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Abstract

Three-dimensional (3D) cell culture technologies, which more closely mimic the complex

microenvironment of tissue, are being increasingly evaluated as a tool for the preclinical

screening of clinically promising new molecules, and studying of tissue metabolism. Studies

of metabolites released into the extracellular space (secretome) allow understanding the met-

abolic dynamics of tissues and changes caused by therapeutic interventions. Although quite

advanced in the field of proteomics, studies on the secretome of low molecular weight metab-

olites (< 1500 Da) are still very scarce. We present an untargeted metabolomic protocol

based on the hybrid technique of liquid chromatography coupled with high-resolution mass

spectrometry for the analysis of low-molecular-weight metabolites released into the culture

medium by 3D cultures and co-culture (secretome model). For that we analyzed HT-29

human colon carcinoma cells and 3T3-L1 preadipocytes in 3D-monoculture and 3D-co-cul-

ture. The putative identification of the metabolites indicated a sort of metabolites, among them

arachidonic acid, glyceric acid, docosapentaenoic acid and beta-Alanine which are related to

cancer and obesity. This protocol represents a possibility to list metabolites released in the

extracellular environment in a comprehensive and untargeted manner, opening the way for

the generation of metabolic hypotheses that will certainly contribute to the understanding of

tissue metabolism, tissue-tissue interactions, and metabolic responses to the most varied

interventions. Moreover, it brings the potential to determine novel pathways and accurately

identify biomarkers in cancer and other diseases. The metabolites indicated in our study have

a close relationship with the tumor microenvironment in accordance with the literature review.
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Introduction

Colorectal cancer (CRC) is the third most common cancer in the world and the second most

deadly. Every year 1,8 million people are diagnosed and about 900,000 patients die from CRC

[1]. It is usually diagnosed at advanced stages due to the limitations of current screening meth-

ods used in the clinic [2–4]. Only two blood-based biomarkers are available to monitor CRC

patients: carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA19-9). CEA, is

a high molecular weight glycoprotein, found in embryonic tissue and colorectal malignancies.

However, high levels of this compound in the blood are not specific for CRC and elevated lev-

els of CEA are found in advanced stages of a fraction of CRC patients. The CA19-9 antigen,

compared to CEA, is less sensitive and specific for CRC [5]. There is an urgent need to develop

new biomarkers and modalities to detect, diagnose, and monitor the disease.

Pre-clinical in vitro evaluation is traditionally carried out in two-dimensional (2D) cell

monoculture representing an easy and well-established methodology. The growth in 2D sur-

face results in cell and cytoskeleton’s flattening and remodeling, changing important factors in

the tumor microenvironment in vivo such as nuclear form, protein and lipid synthesis, bio-

chemical responses, and signaling cascades. It is widely held that 2D culture is unable to simu-

late the original tumor microenvironment, which grows three-dimensionally (3D) [6, 7]. This

is why many compounds and drugs are active in 2D culture models but are not successful in

subsequent preclinical tests [8, 9].

The 3D culture systems have received attention to avoid certain disadvantages of 2D-cul-

ture models [10, 11]. Three-D spheroids are formed by cell aggregation mediated by the inter-

action between integrin and extracellular matrix with subsequent compaction by

transmembrane protein interactions such as E-cadherin [12, 13]. This allows three-dimen-

sional cell cultures to structure similar to natural tissues, to present intercellular interactions

and adhesions, and simulate in vivo tumor characteristics such as hypoxia, necrosis, invasion,

metastasis, anti-apoptosis and drug resistance [14–18].

Metabolomics, an approach targeted at comprehensive profiling of the metabolites in a bio-

logical system, has demonstrated its great potential for use in the early diagnosis and personal-

ized treatment of various cancers including CRC [19, 20]. By applying advanced analytical

techniques and bioinformatics tools, the metabolome can be mined for biomarkers associated

with carcinogenesis and prognosis [4].

The metabolome is the set of molecules below 1.5 kDa produced in response to intrinsic

biological and environmental factors [21]. It is the net result of the integration of systemic met-

abolic processes and reveals the metabolite-enzyme relationships that regulate these processes.

Thus, the metabolome, in contrast to genome or proteome, has been considered a more

instantaneous representation of the phenotype, since its changes occur more quickly than

changes in genes or proteins, and may indicate, in a time closer to the real one, current biologi-

cal events. Additionally, several drug target a specific metabolite by inhibiting its enzyme or

receptor, which are proteins and not genetic sequences. In this context, metabolomics studies

seem more promising for discovering new molecules and metabolic pathways for potential

therapeutic targets. Thus, recognizing that metabolites play significant and dynamic roles in

biological processes has made metabolomics a key area in studies of systemic profiles in dis-

eases and medicine in general [22].

Metabolomic studies that use liquid chromatography coupled to mass spectrometry

(LC-MS) as an analytical technique, provide a comprehensive analysis of the metabolome and

revolutionize the study of small molecules. LC-MS-based metabolomics can be categorized

into (i) targeted analysis which is a pre-established quantitative analytical approach to a list of

known metabolites and (ii) untargeted metabolomics which is characterized by the
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simultaneous measurement of a large number of metabolites of each sample, usually without

prior knowledge of the constituents and changes in them. The main advantage of untargeted

metabolomics is the discovery of new metabolites in relation to the study context; therefore, it

is considered a hypothesis-generating approach [23].

Two approaches are considered when performing metabolomic studies of cultured cell

lines. Those focused on intracellular metabolites of isolated cells and those focused on the

secretome or extracellular metabolites released (ERM) by cells in the culture medium. The

analysis of ERM provides a picture of the metabolites resulting from the exchange carried out

between the cells and the culture medium. This approach has the following advantages: ensur-

ing little (or non-existent) handling of cells, which avoids the production of artifacts, allowing

the monitoring of metabolic activity in response to experimental disturbances without cell dis-

ruption, enabling the monitoring of metabolic changes over time within the same culture and

avoid carrying out long and multiple extraction procedures, which also enable the production

of technical artifacts that can lead to concealment or unwanted manipulation of biological

results [24]. However, the disadvantages of working with the secretome include matrix effects

related to the salty media composition, which is rich in sugars, lipids, proteins, and water and

might interfere in the analysis. The dilution of the metabolites of interest in the media also

impacts the detection sensitivity [25].

Here we present a liquid chromatography coupled with high-resolution mass spectrometry

metabolomic based protocol for the analyses of ERM. For the development of the protocol,

culture medium from monoculture spheroids and co-culture (from HT-29 and 3T3-L1 cells)

were analyzed. The putative identification of relevant molecular features for each spheroid

type and those influenced by co-culture demonstrate the applicability of the method to the

study of the metabolism of these spheroids and their tissue-tissue interactions with a focus on

discovering new therapeutic targets, biomarkers and their associated metabolic pathways.

Material and methods

The protocol described in this peer-reviewed article is published on protocols.io, [doi.org/10.

17504/protocols.io.b24vqgw6] and is included for printing as S1 File with this article.

Expected results

For this protocol, we used untargeted ultra-performance liquid chromatography coupled to

electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-QTOF) operating

in high energy collision spectral acquisition mode (MSE) mode approach to investigate differ-

ences between extracellular metabolomic profiles of HT-29 and those of 3T3-L1 spheroids.

The presence of adipose tissue can influence the development of CRC in vivo [26]. To better

understand this influence in vitro, we used a model of HT-29 cell line as cancer cells and

3T3-L1 as adipocytes [27]. These cell lines were cultured separately and co-cultured, and their

secretome was used to investigate the tumor microenvironment and the interaction between

cancer cells and the adipocyte tissue.

CSH (charged surface hybrid) particles were designed to enable sample loading and

improve peak symmetry when using low ionic strength mobile phases, as instructed by the

manufacturer. Reversed-phase columns, such as the chosen CSH C18, are broadly used for

metabolomics investigation in different matrices such as plasma [20], serum [28], urine [29],

tissue [30], and cell cultures [31], as chromatographic columns of this type generally result in

the detection of more features [32]. The ERM obtained after the co-cultivation of both cell

types was investigated. In the beginning, a total of 2658 molecular features were detected in the

positive ionization mode and 3521 features were detected in the negative ionization mode.
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These features retain the information of retention time and mass-to-charge ratio (tR_m/z) of

each metabolite elucidated after the LC-MS runs.

Volcano plot statistical analysis of all cultured conditions compared with the blank samples

(cultured medium only) provide the number of characteristic metabolites of each spheroid as

reported in Table 1.

Only molecular features with log2 (FC) > 0 were considered because they represent an

increase of the metabolite abundance in the medium due to the contact with the organoids.

The statistical comparison (volcano plot) of all three different conditions was also performed

and returned some relevant metabolites of each cell type as depicted in Table 2. Although

Table 2 brings a small number of metabolites when compared to the detected ones, these

metabolites were the ones that met the statistical criteria of relevance, as well as the annotation

criteria based on MS/MS and isotopic pattern recognition. Indeed, in untargeted metabolo-

mics, linking chemical structures to the data obtained by mass spectrometry remains a signifi-

cant challenge. The vast majority of information collected by metabolomics is the so-called

"dark matter," i.e., chemical signatures that remain uncharacterized [33].

Arachidonic acid (ARA), 5-HETE, and dihomo-γ-linolenic acid (DGLA) stood out among

the listed metabolites. Studies have related ARA in the colorectal cancer carcinogenesis pro-

cess, with the influence of the inflammatory process on tumor growth and progression

through the interaction of inflammatory cytokines and chemokines with tumor cells [34–36].

Cajal cells and F2d fibroblasts, mesenchymal components of colonic tissue related to CCR,

have already demonstrated high concentrations of ARA metabolism genes [37, 38]. Therefore,

ARA was studied as a therapeutic target due to its direct involvement in the process of inflam-

mation and carcinogenesis of colorectal cancer. Corroborating to these data, the use of ibupro-

fen and aspirin by adult patients reduced the risk of progressing to cancer for premalignant

and advanced-stage lesions, as well as for recurrent adenomas [39, 40], suggesting that ARA

inhibition may indeed play an important role in colorectal carcinogenesis. Fig 1 shows the

increase of some metabolites, ARA included, which were positively or negatively impacted by

the CRC spheroid in the presence of adipocytes. Furthermore, studies demonstrate the

increase of 5-lipoxygenase (5-LOX), part of the ARA pathway, and its metabolite, 5-HETE, in

tumor tissues of the prostate, pancreas, colon, stomach and cervix [41–46].

DGLA is related to linoleic acid metabolism, an unsaturated fatty acid found in omega-6,

which is associated with increased tumor growth, size, and metastatic potential [47]. Diets rich

in omega-6 would be related to pro-inflammatory effects in the body, which may predispose to

CRC development in long-term exposure [47, 48]. Also noteworthy are γ-glutamyltyrosine

and γ-glutamylisoleucine as glutathione metabolites, a potential biomarker of tumorigenesis,

beta-alanine, an indicator of tumor protein metabolism reprogramming, and histidinal, a

metabolite of histidine, which is involved in several biological responses related to tumor

growth [49–52]. The biological findings point to relevant aspects of tumor metabolism and

highlight the potential of the protocol described here as a valuable tool in the metabolism

study of in vitro model CCR based on 3D culture and co-culture cells.

Table 1. Molecular features of 3D cultured cells.

Cell Type Negative Mode Positive Mode

HT-29 191 features 3 features

3T3-L1 329 features 267 features

HT-29 + 3T3-L1 129 features 14 features

a. characteristic metabolites of each spheroid after comparison with the blank samples (cultured media only).

https://doi.org/10.1371/journal.pone.0274623.t001
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Table 2. Representative secretome from 3D culture or 3D co-cultured spheroids.

Feature Codea Log2 (FC)b Putative assignment Identifiersc Comparative abundancesd

tR_m/z HT-29 3T3-L1 HT-29 + 3T3-L1

8.49_303.2320m/z 1.5 Arachidonic Acid C00219 HMDB0001043 ✓ NA DOWN

0.75_151.0247m/z 3.2 Glyceric Acid C00258 HMDB0000139 ✓ DOWN DOWN

8.59_329.2473m/z 1.1 Docosapentaenoic Acid� C16513 HMDB0001976 ✓ DOWN DOWN

0.61_134.0460m/z -4.0 Beta-Alanine C00099 HMDB0000056 ✓ DOWN UP

1.67_291.0973m/z 9.3 γ-Glutamyltyrosine C03363 HMDB0011741 ✓ NA NS

3.52_241.1184m/z 6.8 γ-Glutamylisoleucine C03363 HMDB0011170 ✓ NA NS

8.13_301.2162m/z 3.5 5-HETE C04805 HMDB0011134 ✓ NA NS

9.00_305.2475m/z 2.5 Dihomo-γ-linolenic acid C03242 HMDB0002925 ✓ NA NS

0.77_153.0402m/z 4.8 Xanthine C00385 HMDB0000292 ✓ NA NS

0.54_139.0743n 1.5 Histidinal C01929 HMDB0012234 NA NA ✓

0.56_251.1008n 2.6 Deoxyadenosine C00559 HMDB0000101 NA NA ✓

4.58_245.0920m/z 15.5 Formyl-N-acetyl-5-methoxykynurenamine C05642 HMDB0004259 NA ✓ NS

0.54_802.6697m/z 11.5 PC(o-38:0) C00958 HMDB0013408 NA ✓ NS

0.61_232.0824m/z 8.4 2-Keto-6-acetamidocaproate C05548 HMDB0012150 NA ✓ NS

4.43_407.1214m/z 7.9 2-S-glutathionyl acetate C14862 HMDB0062198 NA ✓ NS

1.39_298.0970m/z 7.7 5’-Methylthioadenosine C00170 HMDB0001173 NA ✓ NS

0.65_152.0566m/z 7.6 Guanine C00242 HMDB0000132 NA ✓ NS

0.50_364.2445m/z 7.0 MAG(14:1) C01885 HMDB0011531 NA ✓ NS

a. tR = retention time; m/z = mass-to-charge ratio.

b. Compared to blank samples (culture media only).

c. HMDBXXXXXXX, metabolites described in the Human Metabolome Database (HMDB—https://hmdb.ca/); CXXXXX, described in the Kyoto Encyclopedia of Genes

and Genomes database (KEGG—https://www.genome.jp/kegg/).

d. ✓ = presence; NA = absence; UP and DOWN = more or less abundant respectively, when compared with HT-29 culture; NS = not significantly impacted when

compared with HT-29 culture.

� Annotated by exact mass only.

https://doi.org/10.1371/journal.pone.0274623.t002

Fig 1. Heatmap of the metabolites from HT spheroids impacted by the co-culture with 3T3 adipocytes. The colors are normalized to the relative abundance of

each metabolite. Samples (vertical axis) and metabolites (horizontal axis) are separated by Ward’s algorithm and the dendrogram was scaled using Pearson’s

correlation. The clusters containing tumor spheroid alone and co-culture with tumor and adipocyte spheroids are highlighted in green and red, respectively.

https://doi.org/10.1371/journal.pone.0274623.g001
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