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Extreme air quality episodes represent a major threat to human
health worldwide but are highly dynamic and exceedingly chal-
lenging to monitor. The 2018 K�ılauea Lower East Rift Zone erup-
tion (May to August 2018) blanketed much of Hawai‘i Island in
“vog” (volcanic smog), a mixture of primary volcanic sulfur dioxide
(SO2) gas and secondary particulate matter (PM). This episode was
captured by several monitoring platforms, including a low-cost
sensor (LCS) network consisting of 30 nodes designed and deployed
specifically to monitor PM and SO2 during the event. Downwind of
the eruption, network stations measured peak hourly PM2.5 and SO2

concentrations that exceeded 75 μg m−3 and 1,200 parts per billion
(ppb), respectively. The LCS network’s high spatial density enabled
highly granular estimates of human exposure to both pollutants
during the eruption, which was not possible using preexisting air
quality measurements. Because of overlaps in population distribu-
tion and plume dynamics, a much larger proportion of the island’s
population was exposed to elevated levels of fine PM than to SO2.
Additionally, the spatially distributed network was able to resolve
the volcanic plume’s chemical evolution downwind of the eruption.
Measurements find a mean SO2 conversion time of ∼36 h, demon-
strating the ability of distributed LCS networks to observe reaction
kinetics and quantify chemical transformations of air pollutants in a
real-world setting. This work also highlights the utility of LCS net-
works for emergency response during extreme episodes to comple-
ment existing air quality monitoring approaches.

air quality | low-cost sensors | volcanoes

Outdoor air pollution leads to the deaths of millions of
people per year, representing the single largest environ-

mental risk factor for premature mortality worldwide (1). Air
quality (AQ) monitoring is critical to understand and ultimately
minimize people’s exposure to harmful air pollutants; however,
surface-based measurements remain relatively sparse in much of
the world (2). Moreover, a substantial (though poorly quantified)
fraction of humans’ exposure to air pollutants occurs during ex-
treme AQ events in which pollution levels are dramatically ele-
vated relative to mean levels. Examples include the 1948 Donora,
Pennsylvania smog event (3), the London Fog of 1952 (4), the
Great Smog of Delhi (5), the Beijing “Airpocalypse” in 2013 (6),
and recent severe wildfires in North America and Australia (7, 8).
During such events, hazardous pollutants such as particulate
matter (PM) can be primary (emitted directly) or secondary
(formed via atmospheric reactions) (9). The variable confluence of
primary emissions, meteorological transport dynamics, and com-
plex secondary chemical processes makes AQ monitoring during
extreme episodes exceptionally challenging. There is currently no
established approach or strategy to monitor pollutant distribution
or human exposure during these episodes.
Here, we track and characterize a recent extreme AQ event,

the 2018 lower East Rift Zone (LERZ) eruption of K�ılauea
Volcano (Island of Hawai‘i, USA, May to August 2018), using a

low-cost air quality sensor network. Prior to this event, K�ılauea
had been continuously erupting since 1983 (10). As the nearly
constant northeasterly trade winds transported the plume down-
wind around the southern coast of the Island, the primary sulfur
dioxide (SO2) emissions oxidized to form sulfuric acid, leading to
elevated levels of fine PM on the island’s downwind western side
(the Kona coast) (11). The SO2 and PM (collectively known as
“vog,” for “volcanic smog”) from this effusive eruption had for
decades been recognized as a local AQ nuisance and health
hazard (12, 13) for the island’s ∼175,000 residents and even for
residents in neighboring islands. Prior to May 2018, both satellite
measurements and a regulatory network (five stations operated by
Hawai‘i Department of Health) showed levels of SO2 and PM that
were substantially elevated above those of background (marine)
air (Fig. 1).
In May 2018, the eruption entered an intense phase with

K�ılauea experiencing its largest rift eruption in more than 200 y
(14). On May 3, eruptive fissures opened in a residential neigh-
borhood in the LERZ, pumping out lava and emitting substan-
tially elevated amounts of SO2 (>50,000 tons a day

−1) (14) directly
into a populated area. During the course of the 3-mo–long
eruption, lava covered 35.5 km2 of land, more than 700 homes
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were destroyed, and thousands of residents were displaced. The
elevated SO2 emissions led to exceedingly poor AQ not only in the
immediate vicinity of the eruption but also across the wider region.
The order-of-magnitude step change in SO2 emissions and result-
ing secondary PM was clearly visible from space (Fig. 1 A and B)
and was also measured by the ground-based regulatory network
(Fig. 1 C and D).
The measurements in Fig. 1 established the LERZ eruption as

an extreme AQ event, and recent studies have used satellite and
in situ measurements (15–17) to explore air quality implications
and plume dynamics during the eruption. For example, analysis
of regulatory network data found that 24-h average PM2.5 con-
centrations exceeded US Environmental Protection Agency
(EPA) AQ thresholds eight times during the eruption in certain
locations, compared to zero times during the previous 8 y (17).
However, such measurements are typically designed to monitor
regional-scale AQ and therefore provide limited details about
the fine-scale spatiotemporal distribution of air pollutants. Sat-
ellite measurements are limited both spatially and temporally
(because of overpass intervals of 1 to 3 d, pixel sizes of ∼tens of
km, cloud cover, and limited vertical resolution). Ground-based
regulatory measurements provide improved temporal resolution
and networks are strategically placed to monitor ambient AQ in
populated regions but are generally not designed to monitor
fine-scale exposure from dynamic plumes during extreme events.
On the Island of Hawai‘i, the average resident lived ∼17 km from
the nearest regulatory AQ station (closer than the United States
average of 22 km), and while this network provides continuous,
high-quality measurements at key locations, this is too sparse for
high-resolution estimates of residents’ pollutant exposure given
the high temporal and spatial variability of the volcanic plume.

Results and Discussion
In order to complement existing measurements and provide
improved estimates of the pollutants’ spatial variability, human
exposures, and rate of interconversion, we built and deployed a
network of low-cost sensor (LCS) nodes to measure SO2 and PM
throughout the region. The relative affordability and small size
of LCS enables many network nodes to be deployed within a
small area, thereby providing distributed measurements with a
much higher spatial resolution than is possible with traditional
AQ networks (18–20). LCS networks have recently been deployed
in different locations worldwide (20–23); while LCSs are generally
less accurate and precise than regulatory AQ instruments, recent
work has demonstrated that LCS calibration via colocation with
regulatory-grade monitors can enable robust measurements
(24–26). Our deployment during the eruption occurred in two
phases. First, an initial small-scale deployment in the LERZ, en-
abling civil authorities and local residents to monitor SO2 levels
and make emergency management decisions, was carried out be-
ginning May 14. These sensors had already been built and used in
Hawai‘i (24) and were among the first SO2 measurements in the
area. Next, a total of 30 new sensor units were built (measuring
SO2 and PM), calibrated using the regulatory stations’ measure-
ments, and deployed throughout the Island beginning May 23.
Details of the sensor unit design and calibration are provided in
theMaterials and Methods and SI Appendix. After this deployment,
the network had one node per ∼5,800 people and the aver-
age resident lived 4.6 km from an AQmeasurement (SI Appendix).
By comparison, the US- and globally averaged distances to a
regulatory-grade AQ measurement are 22 km and 220 km,
respectively (2).

Fig. 1. Satellite- and ground-based monitoring of air quality before, during, and after the LERZ eruption. (A and B) Satellite observations of column in-
tegrated SO2 and aerosol optical depth (AOD) from May to July, comparing the average of 3 y prior to the eruption (2015 to 2017), the year of the eruption
(2018), and the year following the eruption (2019). SO2 (shown in Dobson Units [DU]) and AOD measurements are taken from the Ozone Mapping and
Profiler Suite (OMPS) instrument aboard Suomi National Polar-orbiting Partnership (NPP) (50 km product, Version 2) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument aboard the Aqua platform (10 km product, Collection 6.1), respectively. Daily satellite observations are gridded and
averaged at 0.5° × 0.5° horizontal resolution. (C and D) Concentrations of SO2 and PM2.5 for all of 2018, as measured by the Hawai‘i Department of Health
ground-level regulatory station at Ocean View.
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Average SO2 and PM levels measured by a subset of the
network during July 15 to August 1 are shown in Fig. 2. This
subset (20 PM2.5 and 17 SO2 sensors) includes all sensors that
operated nearly continuously throughout this measurement pe-
riod (the full timeseries is shown in the SI Appendix). Both the
regulatory and LCS networks measured similar overall trends in
volcanic pollution downwind of the volcano; the highest SO2
concentrations were observed just downwind of the eruption,
whereas the highest PM2.5 levels were further downwind, along
the western (Kona) coast. LCS network stations measured peak
hourly SO2 concentrations >1,200 parts per billion (ppb) and
peak hourly PM2.5 concentrations >75 μg · m−3 (SI Appendix).
The LCS network also revealed pollution gradients in populated
areas that were imperceptible to the regulatory network, with
substantial variability on finer (5 to 20 km) scales. For example,
along the Kona coast, average PM2.5 loadings at nearby sites
varied by more than a factor of two (from 9 to 25 μg · m−3)
during the measurement period, likely because of differences in
elevation, topography, and local winds. Sensors were also placed
in areas that previously had been unaffected by “vog” and were
without long-term monitoring stations, revealing elevated levels
of pollutants there as well. For instance, in areas of the northern
Kona coast, average PM2.5 ranged from 5 to 18 μg · m−3 with
several short-lived episodes (<8 h) in which PM2.5 exceeded
30 μg · m−3.
The high spatial resolution of the LCS network also enables

fine-grained estimates of residents’ exposure to pollutants in terms
of both average exposures (Fig. 3 A and B) and hourly exposure
distributions (Fig. 3 C and D). Fine-grained exposure estimates
have long been viewed as a primary advantage of distributed
sensor networks (e.g., ref. 18), but there exist few, if any, examples
of such networks used to quantitatively estimate population-wide
exposure distributions. With this sensor-based analysis (covering
the >70,000 people within 5 km of a sensor node), we are able to

resolve the fine structure of pollutant exposure during this ex-
treme AQ event, analogous to previous global population-scaled
annual exposure estimates based on satellite data and models (27).
The choice of a 5-km buffer is somewhat arbitrary but is intended
as a compromise between population coverage (SI Appendix) and
spatial variability of point measurements as the plume chemically
transforms and dynamically adjusts to underlying surface condi-
tions. During the eruption, the highest SO2 levels were experi-
enced primarily by those just downwind of the vents (Fig. 3A), with
5.3% of the sampled population exposed to elevated (>35 ppb)
average levels of SO2. The LCS SO2 hourly exposure distribution
(Fig. 3C) shows an extended high-concentration tail, with 2% of
all hourly exposures exceeding 75 ppb (the US EPA 1-h standard,
though Hawai‘i uses the pre-2010 threshold of 140 ppb). In
comparison, cumulative hourly SO2 exposures from the regulatory
network (composed of five stations covering nearly 30,000 people)
are 25% of the LCS network’s cumulative total (SI Appendix, Fig.
S9). However, the population-weighted average SO2 concentra-
tions measured by the two networks are not significantly different
(9.8 ppb and 9.2 ppb) because of highest SO2 concentrations oc-
curring primarily in sparsely populated areas (SI Appendix, Fig. S8).
Exposure to secondary PM2.5 was more widespread; elevated

average levels (>10 μg · m−3, World Health Organization annual
standard) were experienced by nearly half (46.7%) of the sam-
pled population (Fig. 3B), with 6.7% of hourly exposures ex-
ceeding 35 μg ·m−3 (the US EPA 24 h standard). The LCS PM2.5
population-weighted distribution (Fig. 3D) also displays a clear
bimodal structure, representing the overlap of spatial population
and plume dynamics; a large fraction of the sampled population
(mostly in the Hilo area) lives upwind of the volcano and therefore
mostly experienced background levels of PM2.5, whereas pop-
ulation centers downwind of the vents experienced uniformly el-
evated PM levels over the entire course of the eruption. Because
of the greater number of LCS stations in densely populated
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Fig. 2. Average concentrations of SO2 (A) and PM2.5 (B), as measured by the LCS network (colored circles) and the regulatory network stations (gray circles).
Data are from a 15-d period from July 15 to August 1, 2018; only the LCS nodes that were in near-continuous operation during this time are shown. For SO2,
17 sensors are shown, accounting for 70,414 people within 5 km. For PM2.5, 20 are shown, accounting for 86,856 people within 5 km. In total, there are 16
stations with both SO2 and PM2.5 measurements, accounting for 73,013 people within 5 km (Fig. 3). The full time series for all sensors are shown SI Appendix,
Figs. S3 and S5.
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regions exposed to high levels of PM2.5, cumulative hourly PM2.5
exposures from the regulatory network during the study period are
28% of the LCS network (SI Appendix, Fig. S9). Additionally, the
population-weighted average PM2.5 concentration from the LCS
network is substantially higher than that of the regulatory network
(12.9 μg ·m−3 to 8.2 μg ·m−3; SI Appendix, Fig. S8), demonstrating
the importance of dense monitoring networks to complement
existing measurements for accurate population-wide exposure
distributions.
The highly variable concentrations (Fig. 2) and exposures

(Fig. 3) throughout the island arise not only from differences in
location relative to the fissures and the plume but also from the
dynamic chemical evolution of the volcanic pollutants (the oxi-
dation of SO2 to form PM). Such secondary transformations of

pollutants represent major challenges in AQ monitoring, which
spatially dense LCS networks are well-suited to address. The
high spatial resolution of our LCS network, with stations placed
at different distances (i.e., plume transport times) downwind of
the fissure, enables this chemical transformation to be mapped.
Fig. 4 shows the evolution of the plume chemistry (described by
the measured SO2/PM2.5 ratio) as a function of plume age, which
is calculated using an atmospheric dispersion model (SI Appen-
dix). The ratio is highest at stations closest to the eruption, with a
clear decay as the plume ages.
The rate of change in plume composition (Fig. 4) implies a

mean SO2 loss rate (kSO2) of 7.6 × 10−6 · s−1 (±4.8 × 10−7 · s−1) for
an atmospheric SO2 oxidation lifetime (τox) of 36 h. While there
are several uncertainties and assumptions in this calculation

A C

B D

Fig. 3. Population exposure to volcanic pollutants, measured by the LCS network over the 15-d study period. (A and B) Mean pollutant distribution as a
function of cumulative near-node population (residents living within 5 km of each node: 73,013 total). Bar width is proportional to nearby population, and
bar height is the average pollutant concentration measured by each node. Sensor nodes are differentiated by color, as shown on the inset map. Stations are
arranged from lowest to highest average concentration. (C and D) Population distribution as a function of hourly exposure frequency to SO2 and PM2.5. Here,
the distribution of hourly concentrations experienced by each sensor node is weighted by population within 5 km of the node and arranged by average
concentration. Estimation of near-node population is given in the SI Appendix. Hourly population-weighted time series data to create (C and D) is shown in SI
Appendix, Fig. S9. An equivalent figure using regulatory network data are shown for comparison in SI Appendix, Fig. S10.
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(see Materials and Methods), this value is consistent with known
atmospheric SO2 oxidation kinetics (28) and suggests some role
of not only gas phase oxidation but also conversion within cloud
droplets or particles as well. Moreover, these reaction kinetics are
comparable to those of other volcanoes worldwide (29), within
bounds of previous measurements at K�ılauea (11, 17, 30–32), and
in broad agreement with a recent estimate from the same erup-
tion (17). Previous studies have used a range of measurement
approaches—single-point, ground-based SO2 photometer obser-
vations (31), time-dependent downwind SO2 and sulfate mea-
surements (30), satellite SO2 measurements (32), and SO2 and
PM measurements from AQ stations (17)—which varied sub-
stantially in temporal and spatial coverage. The range of lifetimes
of SO2 from K�ılauea reported in the literature, τox = ∼9 h (31) to
∼22 d (30), likely results from complex plume SO2 dynamics, the
measurement approach used, and differences in atmospheric
conditions (e.g., solar radiation, temperature, and moisture) and
plume composition (e.g., aerosols, water, and oxidants). An ad-
vantage of using LCS measurements in this case is that in situ
measurements over multiple days from a relatively large number
of spatially distributed stations are used to aggregate highly vari-
able plume meteo-chemical conditions. This study validates the
use of distributed LCS networks for monitoring not only air
pollutant concentrations but also plume chemical evolution.
In all, the LERZ eruption lasted for ∼13 wk before ending

abruptly in early August 2018. After the sudden cessation of
volcanic activity, AQ conditions improved appreciably across the
island as SO2 levels fell immediately and PM2.5 returned to back-
ground levels after 7 to 10 d (Fig. 1 C and D). While unexpected,
this extreme AQ event provided the opportunity to rapidly im-
plement an LCS network, demonstrating the strengths of LCS for

aiding in emergency response, measuring populations’ exposure to
pollution, and characterizing regional atmospheric chemistry. Key
features of this network were the individual nodes’ low cost, small
physical footprint, stand-alone power, and real-time communica-
tions, all of which allowed for rapid, flexible deployment. Two
nodes were even lost in the lava flow, highlighting the resilience of
networks composed of multiple low-cost nodes.
This environment—with its small number of pollutants, point

sources emitting into a clean environment, and relatively simple
chemistry and meteorology—is in many ways an ideal scenario
for monitoring AQ using LCS. Nonetheless, this general ap-
proach can be extended to other, more complex environments as
well. The present work highlights the need for multipollutant
LCS nodes that are already calibrated and readily deployable;
the characterization of other extreme AQ events, such as wild-
fires and urban smog, requires that these nodes measure a
number of additional pollutants (not just PM and SO2 but also
O3, NO2, and CO) as well as species that can provide insight into
pollutant sources and secondary chemical processes (such as NO,
VOCs, and CO2). Furthermore, knowledge of background pol-
lutant levels and atmospheric dynamics is necessary to isolate
contributions from the event and constrain reaction kinetics.
These are included in the present analysis and will be even more
important in regions with higher baseline concentrations or more
complex meteorology. This underscores the need for improved
characterization of regional background pollutant levels (from
prior regulatory, satellite, or LCS measurements) and local me-
teorological conditions (from wind measurements and dispersion
models) in such cases. Because of the chemical complexity of
wildfire and urban smog pollution, LCS measurements will also
benefit from future technological improvements, such as in-line
dryers to obviate the need for uncertain relative humidity cor-
rections, and low-cost techniques for measuring PM and VOC
composition to provide insight into pollutant sources, chemistry,
and impacts. LCS networks thus offer the potential for charac-
terizing pollutant exposure and chemistry under a wide range of
conditions and represent an important high-resolution component
of multiplatform systems to monitor and characterize extreme
AQ events.

Materials and Methods
LCSs and Network Design. Custom multipollutant AQ sensor (MPAQS) sensor
nodes were built to measure sulfur dioxide gas (Alphasense SO2-B4 elec-
trochemical sensor) and PM (Alphasense OPC-N2) concentrations, as well as
auxiliary measurements of air temperature (TA) and relative humidity (RH).
Additionally, six SO2-only nodes (24) and five PM-only nodes (Plantower
PMS5003 nephelometer) were used to supplement the MPAQS network.
Communications and data transmission are via 3G cellular microcontroller
(Particle Electron). Sensor units are powered by rechargeable batteries and
solar panels (Voltaic Systems). All sensors sample at 1 Hz and data are
recorded to local storage, with 1-min averages transmitted to a custom
cloud database. Total materials cost for each MPAQS node is approximately
1,000 US dollars.
The SO2 and PM sensors were calibrated via colocation outdoors with
regulatory-grade monitors run by the Hawai‘i Department of Health (33).
SO2 calibration algorithms are based on sensor-specific nonlinear relations
to air temperature and linear sensitivity to ambient SO2 concentrations (SI
Appendix). PM mass measurements are statistically corrected for ambient RH
due to hygroscopic uptake by sulfate aerosols (SI Appendix). This type of
field calibration approach is advantageous because instruments are exposed
to dynamic and realistic ambient environmental conditions, which can be
challenging to achieve under controlled laboratory settings (e.g., ref. 24).
Sensor nodes were placed primarily at schools, public health clinics, and
community centers in residential areas, and each individual setting and
placement was unique according to specific site characteristics and con-
straints (SI Appendix). Nodes were placed 3 to 15 m above ground level on
rooftops (on tripods, electrical masts, etc.) or in open areas on facility
grounds (on masts, tree trunks, and utility poles). Although sensors were
deployed to more than 30 locations around the Island (SI Appendix), several
nodes experienced intermittent communications interruptions, power is-
sues, or sensor component failures (in particular, several SO2 electrochemical
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Fig. 4. Chemical evolution of the vog plume (SO2/PM2.5 ratio), as measured
by LCS nodes (circles) and regulatory stations (triangles) downwind of the
volcano during the July 15 to August 1 study period. This quantifies the rate
of the chemical transformation of SO2 (gas) to sulfuric acid (PM), yielding an
estimated timescale of 7.6 × 10−6 · s−1 (lifetime of 36 h). Measurement un-
certainties (vertical error bars) were determined separately for SO2 and
PM2.5 sensors during instrument calibration against reference instruments (SI
Appendix). Plume age uncertainties (horizontal error bars) are the inter-
quartile range of model parcel travel times between the LERZ and mea-
surement location during each hour of the study period.
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sensors failed, likely because of high ambient humidity). In total, there were
16 locations during the 2-wk study period with sufficient data quality and
continuity for both SO2 and PM2.5 (Figs. 2 and 3; 16 locations with PM2.5 and
SO2, 1 location with SO2 only, and 4 locations with PM2.5 only).

Population Exposure Data and Analysis. Spatial population data are 2015
Census Designated Place (CDP) level populations from the Hawai‘i State Data
Center. The CDP polygons are rasterized assuming uniform density within
each CDP (SI Appendix). The data are based on night-time residential pop-
ulation, and there are likely uncertainties based on nonresident populations
(e.g., tourists and temporary workers), diurnal commuter patterns, and
spatial settlement patterns (e.g., variations in housing density and informal
encampments).
In Fig. 3, the 5-km buffer is intended as a compromise between spatial
variability and representativeness of point measurements and population
coverage. To avoid population double counting when stations are within 5
km, one half of the total number of residents living in the overlapping
buffer zone is assigned to each station.
There are two methods used to calculate the 5-km population-weighted
exposures shown in Fig. 3. First, total population exposure (xi) for each
node (i) (Fig. 3 A and B) is calculated by multiplying the number of residents
within 5 km of the sensor node (pi) by the mean observed concentrations
([ci]) of SO2 (person ppb) and PM2.5 (person μg m−3): xi = pi[ci]. Second, time-
integrated exposure distributions (Fig. 3 C and D and SI Appendix, Fig. S9)
for each node (xt,i) are calculated as the summed product of population and
smoothed (three-bin moving window) binned frequency counts (j) of hourly
SO2 (person ppb hours) and PM2.5 concentrations (person μg · m−3 hours):

xt,i = ∑
n

j=1
pi[cj].

SO2 to PM Conversion Rate. The mean SO2 reaction rate is calculated based on
observed SO2 and PM2.5 at 13 stations downwind of the eruption. The SO2

and PM2.5 concentrations are converted to mass concentrations of sulfur (S
in units of μg · m−3) and the fraction of total gas phase S (fS) is

fS = SSO2= SSO2 + SPM2.5( ). [1]

This procedure assumes all remaining PM2.5 is secondary sulfuric acid
aerosols, originating from volcanic SO2 emissions. (The mass concentration
of liquid water had been subtracted already as part of the PM RH-correction;
SI Appendix.) This approach neglects background levels of nonvolcanic
aerosols (∼5 μg · m−3 based on the network average PM2.5 measured from
September 1 to 30, 2018 after the eruption had ceased). This fractional
conversion is advantageous because reaction rates calculated using SO2

measurements alone can be overestimated due to nonoxidative SO2 losses
from deposition or dilution (30).

An exponential decay function (λ) is then fit to the downwind
measurement points:

fS = fS0e−kSO2t , [2]

where t is the mean plume travel time between the LERZ and measurement
locations from July 15 to August 1, 2018, calculated using a particle dispersion
meteorological model (SI Appendix). Here, kSO2 represents the first-order

decay constant of SO2 and so the mean SO2 lifetime is equal to kSO2
−1. To

incorporate measurement and plume age model uncertainties into confi-
dence and prediction intervals (95%) (Fig. 4), the decay function is fit to an
array of random points uniformly sampled within the uncertainty bounds
at each measurement point (n = 10 points at each location; total n = 130).
Measurement uncertainties were determined for SO2 and PM2.5 sensors
during instrument calibration against reference instruments (SO2 mean
absolute error [MAE] is 7.3 ppb and PM2.5 MAE is 4.5 μg · m−3) and mod-
eled plume age uncertainties are the interquartile range of calculated
parcel travel times between the LERZ and measurement location during
each hour of the study period (SI Appendix).
The plume SO2 conversion rate (kSO2) fit to all downwind stations (n = 13) is
7.6 × 10−6 s-1(τox = 36.3 h), while the kSO2 fit to only the LCS network stations
(n = 10) is 7.2 × 10−6 · s−1 (τox = 38.3 h), a statistically insignificant difference
demonstrating the ability of the low-cost network to observe reaction ki-
netics. Additionally, there is not a dramatic difference when kSO2 is fitted to
measurements that have had approximate background PM2.5 levels sub-
tracted (kSO2 = 6.0 × 10−6 · s−1; τox = 46.4 h). However, kSO2 fit using plume
ages estimated from an observed mean wind speed at a single location and
downwind linear distance is 1.9 × 10−5 · s−1 (τox = 15 h), substantially faster
than the rate using plume ages calculated from the particle dispersion
model. This demonstrates the importance of local meteorological variations,
especially in areas of complex terrain, to estimate reaction kinetics.

Data Availability.All study data are included in the article and/or SI Appendix.
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