
MINI REVIEW
published: 19 June 2019

doi: 10.3389/fimmu.2019.01395

Frontiers in Immunology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 1395

Edited by:

Teruki Dainichi,

Kyoto University, Japan

Reviewed by:

Toshihiro Nanki,

Toho University, Japan

Sin-Hyeog Im,

Pohang University of Science and

Technology, South Korea

*Correspondence:

Hiroyuki Yoshitomi

yositomi@kuhp.kyoto-u.ac.jp

Specialty section:

This article was submitted to

Immunological Tolerance and

Regulation,

a section of the journal

Frontiers in Immunology

Received: 07 January 2019

Accepted: 03 June 2019

Published: 19 June 2019

Citation:

Yoshitomi H (2019) Regulation of

Immune Responses and Chronic

Inflammation by Fibroblast-Like

Synoviocytes.

Front. Immunol. 10:1395.

doi: 10.3389/fimmu.2019.01395

Regulation of Immune Responses
and Chronic Inflammation by
Fibroblast-Like Synoviocytes
Hiroyuki Yoshitomi*

Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University,

Kyoto, Japan

Synovial tissue is a membranous non-immune organ lining joint cavities where it supports

local immune responses, and functions directly and indirectly in joint destruction due

to chronic inflammatory diseases such as rheumatoid arthritis (RA). Fibroblast-like

synoviocytes (FLS), the dominant non-immune cells of synovial tissues, mainly contribute

to joint destruction via multiple mechanisms. In RA, FLS respond to endogenous ligands

of pattern recognition receptors (PRRs) and inflammatory cytokines as non-immune cells.

In addition, FLS aid in the activation of immune responses by interacting with immune

cells and by supporting ectopic lymphoid-like structure (ELS) formation in synovial

tissues. Moreover, FLS directly cause the pathogenicity of RA i.e., joint deformities.

Here, we describe new findings and review the mechanisms underlying the regulation

of immune reactions by non-immune FLS and their roles in inflammatory diseases such

as RA.

Keywords: fibroblast-like synoviocytes (FLSs), synovial tissue, rheumatoid arthritis, non-immune cells, immune

cells, autoantibodies, ectopic lymphoid-like structures (ELSs)

INTRODUCTION

Non-immune cells of target organs play essential roles in the pathogenesis of chronic inflammatory
and autoimmune diseases, forming the basis of the unique features of each disease (1).
Fibroblast-like synoviocytes (FLS) are non-immune cells found in synovial tissues. FLS function in
the pathogenesis of rheumatoid arthritis (RA), a type of chronic systemic arthritis. Autoantibodies,
such as rheumatoid factor (RF), and anti-citrullinated peptide antibodies (ACPAs) are unique
features of RA, and their presence indicates strong involvement of CD4+ T cells and B cells in the
RA pathogenesis (2). Therefore, cellular communication between FLS and hematopoietic immune
cells may play a large role in the RA pathogenesis, including local autoantibody production in the
RA synovium.

The synovium is a membranous organ lining the joint cavity. In normal physiological conditions
within the joint cavity, the synovium supplies nutrients and the extracellular matrix (ECM)
components of cartilage (3). FLS also strongly participate in the pathogenesis of RA. FLS support
the development of the hyperplastic RA synovium as tertiary lymphoid organs (TLOs) by
interacting with immune cells and organizing ectopic (tertiary) lymphoid-like structures (ELSs).
Furthermore, FLS directly exert RA effector functions, which lead to joint deformity through
osteoclastogenesis and the production of extracellular protease enzymes.

In this review, we describe new findings and examine the role of FLS in the RA pathogenesis.
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FLS RESPONSES VIA PRRS

Like stromal cells in other organs, such as the skin, gingiva,
and lymph nodes (LNs), FLS play a role as innate immune cells
by recognizing invading pathogens via PRRs such as Toll-like
receptors (TLRs). Among the human TLR family, TLR1-7 is
expressed by FLS (4). TLRs can recognize components of both
pathogens and endogenous factors. Double-stranded and single-
stranded RNA are recognized by TLR3 and TLR7, respectively.
Necrotic cells in inflamed joints may be a source of endogenous
ligands for these receptors (5). Endogenous ligands, such as
heat-shock proteins and low-molecular-weight hyaluronan, were
initially reported to be directly recognized by a heterodimer of
TLR2/TLR4. However, highly pure ligands do not activate these
receptors (6).

Of note, citrullination of endogenous ligands, such as
fibrinogen and histones, stimulates the TLR4-mediated pathway
(7, 8). Anti-TLR4 antibody significantly blocks the activation of
monocytes by synovial fluid from RA patients exhibiting ACPAs
(9), suggesting involvement of the TLR4-mediated pathway in
the pathogenesis of RA. FLS are not activated by TLR9 plus
CpG DNA (10). However, neutrophil extracellular traps (NETs)
are internalized via the receptor for advanced glycosylation end
products (RAGE)–TLR9 pathway, followed by promotion of
the FLS inflammatory phenotype and human leukocyte antigen
(HLA) class II upregulation (11). Thus, FLS recognize both
pathogens and endogenous ligands through the PRRs, and these
interactions lead to the pathogenesis of RA.

FLS INTERACTIONS WITH IMMUNE CELLS

Autoantibodies, such as RF and ACPAs, are an important feature
of RA, and their presence provides evidence of the involvement
of CD4+ helper T cells and B cells in the RA pathogenesis (2). The
RA synovium frequently (40%) exhibits ELSs, which are discrete
clusters of T cells, B cells, and macrophages (12). Consistent with
the activated immune responses of these ELSs (1), B cells clonally
expand in the RA synovium, presumably due to autoantigens,
rather than in peripheral blood (13). During these activated
responses, communication between FLS—a type of stromal cell—
and immune cells may lead to the signature RA phenotype.
In this section, we review the interactions of FLS with each
cell type.

Interactions With Macrophages
Under healthy conditions, resident monocytes are found in the
intimal lining and sublining of synovial tissues (3, 14). Upon
activation of synovial tissues, neoangiogenesis and chemokine
recruitment function in the influx of peripheral monocytes into
the synovium (3). In response to proinflammatory cytokines, FLS
secrete chemoattractants, such as CCL2, CCL5, CCL8, CXCL5,
and CXCL10, which leads to the recruitment of monocytes
and macrophages (3). Cytokine networks at inflammatory sites
contribute largely to the RA pathogenesis and the perpetuation
of inflammation. Detailed analysis of the cytokine milieu of
RA synovitis revealed that macrophages and fibroblasts are

the major sources of proinflammatory cytokines (15). Anti-
cytokine therapies, including anti-TNF and anti-IL-6, markedly
improve the clinical results after RA treatment (16, 17). These
cytokines form a vicious inflammatory cycle leading to synovial
hyperplasia, influx of lymphocytes, and the production of effector
proteins. Macrophages are the major source of IL-1β and TNF,
and FLS in the intimal lining are the main source of IL-6 (15).
Colony-stimulating factors, such as GM-CSF andM-CSF, are also
produced primarily by FLS in the intimal lining (18). Upregulated
GM-CSF production by IL-1β/TNF-stimulated FLS is involved
in the local expansion of macrophages. GM-CSF rather than
IFN-γ plays an important role in the induction of HLA class
II expression on macrophages in the RA synovium (Figure 1)
(15). Indeed, anti-CXCL10 treatment and anti-GM-CSF receptor
treatment are clinically effective for RA (19, 20).

Another aspect of the interaction between macrophages
and FLS is the induction of osteoclasts, which are specialized
bone-absorbing cells that differentiate from macrophages.
Actively transformed RA synovium, the so-called pannus,
destroys the cartilage matrix and can invade bone. At
the tip of the pannus, multinuclear cell osteoclasts greatly
absorb adjacent bone. RANKL has been identified as the
factor responsible for the differentiation of osteoclasts from
macrophages (21–23). Activated FLS produce large amounts of
RANKL and another essential factor, M-CSF. Clinically, anti-
RANKL antibody significantly attenuates the bone destruction
of RA (24).

Interactions With T Cells
CD4+ helper T cells are another important player in the RA
pathogenesis. Genetic studies of RA-related genes revealed that
T-cell-related genes, including HLA-DR, PTPN22, and CTLA4,
are involved in RA (25), and that treatment that targets T cells is
as effective as anti-TNF therapy (26). CD4+ T cells differentiate
into several types of subsets depending on the differentiation
environment. IL-17-producing helper T (Th17) cells, follicular
helper T (Tfh) cells, and PD-1hiCXCR5− peripheral helper T
(Tph) cells are thought to be involved in RA (27–29). Th17
cells function in the activation of FLS, macrophages, endothelial
cells, and chondrocytes mainly via the biological effects of IL-17A
(30). However, clinical trials of neutralizing anti-IL-17 antibodies
demonstrated that Th17 cells play a role in the pathogenesis of
psoriatic arthritis but less in that of RA (31, 32). The strong
involvement of autoantibodies, such as RF and ACPAs, in RA
suggests that B-helper activity is a key function of CD4+ helper
T cells. In LNs or tonsils, Tfh cells exert B-helper activity, and aid
in class switching and affinity maturation of antibodies via the
activity of the master transcription factor BCL-6 (33). However,
the BCL-6 expression level is not increased in RA synovial CD4+

T cells (34, 35) despite production of autoantibodies in the RA
synovium (13). Recently identified by comprehensive analysis of
clinical samples as a pathogenic CD4+ subset in RA patients (36),
Tph cells also play a role in B-helper activity and ELS formation
at inflammatory sites (34, 35, 37).

Although not primary immune cells, FLS express immune-
related genes, including HLA Class II, the gene required
for presenting antigens to CD4+ helper T cells, during the
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FIGURE 1 | Schematic outline of interactions between FLS and immune cells.

development of RA. FLS also function in the differentiation of
T cells via cytokine production. TGF-β is known to be involved
in the differentiation of several types of T-cell subsets, such as
inducible T reg (iTreg), Th17, and Tph cells (38), by inducing the
transcription factors FoxP3 (39), RORC (40), and Sox4/Maf (37).
Chemokines from FLS also help recruit T cells. CXCL9/10/11,
CCL20, and CCL2 recruit Th1, Th17, and Tph cells via the
cytokine receptors CXCR3, CCR6, and CCR2, respectively (36,
41–43). RA FLS also significantly express higher amounts of
CX3CL1 (fractalkine), and the expression of its sole receptor,
CX3CR1, is upregulated in CD4+ and CD8+ T cells of patients
with RA, suggesting the involvement of the CX3CL1/CX3CR1
axis in the pathogenesis of RA (44). Consistent with this, anti-
CX3CL1 treatment has significant clinical effects for RA (45).
Membrane proteins and adhesion molecules also lead to the
activation of T cells and FLS. CD40L produced by CD4+ T cells
stimulates B-cell activity by stimulating CD40 signaling in B
cells. Similarly, CD40L produced by T cells also stimulates FLS
to release chemotactic molecules (46). LFA-3 on FLS and LFA-2
(CD2) on T cells are important for strengthening the adhesion
between T cells and FLS (47). ICAM-1 and VCAM-1 expressed
on FLS regulate the development of T cells by interacting with
the integrins LFA-1 and VLA-4, respectively (48). Thus, FLS

support the immunological functions of T cells via pleiotropic
mechanisms (Figure 1).

Interactions With B Cells
The clinical relevance of autoantibodies in RA supports
the important roles of B cells in the RA pathogenesis.
Indeed, administration of the B-cell-depleting anti-CD20
antibody, rituximab, produces good clinical results for RA (49).
Autoantibodies develop initially in the synovium rather than in
peripheral blood and are class-switched during the development
of RA (13), which indicates that the local synovial environment
is a main contributor to the development and maturation of
autoantibody-producing B cells.

Upon TLR3 stimulation, FLS produce large quantities of B-
cell-activating factor (BAFF) and a proliferation-inducing ligand
(APRIL) (50). Although both BAFF and APRIL bind to the
receptor’s B-cell maturation antigen (BCMA), transmembrane
activator, and cyclophilin ligand interactor (TACI), only BAFF
can bind to the BAFF receptor (BAFF-R) (51). Therefore, BAFF
and APRIL exert different biological effects on B cells. BAFF is
important for the maturation and survival of B cells; upregulated
BAFF expression leads to an increase in the number of mature
B cells and autoantibody production in mice (52). In contrast,
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APRIL plays essential roles in class-switching of antibodies and
the survival of plasma cells (51). However, the roles of BAFF and
APRIL in RA remain to be determined. Anti-BAFF treatment for
RA downregulates RF but has little effect on the clinical course of
disease activity (53).

IL-6 is another key factor secreted by FLS that can affect B cell
functions. In addition to its pleiotropic effects on multiple cell
lineages, IL-6 plays key roles in the development of B cells. IL-6
is involved in the survival, expansion, and maturation of B cells
(54), and it functions in the commitment to the Tfh cell subset via
the induction of the transcription factor BCL-6 (55). Therefore,
FLS support the function of B cells, including autoantibody
production, and lead to the pathology of RA (Figure 1).

FLS Support ELS Formation
Frequent ELS formation is an important feature of the RA
synovium (12). In ELS, generally upregulated immune responses
lead to autoantibody production in rheumatic diseases, or to
anti-viral immunity or anti-tumor immunity depending on
the features of diseases (1, 56–58). FLS play essential roles
in ELS formation and in the regulation of ELS immune
responses. During the developmental process of secondary
lymphoid organs, such as LNs and tonsils, interactions between
lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer
(LTo) cells coordinate organ formation. Similarly, FLS express
signature genes of LTo cells and their derivative fibroblastic
reticular cells (FRC) such as LTβR, IL-7, RANKL, CXCL13,
CXCL12, CXCL21, CXCL19, VCAM-1, ICAM-1, and gp38 (12,
34, 48, 59–64). In addition, FLS also exert nurse-like activity by
supporting lymphocyte pseudoemperipolesis (activemigration of
lymphocytes into the cytoplasm of nurse-like cells). FLS under
RA or of non-RA conditions support the pseudoemperipolesis of
T cells, B cells, and NK cells, aiding in their survival, activation,
or functions such as IgG production (60, 65, 66). Due to such
activity of FLS, TLO cells are (i) induced via initiators, such
as LTαβ, IL-7, and RANKL (67), (ii) expanded via propagators,
such as CXCL13/12/21/19, and (iii) maintained via adhesion
molecules and nurse-like activity (Figure 2).

Involvement in Organ-Specific Immune
Responses
Although ELS exhibit an overlapping structure in several
inflammatory diseases, the target autoantigens depend on the
diseases. In the salivary gland ELSs of patients with Sjögren
syndrome, B cells and plasma cells are frequently reactive
against the ribonucleoproteins Ro/SSA and La/SSB, whereas
autoantibodies specific for RA are RF and ACPA. These
differences may be partly attributed to the differences in non-
immune cells of target organs. One notable feature of FLS
is their contribution to the joint architecture via formation
of synovial anatomical components: the intimal lining and
sublining. Indeed, FLS grown in three-dimensional culture self-
direct their architecture to be very similar to that of the intimal
lining (14), which borders between joint spaces and synovial
tissues. This signature architecture of joints may function in the
enrichment of disease-specific antigens, such as synovial fluid
NETs, whose citrullinated histones aremajor targets of ACPA (12,

68, 69). Alternatively, a protein of FLS, citrullinated calreticulin
of FLS, or citrullinated aggrecan from cartilage are other targets
for RA autoreactive B cells or T cells, respectively (70, 71).
These findings suggest a connection between autoantibodies and
organ-specific antigens depending its structure and components.

FLS EXERT EFFECTOR FUNCTIONS OF RA

As a consequence of activated immune responses, hyperplastic
synovial tissues of RA (pannus) aggressively invade adjacent
cartilage, tendon, and bones, leading to the destruction
of multiple joints. Clinical studies demonstrated that the
vasculature of the RA synovium reflects joint inflammation and
correlates with future joint deformities. In this joint destruction,
FLS directly exert effector functions. In this section, we discuss
FLS effector functions and their regulation.

Synovial Hyperplasia
As mentioned above, FLS are highly involved in the formation
of the intimal lining of synovial tissues (14). The intimal lining
comprises 1–3 cell layers in normal physiological conditions,
but its thickness increases to 10–15 cell layers in the activated
RA synovium (3, 46). Upregulated expression of effector factors
in the hyperplastic intimal lining suggests the importance of
the dysregulation of the intimal lining in the RA pathogenesis
(15, 18). Dysregulation of apoptosis and proliferation of FLS
via multiple genes may play a role in this hyperplasia (72–
74). In three-dimensional culture conditions, the combination
of growth factors (e.g., PDGF and TGF-β) with inflammatory
cytokines (e.g., TNF) strongly induces hyperplasia of the synovial
lining via activation of the PI3K–Akt pathway (75, 76). Adhesion
molecules, such as cadherins and integrins, play essential roles
in the formation and maintenance of the synovial lining. A
deficiency in cadherin 11 leads to the disappearance of the intimal
lining in mice (77). Integrin α9β1 is also preferentially expressed
by FLS. Neutralization of integrin α9β1 or knockdown of its
ligand tenascin-C abrogates the formation of the synovial lining
(78). Based on these findings, in addition to integrin α9β1 and
cadherin 11, FLS may play a role in the formation of the synovial
lining. These adhesion molecules also have effector functions
in RA. RA FLS cultured in a three-dimensional manner secrete
greater amounts of effector factors, such as MMP1, MMP3, IL-6,
or RANKL, than monolayer FLS.

The protein gp38, a FRC signature gene, may also function
in the regulation of TLO size. Regarding LNs, gp38 is involved
in the FRC regulation of LN size. Interaction of gp38 with its
ligand CLEC2, which is preferentially expressed by dendritic
cells in LNs, reduces the tension of fibroblastic reticular cells.
Enlargement of LNs upon inflammation is significantly disturbed
in gp38-deficient mice (79). Of note, RA FLS of the intimal
lining express more gp38 than OA FLS (62), and platelets in the
synovium preferentially express CLEC2 (80). However, it remains
to be investigated whether gp38 is also involved in hypertrophy
of the RA synovium. Treatments targeting integrins or other
adhesion molecules may be candidate alternatives for patients
with refractory synovial hyperplasia.
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FIGURE 2 | Schematic outline of FLS contribution to TLO formation.

Neoangiogenesis in the RA Synovium
The transitory pre-vascular inflammatory stage of the RA
synovium is followed by a prominent vascular stage (46, 81),
which is clinically detectable by power Doppler (PD) sonography
as a reliable sign of active synovitis, and is significantly
correlated with the poor prognosis of RA (82). The clinical
connection between PD-positive synovial hyperplasia and the
poor prognosis of RA strongly suggests the importance of
the synovial vasculature in the RA pathogenesis. Hyperplasia
of the intimal lining and infiltration of T cells, B cells, and
macrophages into the sublining increase the metabolite demand
and hypoxia, which induces marked new vessel formation (81).
In particular, hypoxia accompanied by synovial hyperplasia
drives the production of VEGF, the most important factor
for neoangiogenesis, via the hypoxia-inducible transcription
factor (HIF)-1α, whereas HIF-2α is involved in FLS functions
of intimal lining (83–86). Subsequently, upregulated VEGF
leads to the activation of the angiopoietin (Ang)/Tie-2 system.
Although Ang1 is constitutively expressed by quiescent
vasculature, the expression of Ang2 depends on endothelial
cell activation (87). The activation of Tie-2 signaling via the
Akt pathway is required for the proliferation and survival
of endothelial cells (81). Observation of Tie-2 activation
in synovial tissues from some unestablished RA patients
might imply the involvement of angiogenesis process in the
development of RA (88). Of note, RA FLS under hypoxic
conditions are sufficient for angiogenesis employing multiple
factors such VEGF, bFGF, TGF-β, IL-6, IL-8, CXCL12, ICAM-
1, VCAM-1, and matrix metalloproteinases (84, 89). In the
context of the clinical relevance of PD for the development of
joint destruction, treatments targeting HIF-1α or angiogenic
factors have been discussed as alternative treatments for
RA (81, 90).

Direct Effector Functions of FLS
One important feature of RA is the direct contribution of
FLS to the degeneration of joints. Models of FLS transplanted
together with cartilage into immunodeficient mice demonstrated
that once activated, RA FLS acquire an aggressive phenotype
that invades adjacent cartilage (91). RA FLS secrete multiple
species of extracellular protease enzymes such as matrix
metalloproteinases (MMPs). MMPs can be subdivided according

to their substrates into collagenases, stromelysins, gelatinases,
and membrane-type MMPs. The collagenases MMP-1 and
MMP-13, and the stromelysin MMP-3 are the most important
MMPs in the RA pathogenesis (3). FLS also produce tissue
inhibitors of metalloproteinases (TIMPs). Cartilage destruction
depends on the balance between MMPs and TIMPs. When
the balance favors MMPs, cartilage degradation proceeds.
The expression of MMPs, but not TIMPS, is upregulated by
inflammatory cytokines (IL-1β, TNF, and IL-17) (3), which
is consistent with the correlation between inflammation and
cartilage degradation.

A disintegrin and metalloproteinase with thrombospondin
motifs (ADAMTs) comprise another family of extracellular
proteases. ADAMTS4 and ADAMTS5 produced by FLS lead
to cartilage damage in RA (92). Adhesion molecules, such
as integrins and cadherins, are also involved in cartilage
degeneration. As described above, FLS in the intimal lining
increase the expression of MMPs via signaling of integrin α9
and cadherin 11 (77, 78). RA FLS also express higher amounts
of integrin α5β1, which plays an important role together with
syndecan 4 in the adhesion of cells to, and destruction of,
the cartilage matrix (93). Another essential function of FLS is
osteoclastogenesis, which is also involved in joint destruction,
via RANKL and M-CSF secretion. Although activated T cells
also produce RANKL, conditional knockout in vivo experiments
revealed that FLS contribute to bone destruction more than T
cells (63).

CONCLUSION

Several studies on RA have confirmed that FLS—non-immune
cells found in target organs—play several roles in disease
development. These findings have increased our understanding
of the immune responses of ELSs at local inflammatory
sites. However, many questions remain to be answered about
the immune responses at local inflammatory sites, including
autoantibody development in ELSs and the complex roles of
helper T cells. Recent single-cell analysis has demonstrated
that FLS can be classified into several subsets (94). Further
investigation of the interactions between FLS and immune cells
will improve our understanding of human immunology and aid
in the development of new RA treatments.
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