for pixels containing

Black-backed Woodpecker nests (“used” pixels) and available pixels

(drawn randomly from units surveyed for nests).

Variable

Nest (n = 84; 28

from each

of 3 locations)

Available

(n = 30,000; 10,000

from each of

3 locations)

COSASP 0.28 � 0.62 0.00 � 0.69

DNBR 518.1 � 200.3 327.8 � 235.2

LocCC 0.82 � 0.30 0.63 � 0.42

LandCC 0.65 � 0.16 0.59 � 0.19
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management decisions. This challenge parallels that of con-

servation planning in the face of future climate changes

(Ara�ujo and New 2007). By accounting for alternative

hypotheses regarding habitat suitability relationships for

nesting and foraging Black-backed Woodpeckers during the

breeding season, ensemble predictions presented here may

represent the best available information for guiding man-

agement of recently burned forests. In areas where models

agree, habitat suitability can be seen as relatively certain

because predictions of suitability (or unsuitability) in these

areas are robust to inaccuracies associated with particular

hypotheses represented by different models. Conversely,

model disagreement suggests where future data collection

efforts might be focused to test competing hypotheses and

thereby further ecological knowledge of this species.

Agreement among all 8 models occurred at a substan-

tial proportion of Montana locations. Limitations in cur-

rently available data may limit the predictive performance

of any model (e.g., consider prediction of relationship C

in Fig. 3). Additional data sampling a broader range of

environments could improve our general understanding

of ecological relationships and thus our ability to identify

suitable nesting habitat with greater certainty. Alterna-

tively, local adaptation may cause variation in habitat

relationships across this species’ range (e.g., Bonnot et al.

2009; Morrison 2012), in which case models tailored to

specific subpopulations or ecotypes may be required for

accurate prediction. Regardless, deviations from observed

habitat selection patterns will more likely occur in envi-

ronments that differ from sampled locations (Aarts et al.

2013). Consistent with declining confidence in model pre-

dictions, model agreement declined when applied in envi-

ronments that diverged from sampled environments.

Furthermore, the number of models classifying habitat as

highly suitable was linearly related to the proportion of

pixels containing nests, paralleling a desirable property of

individuals models in the context of prediction (Jim�enez-

Valverde et al. 2013).

Knowledge to be gained becomes apparent when con-

sidering alternative ecological processes that potentially

underlie relationships hypothesized by different models.

The models selected for prediction described observed

data reasonably well and were consistent with known

nesting habitat requisites of Black-backed Woodpecker

(Saab et al. 2009, 2011). Fire is clearly an important req-

uisite across most of this species’ range, so all models

described relationships with burn severity. Resource selec-

tion models generally described positive relationships,

Table 4. Evaluation scores of habitat suitability models for nesting Black-backed Woodpeckers. AUC evaluates model ability to discriminate nests

from available sites independent of the HSI threshold used for classification. Sensitivity is the proportion of nest pixels correctly classified as highly

suitable, and specificity is the proportion of available pixels classified as low suitability habitat at the HSI threshold that maximized predictive gain

(sensitivity � [1 � specificity]; thresholds and max gain values reported in Appendix S8).

Site Model AUC Sensitivity at HSI threshold Specificity at HSI threshold

Tripod Fire (Washington) Tripod logistic regression 0.795 0.964 0.344

Toolbox logistic regression 0.795 0.893 0.636

Star Gulch logistic regression 0.750 0.893 0.630

2-variable Mahalanobis D2 0.825 0.929 0.623

3-variable Mahalanobis D2 0.782 0.964 0.669

4-variable Mahalanobis D2 0.825 0.821 0.766

3-variable Maxent 0.828 0.821 0.686

DNBR-only Maxent 0.795 0.857 0.639

Silver-Toolbox fires (Oregon) Tripod logistic regression 0.696 0.909 0.726

Toolbox logistic regression 0.696 0.727 0.697

Star Gulch logistic regression 0.693 0.727 0.686

2-variable Mahalanobis D2 0.653 0.841 0.702

3-variable Mahalanobis D2 0.665 0.864 0.687

4-variable Mahalanobis D2 0.674 0.659 0.664

3-variable Maxent 0.721 0.705 0.757

DNBR-only Maxent 0.696 0.727 0.703

Star Gulch Fire (Idaho) Tripod logistic regression 0.730 0.917 0.749

Toolbox logistic regression 0.730 0.778 0.691

Star Gulch logistic regression 0.762 0.778 0.683

2-variable Mahalanobis D2 0.646 0.889 0.708

3-variable Mahalanobis D2 0.737 0.917 0.688

4-variable Mahalanobis D2 0.727 0.556 0.689

3-variable Maxent 0.741 0.722 0.728

DNBR-only Maxent 0.730 0.778 0.696
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whereas distance models described optimal burn severi-

ties. Black-backed Woodpeckers favor relatively severe

fires. An upper limit to severity beyond which fire could

be detrimental (e.g., when too many snags are entirely

consumed) has yet to be determined for fire specialists

and for the promotion of ecological resiliency. Future

conditions driven by climate change, however, could

reveal severity thresholds for fire-associated species

because a warming climate is expected to increase fire

severity (Whitlock et al. 2003). Our models did not con-

sistently indicate a burn severity level within the sampled

environmental range beyond which habitat suitability

declines. Nevertheless, an optimal severity could become

more evident with additional data from eastside Montana,

where wildfires burned more severely than at sampled

locations. Densities of postfire snags and prefire trees also

likely determined habitat suitability for nesting Black-

backed Woodpeckers. Previous work documents prefer-

ences for relatively high snag densities (Russell et al. 2007;

Saab et al. 2009), and persistence of snags, relating to

persistence of suitable nest sites, also increases with snag

density (Russell et al. 2006). Whether habitat suitability

continues to increase or plateaus from moderate to high

tree densities remains unclear. A greater prefire tree den-

sity may also elevate burn severity (Lentile et al. 2006;

but see Turner et al. 1999), for which an optimum may

exist as discussed above. The north–south orientation of

the slope (represented by cosine aspect) was not a pre-

dominant component of our models. Modeled relation-

ships with this feature could reflect real ecological

relationships with variation in moisture and thus vegeta-

tion structure, although these relationships may be suffi-

ciently accounted for by metrics of snag density. We

nevertheless retained this element in our ensemble of

models for further evaluation as additional data are col-

lected.

Assuming all selected models represent realistic descrip-

tions of suitable habitat, model disagreement can in part

reflect differences between alternative ecological hypothe-

ses, providing direction for future research. Some ensem-

ble prediction studies and tools have emphasized either

resource selection models (Marmion et al. 2009; Thuiller
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Figure 4. Dose–response plots depicting habitat suitability index (HSI) relationships with delta normalized burn ratio (DNBR; Tripod Fire weighted

logistic regression [WLR; A], Star Gulch Silver-Toolbox fires WLR [B], Fire WLR [C], 2-variable Mahalanobis [D], 3-variable Mahalanobis [E], 4-

variable Mahalanobis [F], 3-variable Maxent [G], DNBR-only Maxent [H]). Solid lines depict median HSI values; broken lines depict 25th and 75th

median-unbiased percentiles.
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et al. 2009) or distance models and related techniques

(Arag�on et al. 2010). Because these two classes of models

represent divergent paradigms, their predictions will tend

to diverge outside sampled environments. Variation in

model complexity can also cause model disagreement.

Parsimonious models may avoid being over-fitted to

particular datasets, potentially favoring general applicabil-

ity (Wenger and Olden 2012). Nevertheless, complex

models could reflect more of a species’ ecology and there-

fore should not be discounted until empirically evaluated.

Inclusion of models varying in underlying structure and

complexity in one’s ensemble will naturally lead to

reduced agreement as predictions are applied in environ-

ments that differ from sampled locations. Assuming mod-

els represent viable alternative hypotheses, this tendency

of ensemble predictions is consistent with our declining

confidence in predictions in un-sampled environments

and is therefore desirable. Although our ensemble predic-

tions represented a range of hypotheses, they by no means

included the full range of potential predictions inferred

from our data. Developing a set of models that represents

the full range of possibilities may be impractical. We

therefore suggest starting with models that capture a vari-

ety of ecological hypotheses and then adjusting one’s

ensemble as field testing confirms, refutes, or suggests

new hypotheses.

Limitations and additional considerations

Various limitations are worth considering when applying

these models. Although AUCs suggested all models were

at least somewhat informative for discriminating high

from low suitability habitats, other indicators suggested

relatively poor performance by certain models. The Sil-

ver-Toolbox WLR model improved AICc by only 2.1 over

an intercept-only model, suggesting poor explanatory

power. Median nest HSIs from selected Mahalanobis D2

models in this study were lower than those reported else-

where (Rotenberry et al. 2006; Preston et al. 2008; Knick

et al. 2013), which may be undesirable for predictive

power (Rotenberry et al. 2006). Additionally, model selec-

tion results for WLRs at all locations indicated uncer-

tainty in the relative importance of particular habitat

features. Surveyed units at the Silver-Toolbox fires were

burned more severely and included a somewhat narrower

severity range compared with areas outside these units

and to other sampled locations (see Appendix S4). Stron-

ger evidence for a burn severity relationship at other loca-

tions, where a wider range of severities were sampled,

corroborated the importance of this habitat feature. WLR

model selection results and lower percent variable contri-

butions to Maxent models, however, indicated uncertainty

in the importance of relationships with the other three

habitat variables.

Variables used here served as proxies for other features

(prefire canopy cover for tree density and cosine aspect

for climate). Variables that more directly measure features

of interest could improve explanatory and predictive

power of the models and may be more definitively related

Figure 6. Relationship between habitat suitability model agreement

and median environmental distance from surveyed units. Median

distance and 95% median-unbiased intervals were calculated from

surveyed units to 23 wildfire locations (outside survey unit boundaries

at the three calibration locations [Tripod, Silver-Toolbox, and Star

Gulch locations] and 20 eastside Montana locations). Model

agreement was measured as the proportion of pixels within each

burned location consistently classified either as highly suitable or as

low suitability habitat by all 8 models.

Figure 5. Relationship between ensemble predictions of suitability

(no. models classifying surveyed pixels [n = 76,655] as highly suitable)

and the proportion of these pixels in which nests were located.

Sample sizes for ensemble prediction levels (0–8) ranged from 3622

to 20,578 pixels. r = Pearson’s correlation coefficient.
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to habitat suitability. A completely continuous metric of

prefire canopy cover (i.e., percent canopy cover rather

than proportion of neighborhood over 40%) might be a

better proxy for postfire snag density, but such data were

not available at all locations. In addition, inclusion of

variables describing additional factors not currently repre-

sented, such as tree size or species composition, could

improve model performance. The growing sources of

remotely sensed data (e.g., Lefsky et al. 2002; Recio et al.

2013) will likely provide additional environmental data

useful for modeling Black-backed Woodpecker habitat

suitability. Nevertheless, for a generally applicable model

or ensemble of models, the need for remotely sensed data

that are consistently available throughout this species’

range may inevitably limit model performance.

Our models describe fine-scale variation in nesting habi-

tat suitability, which describes where we expect Black-

backed Woodpeckers to initiate nests and subsequently for-

age assuming they are present at a wildfire location. Other

factors besides habitat suitability, such as dispersal limita-

tion (Hoyt and Hannon 2002), are also important to spe-

cies occurrence patterns. To locate unpredictably available

burned-forest habitat, Black-backed Woodpeckers must be

adept dispersers, which is evident in the lack of genetic

structure across wide regions (Pierson et al. 2010). Some

dispersal limitation is evident, however, particularly for

females (Pierson et al. 2010). We sampled at least two dis-

tinct populations; Black-backed Woodpeckers in Oregon

belong to a genetically distinct population that likely

extends into California, whereas Idaho and western Mon-

tana birds belong to a separate population (Pierson et al.

2010). Thus, an understanding of coarser scale distribu-

tional patterns may require consideration of variability in

population dynamics among regions. Differentiation

among populations may also cause local adaptation (Pear-

man et al. 2008; Bonnot et al. 2009), possibly further com-

plicating application of models for predicting habitat

selection patterns outside sampled regions (Morrison

2012). We found some consistency in apparent habitat

relationships across at least two distinct populations (burn

severity parameters for the three WLRs were similar in

direction and magnitude). Nonetheless, collection of loca-

tion-specific data for validating ensemble predictions

would be particularly desirable in un-sampled regions (e.g.,

eastside Montana).

As is commonly the case, our models assume habitat

relationships are spatially and temporally static and are

not influenced by biotic interactions (i.e., competition

and predation). Such assumptions can limit model per-

formance (Zurell et al. 2009). Black-backed woodpeckers

are attracted to burned forests because of increases in

nesting and foraging opportunities provided by snags

(Nappi et al. 2003; Saab et al. 2007, 2009). Reduced

competition due to increased opportunity for nesting likely

explains, in part, why certain cavity-nesting birds are

attracted to burns (Russell et al. 2007). Additionally, nest

predator populations may temporarily decline following a

burn, potentially relaxing predation pressure (Russell et al.

2010). Variation among regions in nest predation pressure

or snag availability in unburned forests may modulate the

attractiveness of burns for cavity-nesting species and thus

the black-backed woodpecker’s relationship with burn

severity. In addition to local adaptation, dispersal limita-

tion, variability in demography, and biotic interactions, rel-

atively simple mechanisms can induce variability in habitat

relationships (Aarts et al. 2013). Finally, because nesting

habitat for black-backed woodpecker is ephemeral (Saab

et al. 2007), the predictive value of static habitat suitability

models is necessarily limited. With additional data, models

could be refined to allow some variability in habitat rela-

tionships either via interactions among predictors (Aarts

et al. 2013), hierarchical structuring (Pearson and Dawson

2003), or inclusion of temporal dynamics (Mieszkowska

et al. 2013). Until such refinements are implemented, how-

ever, the relatively simple models presented here provide a

useful first approximation for focusing efforts to conserve

habitat for black-backed woodpeckers (see also arguments

by Pearson and Dawson 2003).

How predictions can help guide habitat
management

Ensemble predictions generated here reflect available

knowledge of Black-backed Woodpecker nesting habitat

relationships in burned forests. If postfire management

objectives include wildlife habitat conservation, managers

could conservatively restrict salvage logging in areas iden-

tified highly suitable by liberal ensemble predictions,

which would include most wildfire locations in eastside

Montana. For a more balanced approach, land managers

could conserve areas predicted highly suitable by more

models (e.g., red-shaded areas; Fig. 7). Ideally, managers

would follow an adaptive management strategy, whereby

they would initially manage habitat conservatively (e.g.,

restrict salvage logging in areas predicted highly suitable

by ≥3 models), while conducting surveys to corroborate

predictions and refine models as necessary. Our ensemble

predictions are best applied to dry mixed-conifer forests,

but data collected in other forest types could be used to

test model applicability across a broader range of forests.

Additionally, remotely sensed variables derived from pre-

fire conditions could be used to model nesting habitat in

unburned areas with an increased risk of burning. Such

work could inform development of conservation strategies

that account for changing fire regimes expected as a result

of climate change (Whitlock et al. 2003).
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