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Molecular recognition features (MoRFs) are short protein-binding regions that undergo disorder-to-order tran-
sitions (induced folding) upon binding protein partners. These regions are abundant in nature and can be pre-
dicted from protein sequences based on their distinctive sequence signatures. This first-of-its-kind survey
covers 14MoRF predictors and six related methods for the prediction of short protein-binding linear motifs, dis-
ordered protein-binding regions and semi-disordered regions. We show that the development of MoRF predic-
tors has accelerated in the recent years. These predictors depend on machine learning-derived models that
were generated using training datasets where MoRFs are annotated using putative disorder. Our analysis reveals
that they generate accurate predictions.We identified eightmethods that offer area under the ROC curve (AUC) ≥
0.7 on experimentally-validated test datasets. We show that modern MoRF predictors accurately find experi-
mentally annotatedMoRFs even though theywere trained using the putative disorder annotations. They are rel-
atively highly-cited, particularly the methods available as webservers that on average secure three times more
citations than methods without this option. MoRF predictions contribute to the experimental discovery of
protein-protein interactions, annotation of protein functions and computational analysis of a variety of
proteomes, protein families, and pathways. We outline future development and application directions for
these tools, stressing the importance to develop novel tools that would target interactions of disordered regions
with other types of partners.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Intrinsically disordered regions (IDRs) are absent a well-defined
structure under physiological conditions and instead they take shape
of heterogeneous conformational ensembles [1–3]. Recent computa-
tional analyses estimate that about 30–50% of eukaryotic proteins (de-
pending on the specific organism) have one or more long (having at
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least 30 consecutive residues) IDRs [4,5]. Intrinsic disorder is also one of
the major factors that define dark proteomes [6,7]. The structural plas-
ticity of IDRs facilitates efficient and promiscuous interactions with
structurally distinct targets [8,9]. Correspondingly, functional repertoire
of proteins with IDRs is largely driven by interactions with proteins and
nucleic acids, and includes molecular assembly and recognition, signal-
ling, regulation, transcription and translation [10–19]. These functions
complement the cellular functions of structured proteins that are
often involved in small molecule binding, transport and catalysis [20].

Proteins with IDRs are particularly important in the context of
protein-protein interactions (PPIs). Hub proteins, which are defined as
proteins that interact with a large number of proteins in the PPI net-
works, are enriched in IDRs when compared to the other proteins
[21–26]. This stems from the conformation plasticity and the ability of
IDRs to undergo disorder-to-order transitions (induced folding) con-
comitant with their functional activity [16,27–33]. Moreover, a single
IDR is capable of interacting with several partners while potentially
folding into different conformations [29,33–35]. Here, we focus on mo-
lecular recognition features (MoRFs), which are short binding regions
(between 5 and 25 residues in length) that are located within longer
IDRs and that undergo disorder-to-order transitions upon binding
their protein partners [36]. While MoRFs are unstructured in their un-
bound state, upon binding they morph into well-defined structures
that may include helical and strand conformations, often with
partner-dependent conformational differences [33]. Correspondingly,
MoRF regions are categorized into four types: α-MoRFs that fold into
helical conformation, β-MoRFs that fold into β strands, γ-MoRFs transi-
tion into coils, and complex-MoRFs that fold into regions with multiple
secondary structures [36]. Fig. 1 shows twoMoRF regions located in the
sequence of the T-cell surface glycoprotein CD3 (UniProt id: P20963),
which is one of the key players in the adaptive immune response.
These MoRFs were annotated using the structures of protein-protein
complexes from the Protein Data Bank (PBD) [37] that are shown in
Fig. 1. The first MoRF region (Ala-63 to Asp-87) participates in three di-
verse PPIs with the Nef protein (Ala-63 to Gly-78 segment that folds
upon interaction into the α-MoRF), Tyrosine kinase (Leu-71 to Asp-87
segment that folds into the γ-MoRF) and Tyrosine phosphatase (Arg-
80 to Val-85 segment that folds into the γ-MoRF). The secondMoRF re-
gion (Gly-137 to Lys-150) interactswith the SH2 domain of SHC protein
and folds into the γ-MoRF. This example clearly demonstrates that a
single MoRF region is capable of binding to a structurally diverse set of
protein partners by folding into multiple, different conformations.

A recent computational study has analyzed abundance of MoRFs in
868 complete proteomes, showing that estimated 21% of IDRs in
Eukaryota and 29% in Bacteria and Archaea haveMoRFs [9]. These abun-
dant short disordered protein-binding regions have originally been
Fig. 1. Interactions between the MoRF regions in the T-cell surface glycoprotein CD3 zeta chain
Tyrosine kinase (UniProt id: P43403; PDB id: 4XZ1), Tyrosine phosphatase (UniProt id: P08575
first MoRF region (Ala-63 to Asp-87) interact with the Nef protein (Ala-63 to Gly-78 segment),
segment). The secondMoRF region (Gly-137 to Lys-150) interacts with the SHC protein. Top of
(in orange). The bottom of the figure provides annotated sequence of the glycoprotein where
disordered (DisProt id: DP00200), and black regions are MoRFs (annotated based on PDB com
studied using computational approaches that relied on the analysis of
disorder predictions [38–41] and short sequence motifs associated
with protein-binding [42–45]. The latter approach depends on finding
over-represented short sequence patterns among a collection of differ-
ent sequences that bind to a common protein partner [34,42,43,46].
The former approach, which pre-dates the motif-based methodology,
is based on an observation that certain putative IDRs include regions
with increased structural propensity. While initially these were treated
as prediction errors, further analysis has revealed that they often corre-
spond to protein binding sites [47]. MoRFs have unique sequence signa-
tures that differ from the other disordered regions and structured
regions, therefore allowing for accurate sequence-based computational
prediction [9]. For instance, MoRF regions are enriched in amino acids
with large hydrophobic side chains, especially aromatics, when com-
pared with the flanking IDRs. These types of patterns motivated the de-
velopment of computational predictors of MoRFs [48]. Experimentalists
use thesemethods to support discovery of PPIs [49,50] and in factMoRF
predictions have been often used for this purpose on numerous occa-
sions [51–62]. Knowledge of putativeMoRFs also contributes to the elu-
cidation of protein functions [63] and has been used to facilitate analysis
of multiple viral proteomes [64–69], cell death pathways [70,71],
interactomes of channel proteins [72], kinases [73], nucleosome [14]
and ribosome [13].

While some of the MoRF predictors were mentioned in the context
of a couple of recent articles that discuss prediction of functions of
IDRs [48,74], they were never systematically surveyed. This is the first
comprehensive review of computational MoRF predictors. We compare
results generated by severalMoRF predictors for the same T-cell surface
glycoprotein CD3 and contrast them against a set of results produced by
a few representative predictors of IDRs. We summarize availability and
impact of 14MoRF predictors, discuss their predictivemodels, and com-
pare their predictive performance on two benchmark datasets. We also
discuss several other computational tools that make predictions of sim-
ilar types of disordered protein-binding regions.

2. Prediction of MoRFs

MoRF predictors identify putative MoRF regions in an input protein
sequence. Fig. 2 visualizes such predictions for the sequence of the T-
cell surface glycoprotein CD3 that was introduced in Fig. 1. This T-cell
receptor is largely disordered based on experimental annotations
[75,76] that we collected from the DisProt resource [77,78] (DisProt
id: DP00200). The putative annotations of disorder that were produced
with three state-of-the-art disorder predictors [79,80]: MFDp [81–83],
VSL2B [84], and PrDOS [85], are in good agreement with each other
and with the native annotations of IDRs. While these methods can
(UniProt id: P20963) and its interactors: Nef protein (UniProt id: Q5QGG3; PDB id: 3IOZ),
; PDB id: 1YGR), and SH2 domain of SHC protein (UniProt id: P29353; PDB id: 1TCE). The
Tyrosine kinase (Leu-71 to Asp-87 segment) and Tyrosine phosphatase (Arg-80 to Val-85
the figure shows structures of the MoRF regions (in blue) in complex with the interactors
red region has no evidence of presence/lack of structure, grey regions are annotated as

plexes).

uniprotkb:P20963
uniprotkb:P20963
uniprotkb:Q5QGG3
uniprotkb:P43403
uniprotkb:P08575
uniprotkb:P29353


Fig. 2.Prediction of IDRs,MoRFs anddisordered protein-binding regions (DPBRs) for the T-cell surface glycoprotein CD3 zeta chain (UniProt id: P20963). The native annotations are shown
using horizontal line immediately below the protein sequence at the top of the figure where regions without structural evidence are in red, IDRs are in grey and MoRFs are in black. The
following three lines show putative annotations of disorder produced with three leading predictors: MFDp, VSL2B and PrDOS where putative IDRs are in grey and putative structured
regions in rose. The next four lines give the putative MoRFs generated with MoRFpred, OPAL, MoRFchibi and DISOPRED3 (in green). The two lines at the bottom correspond to
putative DBPRs predicted with DisoRDPbind and ANCHOR2A (in blue).
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accurately identify IDRs, they are clearly incapable of finding the two
MoRFs that are identified in black in Fig. 2. We use four representative
MoRF predictors to generate putative MoRF regions: MoRFpred
[86,87], MoRHchibi [88,89], DISOPRED3 [90] and OPAL [91]. The corre-
sponding green lines in Fig. 2 reveal that each of these methods iden-
tifies putative MoRF regions in this protein and that these predictions
are inside the experimentally annotated IDR, except for DISOPRED3
thatfindsMoRF in theN-terminus that lacks structural/disorder annota-
tions. While they correctly identify presence of the MoRF regions, only
some of them localize these regions in good agreement with the native
annotations. In particular, the predictions from MoRFchibi and
MoRFpred overlap with the two native MoRFs, although neither of
them finds the entire first MoRF region (Ala-63 to Asp-87). While not
perfect, these predictions correctly suggest presence of MoRFs and
even provide their approximate location in the sequence.

We also contrast MoRF predictionswith results of twomethods that
target the prediction of amore generic set of disordered protein-binding
regions (DPBRs), which cover MoRFs and other disordered protein
binding domains that are longer than 25 residues [92]. The results gen-
erated by the two predictors: ANCHOR2A [39,41,93] and DisoRDPbind
[94,95], are shown in blue in Fig. 2. ANCHOR2A finds a protein-
binding region (positions Gln-107 to Arg-164) that overlaps with the
second MoRF (positions Gly-137 to Lys-150). DisoRBPbind finds two
clusters of disordered protein-binding residues that neatly overlap
with the location of both MoRF regions. While these two tools are suc-
cessful in identifying MoRFs for this protein, they are not meant to spe-
cifically predict MoRFs, and so these predictions could be misclassified
as longer protein-binding domains.

2.1. MoRF Predictors

Over a dozen MoRF predictors was developed during the last
14 years. The first method, α-MoRFpred [40,96], which was published
in 2005, is focused exclusively on the prediction of the α-MoRFs. This
ismotivated by an empirical observation thatα-MoRFs can be relatively
easily extracted from the disorder predictions generated by the VL3 [97]
and VSL2 methods [84]. VL3 is a neural network-based model that was
designed to address prediction of variously characterized long IDRs, and
which improves over the VL2 version that applies a simpler regression-
based model. The letters V and L in the name stand for variously and
long, respectively, where the long regions are defined to have at least
30 consecutive residues. The VSL2 method combines two disorder pre-
dictors that were optimized to predict short (letter S in the name; these
regions have b30 residues in length) and long IDRs. Authors of α-
MoRFpred have found that α-MoRFs correspond to regions with high
propensity for structural conformation localized inside longer IDRs pro-
duced by VL3 and VSL2, i.e., regions of lower putative propensity for dis-
order flanked by regions with high putative propensity for disorder.

The second predictor, Retro-MoRF [98], was published in 2010. It
combines disorder predictions with sequence alignment. In essense,
Retro-MoRF extracts putative MoRF regions utilizing the idea behing
α-MoRFpred, and next these regions are aligned against structured
sequences from PDB and functionally annotated sequences from
SwissProt [99]. These alignments are used to determine whether the
originalα-MoRF prediction should be accepted or refuted as a false pos-
itive. However, Retro-MoRF was tested on a small set of several pro-
teins, the underlying algorithm and implementation were not released
publically, and it remains unclear whether this method could predict
the other types of MoRFs, besides the α-MoRFs.

The first publically available computational tool that covers predic-
tion of all MoRF types is MoRFpred [86,87]. This method was released
in 2012. MoRFpred applies predictive model that was produced with a
machine learning algorithm, Support Vector Machine (SVM), from a
large dataset of MoRFs extracted from protein-protein complexes in
PDB. Interestingly, this training dataset relies on putative annotations
of disordered regions; i.e., MoRFs in the training dataset are short
protein-binding sequence segments which are located within longer
predicted IDRs. The use of (arguably accurately) predicted IDRs to anno-
tate MoRFs was necessary given that relatively few experimentally val-
idated IDRs were known at that time. Subsequently published MoRF
predictors were also trained using datasets that rely on putative IDRs.
In fact, 11 out of the 14 MoRF predictors (except for α-MoRFpred,
Retro-MoRF and DISOPRED3) use the same training dataset, which
was introduced in [87]. Moreover, MoRFpred and the more recent pre-
dictors were evaluated using test datasets which cover all MoRF types.
Some of these test datasets rely on the putative IDRs while some other
utilize experimentally confirmed MoRFs; i.e., MoRFs located in the ex-
perimentally validated IDRs.

uniprotkb:P20963
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While only three predictors were developed between 2005 and
2012, 11 methods were published over the next seven years. Table 1
summarizes the corresponding collection of the 14 MoRF predictors. It
reveals that the development efforts have accelerated in recent years,
with four predictors that were released in 2016 and an additional four
in 2018. The table provides year of publication and details concerning
the predictive models, availability and impact. The predictive models
can be broadly categorized into two classes: those that rely on machine
learning algorithms and those that utilize scoring functions. The scoring
function-based methods utilize an ab-initio derived empirical formula
or a sequence alignment to make predictions. Only oneMoRF predictor,
namely Retro-MoRF, depends on this type of model. The machine
learning-based methods compute predictive models from a training
dataset annotated with MoRF regions. They use machine learning algo-
rithms to optimize the architecture and parameters of the predictive
models such that the differences between the outputs of these models
and the native MoRF annotations in the training dataset are minimized.
After completing the training, the resulting models can be used to pre-
dict MoRFs in sequences from outside of the training dataset. All but
one MoRF predictor rely on the machine learning-generated models.
However, they differ in the type of the machine learning algorithms
that they use. The most frequently used algorithm is SVM, which is
used by nine MoRF predictors. The remaining methods use the Naïve
Bayes algorithm (two predictors) and the neural network algorithm
(one predictor). Three of the machine learning-based methods
are meta-predictors (Table 1). The meta-predictors use predictions of
Table 1
Methods for the prediction of MoRFs and related binding regions including SLiMs (short linear
sorted by the publication year in the ascending order within each group. The ‘Type’ column indi
source code (SC); NAmeans that neitherwebserver nor source code is available. The ‘URL’ colum
column gives the number of citations collected fromGoogle Scholar onMarch 20, 2019. To avoid
the one with the highest number of citations. The ‘Citations Annual’ column gives an average
column categorizes the models into two groups: those generated with machine learning (ML)
formula or using an alignment score. The machine learning models include neural network (N

Target of
predictions

Method name Ref. Year
published

Predictive
model

Meta
predictor

Avail

Type

MoRF regions α-MoRFpred [40,96] 2005 ML (NN) No NA
retro-MoRFs [98] 2010 SF

(alignment)
No NA

MoRFpred [86,87] 2012 ML (SVM) No WS
MFSPSSMpred [102] 2013 ML (SVM) No WS +

SC
MoRFCHiBi [88] 2015 ML (SVM) No WS +

SC
DISOPRED3 [90] 2015 ML (SVM) No WS +

SC
fMoRFpred [9] 2016 ML (SVM) No WS
MoRFCHiBiLight [89] 2016 ML (NB) No WS +

SC
MoRFCHiBiWeb [89] 2016 ML (NB) Yes WS +

SC
Predict-MoRFs [103] 2016 ML (SVM) No SC
Fang et al. [101] 2018 ML (SVM) No NA
MoRFPred-plus [104] 2018 ML (SVM) No SC

OPAL [91] 2018 ML (SVM) Yes WS +
SC

OPAL+ [100] 2018 ML (SVM) Yes WS +
SC

DPBRs DisoRDPbind [94,95] 2015 ML (LR) No WS
ANCHOR [39,41,93] 2009 SF No WS +

SC
SLiMs PepBindPred [105] 2013 ML (NN) No WS

SLiMPred [106] 2012 ML (NN) No WS

Semi-disorder SPINE-D [107] 2013 ML (NN) No WS +
SC

SPOT-Disorder [108] 2017 ML (NN) No WS +
SC
MoRFs generated by third-party methods as inputs to (re)predict
MoRF regions. The underlying goal is to generate results that are more
accurate than any of the input MoRF predictions. For instance,
the newest OPAL+ method uses MoRF predictions generated by
MoRFpred-plus andMoRFchibi as inputs to its SVMmodel. Correspond-
ingly, the OPAL+ model is shown to be more accurate than these two
input predictors on all test datasets [100].

The MoRF predictors are made accessible to the community in two
ways: as webservers and/or standalone code. The webservers are argu-
ably easier to use and they are more suitable for less computer savvy
users who want to perform ad hoc predictions for a limited number of
proteins. The only requirements for the webserver users are to have ac-
cess to the Internet and to have amodernweb browser to connect to the
website of the webserver. The predictions are calculated on the server
side and the results are returned via email or/and theweb browserwin-
dow. Nine out of 14 MoRF predictors offer this option.We note that the
webserver for one of these methods, MFSPSSMpred, is no longer avail-
able. The source code option requires the end users to run the predic-
tions on their own hardware. This could be attractive in situations
when large datasets of proteins must to be predicted and when the
end users would like to embed a givenMoRF predictor into a larger bio-
informatics pipeline. The source code is available for nine of the 14
MoRF predictors. We note that six methods, including MoRFCHiBi
[88], DISOPRED3 [90], MoRFCHiBiLight [89], MoRFCHiBiWeb [89],
OPAL [91] and OPAL+ [100], are currently offered as both webservers
and source code. Table 1 gives the web links to the webservers and
motifs that bind proteins) and disordered protein-binding regions (DPBRs). The methods
cates whether a givenmethod is available as the onlinewebserver (WS) and/or standalone
n gives the pagewhere themethod can be found as of January 7, 2019. The ‘Citations Total’
duplicate counting of citations for methods that are published inmultiple articles, we use

number of citations per year since a given method was published. The ‘Predictive model’
algorithms and those that rely on a scoring function (SF) generated either by an empirical
N), support vector machine (SVM), naïve Bayes (NB), and logistic regression (LR).

ability Citations

URL Total Annual

NA 454 32
NA 27 3

http://biomine.cs.vcu.edu/servers/MoRFpred/ 194 28
The website does not work as of January 2019 32 5

https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 37 9

http://bioinf.cs.ucl.ac.uk/disopred 218 54

http://biomine.cs.vcu.edu/servers/fMoRFpred/ 36 12
https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 23 8

https://gsponerlab.msl.ubc.ca/software/morf_chibi/ 23 8

https://github.com/roneshsharma/Predict-MoRFs 6 2
NA 0 0
https://github.
com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus

8 8

http://www.alok-ai-lab.com/tools/opal/ 9 9

http://www.alok-ai-lab.com/tools/opal_plus/ 0 0

http://biomine.cs.vcu.edu/servers/DisoRDPbind/ 47 12
http://anchor.enzim.hu 395 39

http://bioware.ucd.
ie/~compass/biowareweb/Server_pages/pepbindpred.php

17 3

http://bioware.ucd.
ie/~compass/biowareweb/Server_pages/slimpred.php

55 8

http://sparks-lab.org/SPINE-D/ 32 5

http://sparks-lab.org/server/SPOT-disorder/ 47 23
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source codes. The implementations for three methods, the two earliest
tools (α-MoRFpred and Retro-MoRF) and the method developed by
Fang et al. in 2018 [101], are inaccessible to the public. They can be ob-
tained only by directly contacting the authors.

Table 1 quantifies citations, which is one of the key measures of im-
pact for the MoRF predictors. To avoid duplicate counting we use the
reference with the highest citation count for the methods that were
published in multiple articles. The table lists the total and the annual
number of citations which we collected from Google Scholar. The 14
tools have accumulated a total of 1067 citations, with a respectable me-
dian of 25 citations (annual median = 8). Three methods were cited
over 100 times: α-MoRFpred (total: 454, annually: 32), DISOPRED3
(total: 218, annually: 54) and MoRFpred (total: 194, annually: 28).
Moreover, we found that predictors that are available as webservers
are cited substantially more often compared to the methods that do
not offer this option. Using the annual citation counts, which are more
suitable for the comparisons between methods, the median of annual
citations for the methods that have webservers is 9 vs. 3 for the other
predictors. The difference in the corresponding medians of the total ci-
tations is even larger: 32 vs. 8.

2.2. Related Predictors of Disordered Protein-binding Regions

We also briefly discuss several related computational methods that
target prediction of disordered protein-binding regions (DPBRs), short
linear motifs (SLiMs), and semi-disordered regions.

DPBRs cover MoRF regions and longer disordered protein-binding
domains. There are currently two predictors of DPBRs: ANCHOR
[39,41,93] and DisoRDPbind [94,95]. Table 1 reveals that they are
well-cited and available as webservers. ANCHOR is a scoring function-
based method that implements an empirical calculation of propensity
for protein binding in putative disordered regions, drawing from the
methodology underlying a popular disorder predictor, IUpred [109]. In
contrast, DisoRDPbind is a machine learning-based method that uses
the logistic regression model. Besides predicting DPBRs, this is the first
method that provides predictions of disordered RNA-binding and disor-
dered DNA-binding regions. The RNA-binding regions generated with
DisoRDPbind were recently used to derive the arguably most complete
to date collection of putative RNA-binding proteins in the human
proteome [110].

SLiMs are short sequencemotifs in eukaryotic proteins that are asso-
ciated with protein binding events. While most SLiMs are localized in
IDRs, approximately 20%of themare associatedwith protein-protein in-
teractions in structured regions [89]. A collection of over 3000 SLiMs cu-
rated from literature is available in the ELM resource [43,45]. The two
SLiMpredictors, PepBindPred [105] and SLiMPred [106], utilizemachine
learning-derived neural networkmodels. PepBindPred's model was de-
rived using training datasets of SLiMs thatwere filtered to be embedded
within putative IDRs, representing a motif-associated subpopulation of
MoRFs. The main difference is that MoRFs do not have to be associated
with sequence motifs that, by definition, must occur across multiple
proteins. PepBindPred relies on protein-protein docking and requires
structure of the protein that binds to the SLiM region as the input.
While thismay improve quality of the predictions, it also increases com-
putational cost of making predictions when compared to the MoRF and
DPBR predictors that do not use docking. It also limits applications of
PepBindPred to scenarios where the structure is available. SLiMPred
predicts SLiMs in protein sequences (i.e., it does not need the structure
as its input). However, its predictions do not distinguish betweenmotifs
located in IDRs and in structured regions. Consequently, SLiMPred's out-
puts partially cover MoRFs (those associated with motifs) and they also
include short structured protein-binding regions.

Semi-disordered regions are the regions that are predicted midway
between being disordered and structured; i.e., they are predicted with
50% probability to be disordered [107]. Recent study shows that the
semi-disordered regions are partially collapsed and have intermediate
levels of predicted solvent accessibility [107]. This work also suggests
that these regions are linked to the induced folding and that the corre-
sponding predictions can be used to identify MoRF regions. Two disor-
der predictors can be used to predict the semi-disordered regions:
SPINE-D [107,111] and SPOT-Disorder [108]. Both methods rely on ma-
chine learning-derived neural network models, though SPOT-Disorder
uses a more sophisticated deep recurrent network. Preliminary, small
scale tests suggest that SPOT-Disorder can be used to accurately predict
MoRFs [108].

3. Predictive Quality of the MoRF Predictors

Various MoRF predictors use different predictive models, different
types of information extracted from the input sequence, and different
training datasets. This results in different predictions for the same
input sequence, where some methods are expected to be on average
more accurate than others.

As we mentioned before, the MoRF predictors are trained using
datasets of proteins with MoRF regions located within putative IDRs. A
representative set of 11 MoRF predictors uses the same putative IDR-
based training dataset from [87]. These predictors were also tested on
a consistent set of test datasets that share low sequence similarity
(b30%) to this training dataset, ensuring that the corresponding results
can be compared across these methods. This also means that a simple
sequence alignment could not be used to make accurate predictions
on these test datasets. The set of 11 predictors excludes only the two
earliest methods that target prediction of α-MoRFs (α-MoRFpred and
Retro-MoRF) andDISOPRED3 that was designed to primarily target pre-
diction of disordered regions. Testing of 10 out the 11 tools was done
using two types of test datasets, withMoRFs locatedwithin the putative
IDRs and with MoRFs inside the experimentally verified IDRs. Only the
predictor by Fang et al. [101] was never tested using the experimentally
verified IDRs, and thus we exclude this methods from our analysis. The
most commonly used test dataset, TEST419 [87], includes 419 proteins,
where MoRF regions are located within a larger sequence segment that
is predicted to be disordered using a protocol from [112]. The two com-
monly used datasets that rely on the experimentally annotated IDRs are
TEST45 [87] and TEST53 [89], which have 45 and 53 proteins, respec-
tively. These three test datasets share the low similarity to the proteins
from the training dataset used to develop the 10 MoRF predictors. We
use the source references to collectmeasurements of the predictive per-
formance for these datasets for the 10MoRF predictors. Our aim is to in-
vestigate whether predictive performance have improved over the
years and whether the results on the test datasets that rely on putative
vs. native disorder annotations are different.

Fig. 3A reports values of the area under the ROC curve (AUC), which
ranges between 0.5 (equivalent to random predictions) and 1 (always
correct predictions). Fig. 3B compares values of the other two popular
measures: sensitivity, which quantifies rate of correct predictions of
MoRF residues among all native annotations of MoRF residues; and
specificity that quantifies the rate of correct predictions among the na-
tive non-MoRF residues. These three measures were used to assess ma-
jority of the MoRF predictors [87–91,100–104]. Inspired by the
comparative analyses in [87–89,91,100,103,104], we report sensitivity
values that are calibrated between different methods to the same
value of the false positive rate, which we set to 0.1. We similarly cali-
brate the specificity values to the same true positive rate = 0.5. This
way, these measurements can be directly compared between different
predictors. Both figures compare the predictive performance on the
TEST419 (using putative IDRs) against the results on the test datasets
that rely on experimental IDRs (either TEST45 or TEST53, whichever re-
sults is available) across the 10 MoRF predictors.

Fig. 3A shows a relatively wide range of AUC values, from about 0.65
to 0.84. Fig. 3B reveals that the 10MoRF predictors secure high sensitiv-
ity values between 0.31 and 0.55, relative to the corresponding low false
positive rate=0.1. It also demonstrates that they obtain high specificity



Fig. 3. Predictive quality for the predictors ofMoRF regionsmeasured on the TEST419 dataset (for whichMoRF annotations are based on putative disorder) and TEST53/TEST45 (forwhich
MoRF annotations are based on experimentally verified disorder). Panel A shows the AUC values. Panel B gives the values of sensitivity (measured for FRP= 0.1 and shown using circles)
and specificity (measured for TRP = 0.5 and shown with crosses). The results were taken from the original publications. All predictors were developed using the same training dataset
(TRAIN419) that shares low sequence similarity (b30%) with these test datasets.
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that ranges between 0.72 and 0.92, relative to the corresponding true
positive rate = 0.5. We argue that all ten methods provide reasonably
accurate predictions; i.e., AUC ≥ 0.65; sensitivity that is much higher
than the corresponding false positive rate, and specificity that is much
higher than the corresponding true positive rate. Themost accurate pre-
dictors on these benchmark test datasets are OPAL+, OPAL, MoRFchi-
biLight and MoRFchibiWeb. These methods were developed recently
and they offer high values for all three measures of predictive perfor-
mance. Three of these methods (OPAL+, OPAL and MoRFchibiWeb)
aremeta-predictors (Table 1), suggesting that this type of predictive ar-
chitecture provides promising results for the prediction of MoRF re-
gions. Moreover, as expected, our analysis reveals that the predictive
performance continues to improve. The three predictors that were pub-
lished between 2012 and 2015 secure an average AUC = 0.70 on the
TEST419 dataset, compared to 0.74 for the three methods published in
2016 and 0.78 for the fourmethods from 2018. The corresponding aver-
age AUCs that were measured on the experimentally annotated test
datasets are 0.73, 0.76 and 0.77.

The relatively low predictive performance of fMoRFpred (Fig. 3) can
be explained by fact that it was designed to provide fast predictions [9].
Runtime analyses reveal that the three fastest MoRF predictors:
fMoRFpred, MoRFCHiBi and MoRFCHiBiLight, predict an average size
protein chain (300 amino acids long) in about 1 s [9], 1.6 s [89] and
1.7 s [89], respectively. To compare, MoRFPred-plus, MoRFCHiBiWeb,
OPAL and OPAL+ would take approximately 34 s [100], 36 s [89], 84 s
[100] and 2min [100], respectively. These longer runtimes are primarily
caused by the high computational cost of running multiple sequence
alignments, which are required to produce some of the inputs used by
these predictors. Moreover, we observe that three of the most accurate
predictors (MoRFCHiBiWeb, OPAL andOPAL+) require at least an order
of magnitude more runtime compared to the fastest fMoRFpred.

Interestingly, a majority of the results are located at or above the
diagonal line in Fig. 3A and B. This means that these AUCs, sensitivities
and specificities are the same or better on the test dataset that relies
on the experimentally validated disorder annotations when compared
to the test dataset that uses putative IDRs. This trend reveals that the
current MoRF predictors accurately identify experimentally annotated
MoRFs in spite of the fact that they are trained using the dataset with
the putative annotations. The lower AUCs on the TEST419 datasets are
possibly because some of the MoRF annotations in this dataset might
be incorrect resulting in partially incorrect measurement of predictive
quality, which in turn effectively depresses AUC, sensitivity and
specificity values.
4. Summary and Outlook

MoRF regions are highly abundant across all domains of life. They
have unique sequence signatures that facilitate the development of ac-
curate computational predictors of MoRFs. These predictions were
used to assist experimental discovery of PPIs, generate putative protein
functions, and facilitate computational analysis of a variety of prote-
omes, pathways, and protein families. We survey a comprehensive col-
lection of 14 MoRF predictors. Our study reveals that the development
of thesemethods has accelerated in recent years, resulting in the release
of eight tools in the last three years. MoRF predictors rely primarily on
machine learning-derived predictive models that are generated using
training datasets where MoRFs are annotated using putative IDRs. We
demonstrate that these computational tools are well-cited and that
most of them are available as convenient to use webservers. Our analy-
sis also shows that they produce accurate predictions on test datasets
that use both putative and experimental annotations of disorder. We
highlight the empirical observation that they accurately identify exper-
imentally annotated MoRFs in spite of the fact that they were trained
using datasets with putative annotations. The most accurate methods
are meta-predictors but they also require the longest runtime. On the
other hand, the fastest method, fMoRFpred, is shown to generate the
least accurate results.

Our survey reveals that the underlying predictive models are rather
homogeneous, as they almost always use the SVMmodel. This is true for
allmethods thatwere published in 2018.With the advent of deep learn-
ing models in bioinformatics [113], we believe that these neural net-
work architectures should be tried to further improve the accuracy of
the MoRF predictions. This claim is supported by the fact that a few
accurate deep learning models that predict residue-level protein inter-
actions were recently published, including the predictor of residue-
residue contacts in protein structures [114], and the predictor of
residue-residue interactions in protein complexes [115].

We stress the fact that IDRs carry outmany cellular functions that re-
quire interactions with a wide range of partners. IDRs are involved in
protein-protein, protein-DNA, protein-RNA, protein-lipid, and a variety
of protein-small ligand interactions. Numerous examples of these inter-
actions are available in theDisProt resource [77,78]. A substantial collec-
tion of disordered protein-protein and protein-nucleic acids interfaces
was recently studied [116], suggesting that large training datasets can
be assembled. While over a dozen predictors of MoRFs regions is avail-
able, we note that there are very fewmethods that address prediction of
interactions of IDRs with the other partners. Notable examples include
DisoRDPbind that predicts disordered protein-RNA and protein-DNA
binding regions [94,95], DFLpred that predicts disordered linker regions
[117], and DMRpred that predicts disordered moonlighting (multi-
functional) regions [118]. More methods that would cover the other
types of partners are needed.

Finally, recent research advocates the development of quality as-
sessment scores for the disorder predictions [119]. These scores indi-
cate which residue-level predictions are more likely to be accurate,
therefore suggesting which parts of the predictions are more trust-
worthy. The scores are calculated by a separate predictive model
that uses the predicted disorder as the input. We observe that the de-
velopment of the quality assessment tools is already a well-researched
and developed topic in the protein structure prediction area
[120–122]. A recently developed method, QUARTER, generates the
quality assessment scores for ten different predictors of IDRs [123].
We believe that the MoRF predictors would also benefit from the
availability of the quality assessment scores.
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