
The Microglial Sensome Revealed by Direct RNA Sequencing

Suzanne E. Hickman1, Nathan D. Kingery1, Toshiro Ohsumi2,3, Mark Borowsky2,3, Li-chong 
Wang5, Terry K. Means1, and Joseph El Khoury1,4,*

1Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 
Charlestown, Massachusetts 02129, USA

2Department of Molecular Biology, Massachusetts General Hospital, Charlestown, Massachusetts 
02129, USA

3Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

4Division of Infectious Diseases, Massachusetts General Hospital, Charlestown, Massachusetts 
02129, USA

5Advanced Cell Diagnostics, Hayward, CA 94545, USA

Abstract

Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their 

environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit 

plasticity and can assume neurotoxic or neuroprotective priming states that determine their 

responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, 

to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We 

validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and 

quantitative PCR. We report here that microglia have a distinct transcriptomic signature and 

express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and 

microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand 

recognition are downregulated, whereas those involved in microbe recognition and host defense 

are upregulated. In addition, aging is associated with an overall increase in expression of 

microglial genes involved in neuroprotection.
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Microglia, the principal resident immune cells of the brain, constitute 5–12% of brain cells 

depending on the region studied 1. They are important in homeostatic functions in the brain, 

in host defense against infectious pathogens and in neurodegenerative diseases and traumatic 

brain injury 2. The role of microglia as mononuclear phagocytes has been recognized for 

decades and their involvement in inflammatory and necrotizing processes are beginning to 

be elucidated 3.

In the past decade we witnessed an explosion of work to understand the role of microglia in 

the developing, healthy, aging, and diseased brain. Seminal work showed that a major 

function of these cells is to constantly survey their environment sensing any changes in that 

environment and responding to them 4. The genes that encode the microglial sensing 

apparatus are not defined.

Microglia, like other mononuclear phagocytes such as macrophages, exhibit plasticity and 

can assume neuroprotective or neurotoxic phenotypes 5–7. In advanced stages of 

neurodegenerative disorders like Alzheimer’s disease, multiple sclerosis and amyotrophic 

lateral sclerosis, microglia become neurotoxic 7–9. Microglia also exhibit various priming 

states that determine their responses to subsequent injury or infection of the brain. Two of 

these priming states include the classical priming state which occurs in response to 

stimulation with Interferon-γ, and the alternative priming state associated with exposure of 

these cells to Interleukin (IL) 4 or IL138, 10, 11. Classically-primed mononuclear phagocytes 

are neurotoxic whereas alternatively-primed cells promote axonal elongation and sprouting 

and are considered neuroprotective 8, 12.

Aging dramatically affects the gene expression profile of the brain 13. Transcriptome 

profiling of the whole brain using microarrays found downregulation of genes involved in 

energy production, protein synthesis and protein transport with aging and upregulation of 

many genes that regulate proliferation 14. Studies looking at aging-associated changes in 

individual cells have been limited 15 and quantitative changes that occur in the microglial 

transcriptome with aging have not been defined.

Several approaches to analyze the transcriptomes of tissues and cells have been developed. 

These include quantitative PCR (qPCR) 16, microarrays 17, 18, Nanostring™ 19 technology 

and deep sequencing (RNA-Seq) 20. Valuable information can be obtained from each of 

these approaches. While qPCR and Nanostring are quantitative, they are limited by the 

number of transcripts that can be measured. Microarrays are very useful, but only provide a 

semi-quantitative assessment of the transcriptome. aAvailable RNA-Seq platforms are 

quantitative and provide a snapshot of the transcriptome of cells at a specific time point, but 

vary in their requirements of the amount of RNA as a starting material and require 

generation of cDNA and amplification if the sample size is small 21. Because the number of 

microglia that can be harvested is limited, we were interested in an approach that utilizes 

Hickman et al. Page 2

Nat Neurosci. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



small amounts of RNA, that does not require cDNA synthesis or amplification, and that 

gives robust quantitative results.

To analyze the transcriptome of microglia, we selected a recently developed technology, 

Direct RNA Sequencing or DRS, because it allows the quantification of mRNA without the 

need for amplification or cDNA synthesis 22 thereby providing several advantages over 

existing techniques. Essentially, poly(A) mRNA is hybridized to a surface coated with 

poly(dT), unbound RNA (non mRNA) is washed away and the remainder of the poly(A) tail 

is blocked, followed by sequencing as described in supplementary methods. Using this 

approach, we determined the unbiased quantitative transcriptome of microglia isolated from 

adult 5-month old mice and compared it to that of peritoneal macrophages isolated from the 

same mice and to whole brain. The datasets generated allowed us to identify a cluster of 

genes that constitute the microglia sensing apparatus, which we term “sensome”. We also 

identified a unique microglial signature that distinguishes them from macrophages. 

Furthermore, we determined changes that occur in the microglial transcriptome and sensome 

during normal aging using microglia isolated from 24-month old animals. With aging, the 

microglial overall gene expression profile shows an upregulation of genes involved in host 

defense and neuroprotection. Our dataset is the first quantitative transcriptome of normal 

microglia in adulthood and aging.

RESULTS

In order to have a standardized source of cells we used C57BL6 mice obtained from the 

national Institute of Aging mouse colony (NIA, Bethesda MD). Microglia were isolated 

from 5-months old adult mice by enzymatic digestion, as previously described 7, and 

peritoneal macrophages were isolated by peritoneal lavage 23. Cells were stained with 

fluorescent antibodies to CD11b and CD45, two well established microglia and macrophage 

markers 2, 24 and supplementary Figure 1a). Microglia and macrophages were subsequently 

isolated by Fluorescence Activated Cell Sorting (FACS) and RNA was extracted. 

Supplementary Figure 1b-c displays the CD11b/CD45 expression patterns used to collect a 

distinct population of microglia (high CD11b, low-to-intermediate CD45 2, 24) and 

peritoneal macrophages (high CD11b and high CD45).

Identification of the microglial Sensome by DRS

We performed DRS on RNA isolated from whole brain (3 samples from 2 mice each) and 

microglia isolated from 3 pools comprising 22, 10 and 20 mice respectively. We developed 

programs in MolBioLib to annotate the various sequences obtained 25 and then analyzed the 

data via GSEA 26 and edgeR27 A total of 21025 different coding transcripts were detected 

(Supplementary Figure 1d). To standardize data presentation and allow comparison between 

different datasets we computed the data for each transcript as copies of mRNA per million 

mapped reads (CMMR).

Microglia processes constantly move in the area surrounding the cell body sensing any 

changes in the environment 4. Such changes could be caused by microbial invasion, cell 

injury or death associated with neurodegeneration, deposition of neurotoxic substances such 

as amyloid β 23, 28 or inflammatory molecules such as chemokines and cytokines. Additional 
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milieu alterations could include changes in pH, in the composition or integrity of the 

extracellular matrix or in extracellular metabolites such as nucleotides or amino acids. A 

large armamentarium of proteins and receptors may be used by a given cell for sensing such 

changes in the environment. The full spectrum of the cellular receptors and proteins used by 

microglia for this purpose are not known. In this paper we define these proteins as the 

“Sensome” of microglia.

We used the DAVID 29 Gene Ontology (GO) analysis software as well as manual annotation 

and data mining through PubMed.gov to identify candidate sensome genes, regardless of 

their level of expression. These potential sensome genes included all transmembrane 

proteins and receptors, such as integrins, purinoceptors, lectins, transporters and CD 

antigens, but not genes encoding for secreted proteins or proteins expressed only in nuclear, 

mitochondrial or endoplasmic reticulum membranes. This analysis resulted in identifying 

1299 candidate sensome genes.

To identify the transcripts that are highly enriched in microglia vs. whole brain, we 

computed the ratio:  and calculated Log2E values, then selected the 

top 100 transcripts with the highest E values. These transcripts are the most likely transcripts 

to be microglia specific (Figure 1a, b and Supplementary table 1). The E value for these 100 

transcripts ranged from 36 to 292. Of these transcripts 46% have an E value ≥100 indicating 

a high level of enrichment in microglia (p<0.00001) (Figure 1a, b and supplementary table 

1). In contrast, the E values for neuronal genes such as gamma enolase (Neuron-specific 

enolase NSE), Internexin and Thy1 were 0.0018, 0.0028 and 0.0018, respectively. Similarly 

the E value for the oligodendrocyte genes myelin-oligodendrocyte glycoprotein (MOG) and 

chondroitin sulfate proteoglycan 4 (NG2) were 0.026 and 0.17 respectively. Furthermore, 

the E value for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde 

dehydrogenase family 1 member L1 (AlDH1L1) were 0.012 and 0.042 respectively (Figure 

1c). These data indicate a high level of enrichment of microglia specific sensome genes and 

a “derichment” of genes expressed by neurons and other non-microglial cells of the neural 

environment in our purified microglia.

We used gene ontology analysis to classify the sensome transcripts into pattern recognition 

receptors (25%), chemoattractant and chemokine receptors (10%), Fc receptors (7%), 

purinergic receptors (8%), receptors for extracellular matrix (ECM) proteins (6%), cytokine 

receptors (10%), receptors involved in cell-cell interaction (10%), other receptors or 

transporters (13%) and potential sensome proteins with no known ligands (11%) 

(Supplementary Figure 1e and Supplementary table 1). Some of the receptors identified 

were expected considering that microglia have macrophage-like functions. These include 

CD11b, CD14, CD68, TLR2 and TLR7, CXCL16, various Fc receptors, and others. 

Interestingly, 32% of transcripts of the microglial Sensome have not been previously 

described in microglia. These include Entpd1, Tgfbr2, Cmtm7, Ly86, CD180, Slco2b1, Gi24, 

and Clec4a2, a complete list of these transcripts is highlighted in green in Supplementary 

table 1.
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These data comprehensively identify, for the first time, the armamentarium of genes used by 

microglia in sensing their environment. The diversity of the ligands recognized by the 

surface proteins encoded by these genes provides strong evidence that support the broad role 

for microglia in homeostasis, host defense and response to injury. Of note, two of these 

sensome genes, TREM2 and CD33, were recently identified as risk factors for Alzheimer’s 

disease30–33, further attesting to the importance and relevance of our dataset.

To identify known and potential protein-protein interactions relevant to the sensome, we 

used the STRING 9.1 software and database 34. STRING quantitatively integrates protein 

interaction data from multiple sources for a large number of organisms, and transfers 

information between these organisms where applicable. The database currently covers 

5,214,234 proteins from 1133 organisms. Using STRING we found that 44/100 sensome 

proteins have direct or indirect association with DAP12, an adaptor that regulates signaling 

via TREM2 35. Of these, 24 proteins appear to have direct association with DAP12 (Figure 

1d). These proteins are Trem2, P2ry6, Fcer1g, Fcgr3, Fcgr1, Fcgr4, Clec4a3, Clec5a, 

Clec7a, Selplg, Csf1r, Cd14, Cd48, Cd52, Cd53, Cd68, Cd84, Cd86, Ly86, Itgb2, Tlr2, 

Ptprc, Emr1 and Il10ra. These data indicate that DAP12 may be an important regulator of 

the microglial sensing function through direct and indirect interaction with other sensome 

proteins.

Microglia vs. Macrophages

Both microglia and macrophages are resident tissue mononuclear phagocytes and share 

several functions including phagocytosis, production of reactive oxygen and nitrogen 

species, response to chemokines and purinergic stimuli 36. To identify similarities and 

differences between resting microglia and macrophages we used DRS to compare the 

transcriptome of peritoneal macrophages with that of microglia isolated from the same mice, 

and analyzed as described in the materials and methods. We compared the top 10% of 

transcripts with the highest expression on macrophages with those of microglia (Figure 2a). 

Of these 2102 transcripts, microglia and macrophages share 1476 transcripts indicating 

significant similarities between the two cell types (Figure 2a). Microglia and macrophages, 

however, also have significant differences in their transcriptomes and each express 626 

transcripts that are not common to the other cell (Figure 2a). The heatmap shown in figure 

2b clearly defines the set of transcripts that are unique to microglia and macrophages. 

Analysis of the top 25 transcripts uniquely expressed in microglia show expression levels 

ranging from 360–10,088 CMMR (Figure 2c). These transcripts are highly enriched 

compared to macrophages (p<0.00001, Log2 fold change ranging from 4.8–15.1) 

(Supplementary Table 2). These genes include several of the Sensome genes discussed 

above such as P2ry12 and P2ry13, Tmem119, Gpr34, Siglech, Trem2 and Cx3cr1 (Figure 2c 

and Supplementary Table 2). In addition, microglia highly express several unique transcripts 

that would not be expected to be expressed only in these cells. These include the enzyme 

Hexosaminidase B (HexB) and the antimicrobial peptides Camp and Ngp (Figure 2c and 

Supplementary table 2). The levels of expression of the top 25 transcripts unique to 

macrophages range from 596–15,327 CMMR (Figure 2d and Supplementary table 2, 

p<0.00001 for all included transcripts) with a Log2 fold change of 6.1–13.6, indicating a 

high level of enrichment regardless of the copy number of each transcript (Supplementary 
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table 2). Macrophage-enriched genes include fibronectin, the chemokine Cxcl13, and the 

endothelin B receptor (Figure 2d and Supplementary Table 2).

To identify microglial sensome transcripts that are also expressed in macrophages, we 

compared expression of these genes in the two cell types. Sensome genes that are expressed 

in both microglia and macrophages include Csfr1, CD53, Selplg, Fcgr3. Some microglial 

sensome genes have higher expression in macrophages. These include Itgam, CD74, Emr1, 

Itgb2, CD37, Clec7a, Cmklr1, Ifitm6, Pilra and Fcgr4. Interestingly, of the 22 sensome 

genes that are exclusively expressed on microglia, 16 genes interact with endogenous 

ligands rather than with pathogens (Figure 3a, b and Supplementary Table 2). These data 

imply that microglia express a unique set of genes, distinct from macrophages, that allow 

them to sense and interact with their local environment.

To further characterize the similarities and differences between macrophages and microglia 

we compared the levels of expression of several specific gene families involved in immune 

responses, including purinergic receptors (P2y and P2x), chemokine receptors, Fc receptors, 

Interferon-inducible transmembrane (Ifitms), Toll-like receptors (Tlrs), Sialic acid binding 

immunoglobulin lectins (Siglecs) and scavenger receptors (Figure 3c-j, Supplementary 

Figure 2 and Supplementary Table 2). These data show that microglia express significantly 

higher levels of several sensome genes that include P2rx7, P2ry12, P2ry13, P2ry6, Ccr5, 

Cx3cr1, Cxcr4, Cxcr2, Tlr2, Siglech and Siglec3 compared to macrophages (all p<0.00001). 

In contrast, macrophages express significantly higher levels of P2rx4, Ccr1, Cxcr7, Ifitm 2, 

3 and 6 and Tlr8 (all p<0.00001). Notably, microglia express negligible levels of all Ifitms 

compared to macrophages.

Because DRS data is unbiased and quantitative, comparison of the transcriptomes of whole 

brain, microglia and macrophages allows us to identify a distinct gene signature for 

microglia and provide a more concrete molecular definition of these cells. Each signature 

includes a variety of genes with a wide range of functions. For ease of presentation, we have 

graphed the top 44 of these genes, their microglial and macrophage CMMR values, fold 

enrichment over brain (Log2FC) in supplementary figure 3. These genes not only reflect 

unique functional capabilities of microglia, but can also be used as microglial markers to 

identify these cells in physiologic conditions. Changes in expression levels of these genes 

under pathologic conditions could also be used as potential biomarkers for such conditions.

Validation of DRS by dual fluorescent in situ hybridization

To confirm that microglial sensome genes are only expressed in microglia and not in other 

brain cells, we performed dual RNAscope, a dual fluorescent in situ hybridization 

technique 37. We used CD11b as a universal microglial marker and 3 microglial sensome 

genes P2ry12, Cx3cr1, and P2ry6 with high, intermediate and low expression in microglia, 

respectively (Figure 1a, b and Supplementary Table 1). P2ry12, Cx3cr1 and P2ry6 mRNA 

co-localize with CD11b mRNA in the brain parenchyma of young mice (Figure 4a–c). 

Ninety eight percent of cells expressing CD11b also express P2ry12 and Cx3cr1 and 87% 

also express P2ry6 (Figure 4d). Cells that do not express CD11b mRNA did not hybridize 

with probes for P2ry12, Cx3cr1 or P2ry6. These data support our DRS findings that 

microglial sensome genes are exclusively expressed in microglia in the brain.
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An unexpected finding revealed by our DRS analysis is that HexB is highly enriched in 

microglia compared to brain (Supplementary Figure 3a). To determine if HexB is 

predominantly expressed in microglia in situ, we performed dual RNAscope on mouse 

brains using probes for CD11b and HexB. As observed for P2ry12, Cx3cr1 and P2ry6, HexB 

mRNA also co-localizes with CD11b in the cortex, hippocampus and cerebellum (Figure 

4e). Nearly all cells expressing CD11b also express HexB (Figure 4e, f). Cells that do not 

express CD11b mRNA did not hybridize with probes for HexB (Figure 4e and not shown). 

These data support our finding that HexB mRNA is exclusively expressed in microglia in the 

brain.

Proteomic analysis of microglia and macrophages

To determine if levels of mRNA transcripts compare with protein expression, we evaluated 

protein expression differences between microglia and macrophages by two dimensional 

difference gel electrophoresis (2D-DIGE), as described in materials and methods, and 

compared the results with DRS data for the proteins identified. Protein samples were 

extracted from each cell type and labeled with CyDye (microglia in red and macrophages in 

green), mixed and loaded onto the same 2D-electrophoresis gel. Red protein spots 

represented microglia-enriched proteins, green spots represented macrophage-enriched 

proteins and yellow spots represented proteins expressed in both cell types (Figure 5a). To 

insure unbiased analysis, we randomly selected 30 spots of interest (15 green and 15 red) 

excised them from the gel and protein ID was determined via mass spectrometry. As an 

example of such analysis we show one protein labeled in green (Figure 5a, Spot 10, Padi4) 

and one protein labeled red (Figure 5a Spot 27, Fascin). Three dimensional graphs of the 

levels of each protein expression in both cell types are shown in Figure 5b–c. The mRNA 

level for each of these proteins (CMMR) was obtained from our DRS data set. Protein and 

mRNA levels of both Padi4 and Fascin exhibited similar trends in expression (Figure 5d–e). 

Of the 30 proteins identified, 22 exhibited similar tends of expression between protein and 

mRNA levels (Supplementary Figure 4 and not shown). In the remaining 8 of the 30 

proteins identified, significant differences were observed in the mRNA levels between 

microglia and macrophages but not in the protein levels (not shown). An advantage of this 

approach is that it allows the unbiased comparison between protein and mRNA levels since 

protein identification is made after the spots are selected. A limitation of this approach is 

that it only allows assessment of proteins that are intracellular or membrane proteins that are 

resistant to the proteases collagenase and dispase, the two enzymes we used to purify 

microglia. Nonetheless, our data show that expression levels of a majority of the proteins 

identified correlate with their respective mRNA levels, thereby providing added validation 

for our DRS analysis.

Quantitative PCR of select genes in microglia and macrophages

We further validated our DRS data by quantitative PCR (qPCR) using a new cohort of 

animals. Microglia and macrophages from thirty 5 months old mice were isolated as 

described above for DRS and divided into 5 and 6 pools, respectively. We then performed 

qPCR analysis on 7 transcripts including HexB, CX3CR1, P2ry12, P2ry13, P2ry6, TREM2 

and CD11b. As seen in our DRS analysis, HexB, CX3CR1, P2ry12, P2ry13, P2ry6, TREM2 

were highly expressed on microglia compared to macrophages (Figures 2a and 3a–b). In 
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contrast CD11b is more expressed on macrophages than microglia (Supplementary Figure 

1). We compared qPCR and DRS data by quantifying the Log2 of the ratio of microglia/

macrophages. Figure 5f shows that the results obtained from qPCR and DRS are highly 

comparable indicating that our DRS data is strongly supported by qPCR data on a different 

set of mice. These results further confirm the validity of our DRS data.

Effects of aging on the microglial biological pathways

Aging is associated with significant alteration in the gene expression profile of the whole 

brain 38. To determine the effects of aging on the microglia transcriptome, we used DRS to 

identify the transcriptome of microglia isolated from 24-month old mice and compared it to 

that of microglia isolated from 5-month old mice as described above. We limited the 

analysis to transcripts expressed at ≥ 1CMMR. Of these 10,598 transcripts, 3503 transcripts 

were significantly different between young and old microglia (p<0.05), 1831 were 

upregulated, 1672 were downregulated and the remainder were not significantly changed in 

old vs. young (Figure 6a). We performed Gene set enrichment analysis (GSEA) (see 

supplementary methods) to identify pathways that are differentially changed in aging 

microglia. An interesting trend emerged from our analysis. Several pathways that have been 

described in the literature as promoting neurotoxicity appear to be down-regulated in aging. 

In contrast, pathways involved in neuroprotection appear to be upregulated. An example of 

such analysis is shown in figure 6b and supplementary figures 7–8. Genes involved in Stat 

339 and Neuregulin-140 pathways are up-regulated in aging mice while those associated with 

oxidative phosphorylation 41 pathways are down regulated.

Effects of Aging on the microglial priming state

Microglia exhibit various priming states that determine their responses to subsequent injury 

or infection of the brain. Interferon-γ induces microglia to assume the classical priming 

state, which is associated with a neurotoxic phenotype promoting neuronal degeneration. In 

contrast, the alternative priming state, associated with exposure of these cells to IL4 or IL13, 

is neuroprotective and promotes axonal sprouting and elongation 8, 12. Each priming state is 

characterized by increased expression of a defined set of genes that regulate microglial 

behavior and are considered markers for the corresponding priming state 11.

To determine the effect of aging on the microglial priming state we compared expression of 

classical and alternative priming genes 10, 42 in microglia isolated from 5 months vs. 24 

months old mice. We found that in microglia from 24 months old mice, expression of 

alternative priming markers ranged between 6–348 CMMR and classical priming markers 

were expressed between 4 and 105 CMMR (Supplementary Table 3). Sixty-two percent 

(23/37) of alternative priming markers were significantly upregulated in microglia from 

aged mice (Mean Log2Fold change = 1.97, p<0.012), while 32% (12/37) were not 

significantly changed and only CD302 and TGFβ1 were down-regulated (Figure 7a and 

Supplementary table 3). In contrast, aging was associated with downregulation or no change 

in 7/12 (58%) of the classical priming state markers (Mean Log2FC=0.37) (Figure 7b and 

Supplementary Table 3). These data suggest that during aging there is a shift of the 

microglial phenotype towards an alternative neuroprotective priming state.
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We also analyzed changes in expression of 22 inflammasome-associated genes. Interestingly 

82% (18/22) of inflammasome genes included in our analysis were either significantly 

downregulated or not significantly changed (Figure 7c and Supplementary table 3). Because 

upregulation of some inflammasome genes such as NLRP3 have been implicated in the 

pathogenesis of Alzheimer’s disease 43 these findings further support that during normal 

aging there is a shift of the microglial phenotype towards an alternative neuroprotective 

priming state.

Effects of aging on the microglial sensome

We also assessed any age-related changes in the microglial Sensome genes and in selected 

families of genes. We found that 31% (31/100) of the Sensome genes are significantly 

downregulated with aging (p<0.043), and 13% were significantly upregulated with aging 

(P<0.008) (Figure 8a and Supplementary table 3). Remarkably, 81% of the genes that were 

significantly downregulated (25/31 genes) encoded proteins involved in sensing endogenous 

ligands, while 62% (8/13) of the genes that were upregulated encoded proteins involved in 

sensing infectious microbial ligands (Figure 8a and Supplementary tables 1 and 3). Genes 

that were significantly downregulated encoded for proteins involved in sensing apoptotic 

neurons (Trem2, p<0.00005), substances released following neuronal injury such as 

nucleotides and adenosine and molecules expressed in the cell surface (siglech, p=0.003 and 

Dap12, p=0.00005) and soluble cytokines (Ccr5, p=0.0006 and Ifngr1, p=0.00033). Genes 

that were significantly upregulated encoded proteins involved in sensing of bacterial and 

fungal ligands (Tlr2, CD74, Ltf, Clec7a, Cxcl16 and Ifitm6, all p≤0.0006) or bacterial toxins 

(C5ar1, p<0.00005) (Figure 8a–i and supplementary tables 1 and 3).

Among the chemokine receptors, Cxcr4 and Cxcr2 were significantly (p≤0.0001) increased 

in aged microglia (Figure 8e and Supplementary table 3). Of note, there were significant 

changes in expression of members of the Ifitm family of innate immune receptors. 

Significant increases were seen in Ifitm2, 3 and 6 (Figure 8g, and Supplementary table 3 all 

p≤0.0001).

DISCUSSION

The data presented in this manuscript fill several major gaps in our understanding of 

microglia. First, the use of direct RNA sequencing allowed us to generate a quantitative 

dataset of the normal adult microglia transcriptome, representing an accurate snapshot of 

these cells’ gene expression profile. This is the only such dataset available at this point for 

any cell type of the mammalian brain. Our dataset avoids the potential pitfalls associated 

with other approaches to study gene expression because it does not involve cDNA synthesis 

or amplification. Our data also differ from semi-quantitative datasets since we provide copy 

numbers of each transcript rather than relative arbitrary units, allowing the possibility to 

compare with similar datasets generated in the future. The ability to perform such a 

comprehensive study using small amounts of unamplified RNA provides proof of concept 

that this approach can be applied to various cells from different healthy and diseased 

mammalian tissues. One can envision using DRS on cells obtained from biopsy samples 

providing a more personalized approach to understand gene expression profiling in the 
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brain. The strength of our data is highlighted by the correlation between the copy number of 

each transcript obtained by DRS with in situ hybridization, with the relative protein 

expression of several proteins as determined by unbiased proteomic analysis by 2D-DIGE 

and mass spectrometry of 30 proteins, and by qPCR of several genes.

Second, we introduce a new area of investigation, namely that of the microglial Sensome. 

We identified 100 genes that constitute the microglial toolset for sensing changes in the 

brain’s milieu. Since sensing of the brain environment is a major function of microglia, our 

data define the apparatus that microglia use to perform these homeostatic functions 

including sensing of chemokines and cytokines, purinergic molecules, inorganic substances, 

changes in pH and amino acids. Defining the microglial Sensome under physiological 

conditions, establishes a baseline to which we can compare and identify changes that occur 

in this Sensome under pathological conditions. As an example we performed studies to 

identify changes in the Sensome that occur with aging and identified significant changes as 

shown above and discussed below. Defining changes in the Sensome that accompany 

infection, neurodegeneration, traumatic brain injury and inherited disorders is likely to have 

significant implications for identifying biomarkers, as well as novel therapeutic modalities 

for such disorders 44. Highlighting the importance of our dataset, two members of the 

microglial Sensome, TREM2 and CD33, have been found to be independent risk factors for 

late onset Alzheimer’s disease 30–32. We propose that several additional members of the 

microglial Sensome are also key players in a number of CNS disorders.

Third, because we compared the copy number of each transcript in microglia, whole brain 

and macrophages, we were able to identify a molecular signature that defines microglia and 

distinguishes these cells from other types of resident macrophages and other cells in the 

brain. Such analyses yielded some expected results such as the high level of expression of 

the purinergic receptor P2ry12, the chemokine receptor Cx3cr1, and Trem2 the receptor for 

apoptotic neurons in microglia. In addition, our data showed some very surprising and 

unexpected findings. For example, we found that the enzyme hexosaminidase B (HexB) is 

predominantly a microglial enzyme in the brain. The level of expression of this transcript in 

microglia indicates it is one of the most expressed mRNAs in these cells. HexB mRNA is 

enriched 164 fold in microglia compared to brain, more than the level of enrichment of the 

quintessential microglial marker Cx3cr1 (fold enrichment 142.5) and CD11b (fold 

enrichment 98.8), one of the two markers we used to identify microglia in our studies. These 

data indicate that HexB is indeed a microglial gene. We further confirmed this observation 

using dual RNAscope fluorescent in situ hybridization. Since HexB mutations cause the 

neurodegenerative gangliosidosis Sandhoff disease 45 this finding would have significant 

implications for our understanding of this disease, suggesting that this inherited disorder is 

essentially a “microglia” disorder. This suggests that microglia, rather than neurons, may be 

the better targets for therapeutic intervention in this disorder. This is an example of the 

usefulness of our data and their potential implications for significantly altering our 

understanding of microglial biology in sickness and in health. Another likely implication 

from these findings is the identification of several new microglial markers. In this regard, 

our data complements recent microarray data 46 and adds significantly to such data. Indeed, 
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32% of transcripts of the microglial Sensome have not been previously described in 

microglia.

Another important result in our dataset is the finding that resting microglia express high 

levels of several antimicrobial peptides not previously known to be expressed on these cells. 

These include Camp, the cathelin-related antimicrobial peptide (633 CMMR) and Ngp the 

neutrophilic granule protein (424 CMMR). The high level of expression of these peptides 

indicates a high level of readiness by the normal “quiescent” resident microglia to perform 

its innate host defense function in the absence of adaptive immune molecules and cells.

Fourth, we identified several age-related changes in the microglial transcriptome. For 

example, the microglial Sensome is significantly altered in aging. More than 81% of 

Sensome genes that were downregulated in aging are involved in sensing endogenous 

ligands. Of particular interest are purinergic and associated receptors such as P2yr12, 

P2ry13 and Adora3, and receptors recognizing apoptotic neurons and other cells such as 

Siglech. Purinergic molecules are released with neuronal injury and cell death, events that 

are likely to increase with aging. The continuous stimulation of microglia that could result 

from excessive neuronal injury and death that accompany aging, may initiate a cycle of 

events that leads to further microglial-mediated neurotoxicity adding “insult to injury”. It is 

therefore conceptually beneficial to the brain to downregulate the ability of microglia to get 

activated by dying or injured cells with aging. Interestingly, sensing genes involved in 

phagocytosis such as CD11b, CD14, ICAMs and CD68 are unchanged suggesting that the 

ability to clear endogenous debris is not affected. Similarly, genes that mediate the ability of 

microglia to sense microbial ligands are either not affected or increased. These data contrast 

with what happens in advanced stages of neurodegenerative disorders like Alzheimer’s 

disease, multiple sclerosis and amyotrophic lateral sclerosis, where microglia become 

neurotoxic 7–9. These data also contrast with recent findings of neurotoxic aging associated 

changes in the peripheral immune system 47. Our data suggest that with aging, there is a 

shift in the microglial phenotype towards a more neuroprotective type. While the peripheral 

immune system may become more primed towards a neurotoxic state 47, our data suggest 

that the microglia maintains its ability to defend against infectious pathogens and clear 

debris but attempts to “tone down” the stimulatory effects of endogenous debris as if to keep 

from becoming constantly activated.

On its face our data appear to conflict with reports that suggest that aging is accompanied by 

an overall increase in pro-inflammatory status of the brain 48–50. An important distinction 

between these studies and ours is that they were done using whole brain tissue rather than 

purified cells. Changes observed in these studies reflect not only the gene expression 

profiles of microglia but of other glial cells, and possibly circulating blood leukocytes. 

Furthermore, these studies either included a limited number of genes 48 or involved injecting 

the brain with a cocktail of cytokines prior to gene expression analysis 50. These technical 

differences may explain the differences in our results and these published reports.

In support of an aging-associated change in the microglial phenotype towards a more 

neuroprotective state is our finding that several potential neurotoxic pathways such as the 

oxidative phosphorylation pathway are downregulated in microglia with aging 41. In contrast 
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pathways that may be neuroprotective such as the STAT3 and Neuregulin-1 pathways are 

upregulated. Furthermore, the microglial priming state is also altered in aging towards an 

alternative phenotype. Classical and alternative priming states are not activation states but 

rather priming states that dictate how the microglia will respond to a certain stimulus. In 

spinal cord injury, for example, an alternative priming state is associated with improved 

axonal sprouting and elongation indicating a neuroprotective phenotype 12. Genes that are 

upregulated in an alternative primed state such as MRC1, Dectin and Lgals3 favor 

phagocytosis of debris and pathogens. Other genes such as Arg1 and IL1rn downregulate the 

innate response possibly reducing the damage associated with such a response. Arg1 induces 

a shift in arginine metabolism from interferon-γ-induced NO production towards production 

of ornithine and polyamine which are important in wound healing. Similarly, IL1rn 

antagonizes the effects of IL1 10. Taken together our data suggest that aging is associated 

with a shift in the microglial gene expression profile towards a more neuroprotective 

phenotype. We propose that when the brain is faced with an injury or stimulus that acutely 

activates the microglia, the alternative primed state assumed by these cells with aging may 

not completely prevent the damages induced by the injurious stimuli, but will likely help 

reduce the effects of such damage.

Our approach and data presented in this manuscript are a major step towards establishing a 

definitive quantitative microglia transcriptome under a variety of pathological situations. 

Understanding the changes that occur in the microglia in aging, neurodegeneration, infection 

and traumatic injury is the first step in identifying therapeutics that modulate the state of 

these cells and ultimately alter disease processes.

Supplementary Materials and Methods

Mice

C57Bl/6 mice 5 months and 24 months of age were purchased from the National Institute on 

Aging and housed in the animal care facility at Massachusetts General Hospital and used 

within two weeks of arrival. Mice were euthanized according to approved institutional 

procedures. All protocols were approved by the Massachusetts General Hospital Institutional 

Animal Care and Use Committee and met US National Institutes of Health guidelines for the 

humane care of animals.

Isolation of peritoneal macrophages and microglia

Peritoneal macrophages—Peritoneal cells were harvested from 5-month old mice by 

peritoneal lavage with 10ml phosphate buffer saline without Ca++ and Mg++ (PBS=) 

containing 1 mM EDTA (PBS=/EDTA) and centrifuged at 400×g for 10 mins. The 

peritoneal cells were then stained for CD11b and CD45for flow cytometry (see below). Each 

sorting experiment was performed on cells pooled from 5 mice per experiment.

Microglia—Two ages of mice were used for isolation of microglia: 5 months old and 24 

months old. Mice were perfused with 50cc PBS=. Brains were then removed, rinsed in PBS= 

and placed separately into a GentleMacs™ C-tube (Miltenyi Biotech) with RPMI (no phenol 

red) containing 2mM L-glutamine (Mediatech), Dispase (2U/ml) and 0.2% Collagenase 
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Type 3 (Worthington Biochemicals) according to our previous protocol 7. Brains were 

processed using the gentleMACS Dissociator (Miltenyi Biotech) on the brain program 

settings according to manufacturer’s directions. Briefly, the brains were subjected to three 

rounds of dissociation each followed by a period of incubation at 37°C. After the second 

round of dissociation, DNase I grade II (Roche Applied Science) was added to a 

concentration of 40U/ml and incubated for an additional 10 minutes before the final round 

of dissociation. The digestion enzymes were inactivated by addition of PBS=/EDTA 

containing 5% fetal bovine serum (FBS) and the digested brain bits were triturated gently, 

passed over a 100μm filter (Fisher Scientific) and centrifuged. Cell pellets were resuspended 

in 10.5 ml RPMI/L glutamine, mixed gently with 4.5 ml physiologic Percoll® (Sigma 

Aldrich), and centrifuged at 850×g for 40 minutes. The resulting cells were rinsed in PBS= 

and centrifuged. At this time any contaminating red blood cells were lysed using RBC lysis 

buffer (Sigma) according to manufacturer’s instruction, rinsed twice with PBS= and passed 

over a 40μm filter (Fisher Scientific). Cells were then stained for CD11b and CD45 for flow 

cytometry (see below). Each sorting experiment was performed on cells pooled from 5 mice 

per experiment.

Staining for CD11b and CD45 and Fluorescence Activated Cell Sorting (FACS)

After isolations, cell pellets were resuspended in blocking buffer (PBS=/1mM EDTA/2% 

donkey serum) containing 1ug/ml Fc block (BD Pharmingen) and incubated on ice for 10 

mins. Cells were co-stained for 30 minutes on ice with Alexa-647 labeled anti-CD11b (clone 

M/170, Biolegend, final conc 5 ug/ml) and Alexa488-labeled CD45 (Biolegend, clone 30-

F11, final conc 5 ug/ml). Cells were then rinsed in PBS/EDTA centrifuged, resuspended in 

PBS/EDTA containing1% fetal bovine serum and filtered into 5 ml polystyrene filter top 

tubes (BD Falcon) for sorting. Cells were sorted based on CD11b/CD45 expression 24 using 

FACS ARIA(BD). Sorted cells were centrifuged 400×g for 10 minutes and pellets were 

either lysed in RLT-Plus buffer (Qiagen) for RNA extraction or stored at −80°C for protein 

extraction and proteomics analysis.

RNA and DRS

RNA was isolated from flow cytometry-sorted cell populations using RNeasy Plus micro/

mini kits (Qiagen) depending on cell number. For RNA from whole brains, 6 mice were 

euthanized, perfused with PBS=/EDTA and brains were removed and homogenized in 

Qiazol using the TissueShredder (Qiagen) and RNA isolated with RNeasy Plus Minikit 

(Qiagen). Three pools of two brains per pool were created for whole brain RNA. Purified 

RNAs were quantified with a Nandrop 2000 (Thermo Scientific) and the quality of the RNA 

assessed using an Agilent Bioanalyzer (Agilent), all RNA used had an RNA Integrity 

Number (RIN)>9.2. RNAs from each population set were pooled as needed to yield samples 

containing at least 300ng of RNA. There were three pools of microglia RNA from 22, 10, 

and 20 5-month old mice, three pools of RNA from 24-month old mice comprising 10 mice 

per pool, and three pools of macrophage RNA that represented 10 mice each. DRS was 

performed by Helicos (Cambridge, Massachusetts) using Helicos single molecule prototype 

sequencers 22, 51–53. On average 14,376,408 and 19,007,620 reads were obtained from each 

microglial and macrophage samples respectively. Of these, 8,480,397 reads and 11,946,274 
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were annotated for microglia and macrophages respectively. RNA samples that were sent to 

Helicos were coded such that the identity of the cell types was not known.

RNAscope

RNA scope is a novel RNA in-situ hybridization technique that allows visualization of two 

RNA biomarkers within single cells. RNAscope uses a unique probe design strategy that 

results in signal amplification and background suppression 37. RNA scope was performed at 

Advanced Cell Diagnostics where the technique was developed. Briefly, frozen brains from 

C57Bl6 mice were cut horizontally and slices were hybridized with several dual probes sets 

using CD11b conjugated to Alexa546 as the common probe in each set. The companion 

probes to CD11bAlexa546were HexB, Cx3cr1, P2ry6, and P2ry12 (all conjugated to 

Alexa-488) and nuclei were visualized using DAPI. The resulting hybridized brain slices 

were imaged using the Mirax MIDI slide scanner to visualize the entire slice. To quantify 

cells that expressed both CD11b and other genes of interest, first CD11b positive cells were 

identified and annotated using Panoramic Viewer 1.15.2 software (3D Histech Limited); for 

each brain slice 100 cells were counted in cortex, 100 cells in the hippocampus, and 50 cells 

in the cerebellum. The number of double positive cells was then quantified. Each data point 

represents mean ± SD of 2–3 brain slices for each probe set. Dual RNAscope experiments 

were repeated twice on different slide sets with similar results.

Bioinformatics Analysis

Raw reads were filtered to remove low-quality reads and those that do not meet a filter 

length. For each sample, Helicos provided the alignment files which also contain the query 

and reference sequences. Each sample alignment file was processed individually by a 

program written in MolBioLib 25 to determine which gene(s) (if any) were hit by each 

alignment. The number of hits was recorded both in raw units as well as in copies per 

million mapped reads [CMMR]-normalized units 54. Only the hits to the sense of the genes 

are kept. The raw counts were analyzed using EdgeR 27, 55, 56 to generate p-values. EdgeR 

estimates the common negative binomial dispersion by conditional maximum likelihood. 

The log2 of the CMMR-normalized values were used as input to discover signatures for 

class types by using the gene expression monitoring scoring system 57. Scores are sorted 

with the largest score indicating genes that are most enriched in the class in question and 

least enriched outside of that class. The gene set enrichment analysis was performed using 

the GSEA software 26, 58 using the complete set of normalized input values, the 

c2.all.v3.0.symbols.gmt curated gene set, 1000 gene permutations, and using the classes 

(e.g. old versus young) as the phenotype. (The gene symbol “chip” was selected as the chip 

platform.) All processing unless otherwise noted was done in the MolBioLib framework. 

For all statistical analysis, differences were considered statistically significant if p values 

calculated by EdgeR as well as student T-test were <0.05.

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those generally employed in the field.
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Proteomics

2-D DIGE and Mass spectrometry protein identification were performed by Applied 

Biomics (Hayward, CA). Proteomic analysis was done on microglial and macrophage 

lysates using pooled cells isolated from 70 mice and 50 mice, respectively.

Cell lysate preparation—Frozen cell pellets were lysed in 200 ul 2-D cell lysis buffer 

(30 mM Tris-HCl, pH 8.8, containing 7 M urea, 2 M thiourea and 4% CHAPS). The cells 

were sonicated at 4° C, incubated on a shaker for 30 minutes at room temperature, followed 

by centrifugation for 30 min at 14,000 rpm. Supernatants were collected and protein 

concentrations determined by the Bio-Rad Protein Assay (Biorad). Sample lysates were 

diluted with the sample 2-D cell lysis buffer to the same protein concentration of 3 to 8 

mg/ml.

Minimal CyDye labeling—To 30 ug of cell lysate, 1.0 ul of diluted CyDye (Cy2, Cy3 or 

Cy5) (1:5 diluted with DMF from 1 nmol/ul stock) was added, incubated on ice for 30 min 

in the dark, followed by addition of 1.0 ul of 10 mM Lysine to each of the samples and 

incubation on ice in the dark for additional 15 min. Cy2, Cy3 and Cy5labeled samples were 

mixed together followed by addition of 2X 2-D Sample buffer (8 M urea, 4% CHAPS, 20 

mg/ml DTT, 2% pharmalytes and trace amount of bromophenol blue), and loaded onto a 13 

cm IPG strip.

IEF and SDS-PAGE—After loading the labeled samples into the strip holder, IEF was run 

in the dark at 20 °Caccording to protocol provided by Amersham BioSciences. Upon 

finishing the IEF, the IPG strips were incubated in equilibration buffer 1 (50 mM Tris-HCl, 

pH 8.8, containing 6 M urea, 30% glycerol, 2% SDS, trace amount of bromophenol blue and 

10 mg/ml DTT) for 15 minutes with slow shaking. Then the strips were rinsed in 

equilibration buffer 2 (50 mM Tris-HCl, pH 8.8, containing 6 M urea, 30% glycerol, 2% 

SDS, trace amount of bromophenol blue and 45 mg/ml Iodacetamide) for 10 minutes with 

slow shaking. The IPG strips were then rinsed once in the SDS-gel running buffer before 

being transferred into the SDS-Gel (12% SDS-gel prepared using low florescent glass 

plates) and sealed with 0.5% (w/v) agarose solution (in SDS-gel running buffer). The SDS-

gels were run at 15 °C and until the dye front reached the end of the gel.

Image scan and data analysis—Image scans were carried out immediately following 

the SDS-PAGE using Typhoon TRIO (Amersham BioSciences) following the protocols 

provided. The scanned images were then analyzed by Image QuantTL software (GE-

Healthcare), and then subjected to in-gel analysis and cross-gel analysis using DeCyder 

software version 6.5 (GE-Healthcare). The ratio change of the protein differential expression 

was obtained from in-gel DeCyder software analysis.

Spot picking and Trypsin digestion

The spots of interest were picked up by Ettan Spot Picker (GE Healthcare) based on the in-

gel analysis and spot picking design by DeCyder software. The gel spots were washed, 

followed byin-gel digestion with modified porcine trypsin protease (Trypsin Gold, 

Promega). The digested tryptic peptides were desalted by Zip-tip C18 (Millipore). Peptides 
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were eluted from the Zip-tip with 0.5 ul of matrix solution (α-cyano-4-hydroxycinnamic 

acid, 5 mg/ml in 50% acetonitrile, 0.1% trifluoroacetic acid, 25 mM ammonium 

bicarbonate) and spotted on the MALDI plate.

Mass Spectrometry

MALDI-TOF (MS) and TOF/TOF (tandem MS/MS) were performed on a 5800 mass 

spectrometer (AB Sciex). MALDI-TOF mass spectra were acquired in reflectron positive 

ion mode, averaging 2000 laser shots per spectrum. TOF/TOF tandem MS fragmentation 

spectra were acquired for each sample, averaging 2000 laser shots per fragmentation 

spectrum on each of the 5–10 most abundant ions present in each sample (excluding trypsin 

autolytic peptides and other known background ions).

Database search

Both the resulting peptide mass and the associated fragmentation spectra were submitted to 

GPS Explorer version 3.5 equipped with MASCOT search engine (Matrix science) to search 

the database of National Center for Biotechnology Information non-redundant (NCBInr). 

Searches were performed without constraining protein molecular weight or isoelectric point, 

with variable carbamidomethylation of cysteine and oxidation of methionine residues, and 

with one missed cleavage allowed in the search parameters. Candidates with either protein 

score C.I.% or Ion C.I.% greater than 95 were considered significant.

Quantitative Real Time PCR

Microglia and peritoneal macrophages were isolated from a different cohort of 5-month old 

mice than the ones used for DRS comprising 6 sets of 5 mice per set. The sorts resulted in 6 

pools of macrophages and 5 pools of microglia. Total RNA from each sample of cells (3.0–

8.0 ×105 cells) was isolated using the RNeasy® Plus micro kit (Qiagen, Valencia, CA) 

according to the manufacturer’s instructions and reverse transcribed using Multiscribe™ 

reverse transcriptase (Applied Biosystems, Foster City, CA). Dilutions of each cDNA prep 

were used to assess β2-microglobulin RNA levels and samples were then adjusted to give 

equivalent levels of β2-microglobulin per well in subsequent qPCR reactions for other 

genes. The qPCR was performed in a Roche 480 Lightcycler qPCR machine (Indianapolis, 

IN) in duplicates using SYBR Green to detect the amplification products. The following 

cycles were performed: initial denaturation cycle 95°C for 10 min, followed by 40 

amplification cycles of 95°C for 15 secs and 60°C for one min and ending with one cycle at 

25°C for 15 secs. Relative quantification of mRNA expression was calculated by the 

comparative cycle method to obtain the ratio of gene interest/B2M.

The following are genes and primers used in these experiments:

Cd11b (GTGTGACTACAGCACAAGCCG, CCCAAGGACATATTCACAGCCT)

Cx3cr1 (ACCGGTACCTTGCCATCGT, ACACCGTGCTGCACTGTCC)

HexB (ACTCCAAGATTATGGCCTCGAGCA, 

AGCTATTCCACGGCTGACCATTCT)

B2M (CCGAACATACTGAACTGCTACG, CCCGTTCTTCAGCATTTGGA)
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P2ry6 (CTGCGTCTACCGTGAGGATT, GCAATGACGCAGATGTTCAG)

P2ry12 (CACGGATTCCCTACACCCTG, GGGTGCTCTCCTTCACGTAG)

P2ry13 (AACAAAGCTGATGCTCGGGA, GTGTCATCCGAGTGTCCCTG)

Trem2 (GCCTTCCTGAAGAAGCGGAA, GAGTGATGGTGACGGTTCCA

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The microglial Sensome identified by direct RNA sequencing
Of the 21025 transcripts measured, we used gene ontology (GO) analysis and identified 

1299 potential sensome genes. Of these, we selected the top 100 transcripts with the highest 

enrichment of microglia/brain and termed this gene collection as the microglial “Sensome”. 

a–b. Expression levels of genes of the microglial Sensome in mRNA copies per million 

reads (CMMR) in microglia and brain. Values are mean ± SD of three different experiments 

done with microglia pooled from 22, 10 and 20 mice, respectively. and three pools of RNA 

from 2 brains each. For differences in expression between microglia and brain p<0.00001 

for all Sensome genes shown in graph. Data can be found in Supplementary Table 1. c. 
Log2Fold change (graybars) of non-microglial genes specific for neurons, astrocytes and 

oligodendrocytes and show “derichment” in microglia compared to whole brain. d. Network 

analysis of the microglial Sensome by STRING identified a DAP12 centered pathway with 

44/100 genes with direct or indirect interaction with DAP12. Of these, 24 have a direct 

interaction with Dap12 and are highlighted using a largerfont.
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Figure 2. Differences between microglia and macrophages revealed by DRS
a. Venn diagram showing similarities and differences of the top 10% of transcripts 

expressed in microglia and macrophages. b. Heat map and hierarchal clustering of the 

transcripts that are unique to microglia or macrophages, showing a distinct signature for 

each of the cell types. c. The top 25 transcripts with the highest CMMR that are unique to 

microglia have barely detectable levels in macrophages (p<0.00001 for differences between 

microglia and macrophage expression). These top 25 transcripts show high level of 

enrichment (Log2Fold Change >4) over macrophages regardless of the level of expression in 

microglia. d. The top 25 transcripts unique to macrophages with the highest CMMR have 

barely detectable levels in microglia (p<0.00001 for differences between macrophages and 

microglia expression). These top 25 transcripts unique to macrophages show high level of 

enrichment (Log2Fold Change >5) over microglia regardless of the level of expression in 

macrophages. (Values in c–d mean ± SD of three different experiments done with 

microgliapooled from 22, 10and 20 mice, respectively and three pools of macrophages from 

10 mice per pool) Data for Figure 1c–d can be found in Supplementary Table 2.
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Figure 3. Comparative expression of the microglial and macrophages genes
Comparison ofexpression levels of Sensome genes and those involved in regulating the 

immune response reveal a distinct immune signature for each cell type. a, b. Expression 

levels of the microglial Sensome in microglia and macrophages show that several genes are 

differentially expressed. c. Purinergic P2rx receptors. d. Purinergic P2ry receptors. e. 
Chemokine Ccr and Cx3cr1 receptors. f. Chemokine Cxcr receptors. g. Fc receptors. h. 
Interferon-inducible transmembrane (Ifitms). i. Toll-like receptors (Tlrs) 1–13. j. Sialic acid 

binding immunoglobulin lectins (Siglecs). (Values are mean ± SD of three different 

experiments done with microglia pooled from 22, 10 and 20 mice, respectively and three 

pools of macrophages from 10 mice per pool.) Data for Figure 3a–j can be found in 

Supplementary Table 2.
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Figure 4. RNAscope dual fluorescent in situ hybridization
Dual RNAscope was performed on brain slices from adult mice for CD11b and sensome 

genes with high (P2ry12), intermediate (Cx3cr1) and low (P2ry6) levels of expression and 

for the highly expressed Hexb gene. The results confirm DRS findings and show exclusive 

expression in microglia and no expression in CD11b negative cells. a. Dual RNAscope for 

CD11b (red) and P2ry12 (green) probes, nuclei are stained with DAPI (blue). Bottom panels 

are magnified images of the double positive cells shown in the top panel. b. Dual RNAscope 

for CD11b (red) and Cx3cr1 (green) probes. Bottom panels are magnified images of the 

double positive cells shown in the top panel. c. Dual RNAscope for CD11b (red) and P2ry6 

(green) probes. Bottom panels are magnified images of the double positive cells shown in 

the top panel. d. Quantitative image analysis of RNAscope data for CD11b+ cells with 

P2ry12 and Cx3cr1 and P2ry6. e. Dual RNAscope for CD11b (red) and Hexb (green) probes 

in the cortex, hippocampus and cerebellum. f. Nearly all of CD11b+ cells in the cortex, 

hippocampus and cerebellum, respectively, co-express HexB.
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Figure 5. Proteomic analysis of microglia and macrophages
a. Fluorescent 2D-DIGE of microglia (labeled in red) and macrophages (labeled in green) 

proteins showing common (labeled in yellow) and unique proteins for each cell type. Right 

panel shows an enlarged view of the area delineated in left panel. b. quantitative diagram of 

spot # 10 identified by mass spectrometry as Padi4 showing lower level of expression in 

microglia compared to macrophages. c. quantitative diagram of spot # 27 identified by mass 

spectrometry as fascin showing higher level of expression in microglia compared to 

macrophages. d, e. Comparison of protein levels (measured by mass spectrometry) and 

mRNA levels (measured by DRS) of Padi4 and fascin in macrophages and microglia. (DRS 

values are mean ± SD of three different experiments done with microglia pooled from 22, 10 

and 20 mice, and from three pools of macrophages from 10 mice per pool, protein values are 

from pooled microglia and macrophages isolated from 70 and 50 mice, respectively). f. 
Validation by qPCR of some genes obtained with DRS on new cohorts of mice. The new 

cohorts comprised 5 sorted microglia pools and 6 macrophage pools from sorting of six sets 

using five mice per set. Ratio values for qPCR and DRS data represent the ratio of gene of 

interest to B2-micoglobulin expression. Data are plotted as log2 fold differencebetween 

microglia/macrophageratio values.
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Figure 6. Effects of Aging on the microglial mRNA expression profile
a. Heatmap of the 10598 microglial transcripts expressed at >1CMMR shows that 1831 

transcripts were upregulated, 1672 were downregulated and 7095 remained unchanged with 

aging. b. GSEA pathways analysis showed upregulation of potentially neuroprotective 

pathways such as Stat 3 and Neuregulin-1 and downregulation of potentially neurotoxic 

pathways such as oxidative phosphorylation. Each bar at the bottom of each panel represents 

a member gene of the respective pathway and shows its relative location in the ranked list of 

genes (lowest panel).
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Figure 7. Upregulation of alternative priming genes in microglia from aged mice
a,b. Alternative and classical priming genes in microglia from 24 months compared with 

mice 5 months of age old mice show a wide range of expression levels. a. In old mice, 24 of 

37 alternative priming state markers were statistically significantly upregulated (*p<0.016). 

b. In 24 months old vs. microglia from 5 months old mice, 5 of 12 markers of the classical 

priming state were significantly upregulated in microglia, while the remaining 7 were down-

regulated or not significantly changed. c. Analysis of 22 inflammasome-associated genes 

shows that 4 are significantly up-regulated in old mice compared with young ones 

(*p<0.025), while the remaining 18 genes are down-regulated or not significantly changed. 

Taken together the data suggest a trend toward increased expression of genes involved in 
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resolution of inflammation and neuroprotection. Values are Log2 Fold change of three 

different experiments done with microglia pooled from 22, 10 and 20 young mice, 

respectively and from three pools of 10 mice per pool from old mice.. Data for this figure is 

found in Supplemental Table 3.

Hickman et al. Page 27

Nat Neurosci. Author manuscript; available in PMC 2014 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. The microglial sensome in aging
a. measurement of the Log2Fold change of genes encoding the microglial sensome as 

determined by DRS show that ~81% of the genes are significantly downregulated 

(Escr1→Tmem173, p<0.043) and encoded proteins involved in sensing endogenous ligands 

(red bars). Of the 69 genes that are unchanged or upregulated, 45% encoded proteins 

involved in sensing infectious microbial ligands (blue bars and purple bars). Of the genes 

that are significantly upregulated ~62% (C3ar1→Ifitm6, p<0.008) encoded proteins 

involved in pathogen sensing and host defense. b-i. Comparative expression of genes 

involved in regulating the immune response in old vs. young microglia reveals a selective 

set of genes that are changed with normal aging. Values are mean ± SD of three different 

experiments done with microglia pooled from 22, 10 and 20 young mice, respectively and 

from three pools of microglia from 10 mice per pool., * indicates p<0.03.
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